Sonderdruck aus

Arch. Math., Vol. 66, 163176 (1996) 0003-889X/96/6602-0163 $ 4.30/0
© 1996 Birkhduser Verlag, Basel

~Receives by

Advances and improvements in the theotyBBUChberger
of standard bases and syzygies

By
(G.-M. GreugL and G. PFISTER *)

Intreduction. The aim of this article is to describe recent advances and improvements
on the tangent cone algorithm of T. Mora. This tangent cone algorithm is itself a variant
of B. Buchberger’s celebrated algorithm for constructing a Grobner basis of an ideal in
a polynomial ring over a field. In the same manner as the knowledge of a Grébner basis
allows the computation of numerous invariants of the coordinate ring of a projective
algebraic variety, a standard basis (computed by the tangent cone algorithm) does so for
invariants of the local ring of an algebraic variety at a given point. In this paper we
describe a generalization which includes Buchberger’s and Mora’s algorithm as special
cases. That is, we prove - with an appropriate definition of ecart — that Mora’s algorithm
terminates for any ordering on the monomials of K [x,,. .., x,], which is compatible with
the natural semigroup structure (a fact which was found independently by Gribe [6]}, in
particular, the variables may have as well negative, positive or zero weights (cf. Section 1}.
More or less all algorithms using Grobner bases {such as computation of syzygies, ideal
theoretic operations, etc.) are now available in this general context. Our generalization
provides also an easy manner to implement standard bases for modules over the Weyl
algebra and for @-modules. The general standard basis algorithm is described in Sec-
tion 1.

In Section 2 we prove that Schreyer’s method to compute syzygies gemeralizes to
arbitrary semigroup orderings. It seems to be the first algorithmic proof of the fact that
the length of a free resolution is equal to the number of variables which actually occur
in the equations (and not on all variables of the ring) in the local and mixed (local-global)
case. It follows basically Schreyer’s original proof [18] but contains some new ideas, since
Macaulay’s lemma, which is usually applied, does not hold for orderings which are not
well-orderings. As a consequence we obtain that the rings Loc. K[x] (see below) are
regular.

Chapter Section 3 contains a partial positive answer to Zariski’s multiplicity conjec-
ture. Although there are othesr partial positive answers known, e.g. by Zariski, L¢, Lip-
mann, Laufer, O’Shea, Yau and the first named author, it has basically resisted all attacks.
Our result, which supports the conjecture, was prompted by computer experiments with
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an implementation of the above described algorithm in the computer algebra system
SINGUILAR. The proof (given in Section 3) does not use any computer computation but
the computer experiments were essential in guessing the result. We include a proof that
the module of leading terms, even in the case of general semigroup orderings, is a flat
specialization of the original module. This is the basis of most applications, e.g. for
computing Milnor numbers or multiplicities and Hilbert functions of singularities.

For a description of an implementation of the standard basis algorithm described in
this paper, special strategies and many comparisons, also for syzygies, cf. [8]

1. A standard basis algorithm for any semigroup ordering. This algorithm is a general-
ization of Buchberger's algorithm (which works for wellorderings cf. [3], {4]) and Mora’s
tangent cone algorithm (which works for tangent cone orderings, cf. [11], {16]} and which
includes a mixture of both (which is useful for certain applications cf. [12]). In fact, it is
an easy extension of Mora's idea by introducing the “correct” definition of ecart. But we
present it in a new way which, as we hope, makes the relation to the existing standard
basis algorithms transparent.

Let K be a field, x = (x,,..., x,) and o, f, y column vectors in IN*, N = {0, 1,2,...}.
Let < be a semigroup ordering on the set of monomials {x*{a e IN"} of K[x], that is,
< is a total ordering and x* < x# implies x* x* < x?x* for any y ¢ IN”. Robbiano proved
that any semigroup ordering can be defined by a matrix 4 € GL(n R} as follows:

Leta,,..., a, be the rows of 4, then x* < x” if and only if there isan i witha; ¢ = a; -
forj<ianda -« < a; - fB. Thus, x* < x* if and only if 4« is smaller than 4 f with respect
to the lexicographical ordering of vectors in IR"

For ge K [x], g # 0, let L {g) be the leading monomial with respect to the ordering <
and ¢(g) the leading coefficient of g, that is g = ¢(g) L.(g) + smaller terms with respect
to <.

Definition 1.1. We define Loc. Kix]:= SZ! K |[x] to be the localization of K [x]
with respect to the multiplicative closed set S.:= {1 + glg = 0 or g K[x]\{0} and
1> L{g)].

Remark 1.2. 1) K[x] € Loc. K[x] & K|x],,, where K [x],, denotes the localiza-
tion of K [x] with respect to the maximal ideal (x,,..., x,). In particular, Loc_. K [x] 1s
noetherian and K [x]-flat and K [x], 1s Loc. K [x]-flat.

DK x,...,x, <1 and X,,,...,x,>1 then 1+ (x;,....,xJK[x1,....,x]& S,
S 14 (x,...,x)K[x]=:8, hence K[x;,..., %), . xolXs1s...5 %) & Loc. K[x]
< STTKx).

Note that < is a wellordering if and only if x° = 1 is the smallest monomial and in this
case Loc. K [x] = K[x]. We call such orderings also global orderings. If 1 > x; for all i,
then Loc. K[x] = K[x],,. Such orderings are called local orderings. Orderings, where
some of the variables are > 1 and others are < 1 are called mixed orderings. Important
are degree orderings where each variable has an integer weight (positive or negative but
not zero) and where the ordering refines the partial ordering induced by the weighted
degree. Examples include the orderings w-degreviex with w = (w,,..., w,), w; # 0, where
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N = xPifweo < w-forwa=w-fand the last non-zero entry of § —  is negative.
We just write degreviex (respectively degreviex ™) if all w; = 1 (respectively all w, = —1).

Many applications require an elimination ordering for, say, x,, .. .., x,, which means
that L(g} e K{x,,..., x,] implies g € K [x,,..., x,]. Since x* < 1 implies x* € K [x,,..., x,]
we sce that this ordering is necessarily a wellordering on the set of monomials in
K% yy,...,x,]. The usual lexicographical ordering lex, given by the matrix 4 = id, is an
elimination ordering for all 0 < » < n, but the “local lexicographical” ordering lex ™ given
by A = —id is not an climination ordering. If 4, is an ordering for monomials in
Xy,..., x, and A, for monomials in x,,;,..., x,, then the product ordering given by the
direct sum A; @ A, of the matrices 4; and 4, is an elimination ordering for x,,..., x,.

We consider also module orderings <, on the set of monomials {x“¢;} of

K[x]"= 3. K[x]e; which are compatible with the ordering < on K[x]. That is for all
i=1

monomials f, f'e K[x]" and p, g€ K [x] we have: f <, [ implies pf <, pf and p < g
implies pf < ,qf.

We now fix an ordering <, on K [x]” compatible with < and denote it also with <.
Again we have the notion of coefficient ¢(f) and leading monomial L(f). < has the
important property:

Ligf)= L(g) L(f) for ge K[x] and feK[x],

L(f +g) s max(L(f), L(g)) for f,geK[x}.
Definition 1.3, Let I & K[x] be a submodule.

f) L () denotes the submodule of K [x}” generated by {L(f)| f e I\{0}}.

2) Afinite set G = {f,,..., £} « Iis called a standard basis of I if {L(f}),..., L(f)}
generates the K [x}-submodule L(I'}) < K [x}.

3) A standard basis { f},..., f,} is called reduced if, for any i, L{f}) does not divide any
of the monomials of f},..., f; (except itself).

4) A finite set {f;,...,f,} is called interreduced, if L{f)f L{f;} for all i # j.

Note that an interreduced standard basis does, while a reduced standard basis does not
necessarily exist (cf. Remark 1.12).

Proposition 1.4. If {f;,..., f} is a standard basis of I then ILoc. K [x] ={fi,..., f)
- Loc.. K[x].

The proof will be deduced from the normal form used in the standard basis algorithm
(cf. Corollary 1.11). In general it is not true that f;,. .., f, generate I as K [x}-module (take
I = () K[x},n =1, f = x + x* with lex ™). This is also not true if I < K [x]is (x,,..., X,)-
primary and if {f,..., i} is a reduced standard basis (which answers a question of
T. Mora): consider the ideal I = K [x, y] generated by x'0 — y2x®, y® — x?y7, x10y7
which is {(x, y)-primary. The first two elements are a reduced standard basis of
! Loc. K[x, y] = IK[x, y] ., where < is degrevlex ™ and hence generate I K [x, ¥] , but

they do not generate I K [x, y]. (Cf. also Remark 1.8.)

Notations. Let f, ge K[x]', L{f) = x“¢; and L(g) = x"e;. If i = j and x*|x” then
we write L{f}L(g).

{x,»
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Ifi = jand x¥ = lem{x®, x*),y = (max (e, f,),..., max (a,, ,)) then the lowest common
multiple and the S-polynomial are defined as follows:

lem(L (f), L{g):=x" and

c(f) -

c(g) g

If i  j then, by definition, L{f){L(g), spoly(f, g)}:= 0 and lcm(L(f), L(g)) := 0.

Definition 1.5. Let & ={Gg K[x]'|G finite and ordered}. A function
NF:K[x}]'x % - K[x], {p, G)+— NF(piG), is called a normal form if for any p e K [x}
and any G € & the following holds: if N F (p|G) # 0 then L(g}} LN F(p|G)}forallg € G.
N F(p|G) is called a normal form of p with respect to G. '

spoly (f, g)i=x"""f —

Example 1.6. Let < be a wellordering then the following procedure NFBuch-
berger is a normal form:

h:= NFBuchberger (p{G)
h:i=p
WHILE exist f e G such that L(f)|L(h) DO
choose the first f e G with this property
h:=spoly{h, f).

The principle for many standard basis algorithms depending on a chosen normal form
is the following:

§:= Standard (G, N F)
§S:=6
Pi={(f, 9If, g€ S}
WHILE P # 6 DO
choose (f, g)e P; P:= P\{(f, 9)}
h:= NF (spoly(/, g)|5)

IF h # 0 THEN
P:=Pu{h f)If €S}
S:=S8u{h}.

In this language Buchberger's algorithm is just
Buchberger (G} = Standard (G, NFBuchberger).

If < is any ordering (not necessarily a wellordering) and A the corresponding matrix, then
the matrix

0
defines a wellordering on the monomials of K¢, x] which we denote also by <.
For fe K{x] let f" be the homogenization of f with respect to ¢ and for G £ K|[x]
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let G"={f"feGLIf feK[x, f =X fie;, we define f* = 3"t fi"e. where degf" + a,
= deg f}" + o, for all i, j and the «; minimal with this property. We set G* = {/*1feG)
for G ¢ K[x].

This ordering has the following property:

Lemma L.7. If there existscandy = (y,,..., v,) such that t* > x' qnd o = Yook 4wy,
then x* < 1. Especially, < is not a wellordering in this case on K [x].

The Lazard method (cf. [9]} to compute a standard basis is the following:

S:= Lazard (G)

Si=G*
S 1= Buchberger (S)
S:=S(t=1).

Remark 1.8. The result S of Lazard’s method is, in general, much bigger than a
standard basis computed by the algorithm “Standard basis” below. If we are only inter-
csted in a standard basis of (G) this algorithm computes usually too much and this might
be the reason why it is often too slow. In Lazard’s algorithm one may, and usually does,
take an interreduced standard basis of (G") by deleting superfluous elements. The result
still has the property that the K [x]-module (G> = G K [x] is generated by G (we need not
pass to Loc. K[x]}. This is not necessarily true if we take an interreduced standard basis
of (G:let G = {x, x — x*}, which is a standard basis of (G = (x) K [x] < K [x] for lex .
We may delete either x or x + x? to obtain an interreduced standard basis of (G but
if we delete x, then x + x? does not generate (G (but, of course, G Loc. K [x]).

For tangent cone orderings and some mixed orderings (cf. {11], [16]) Mora found an
alporithm which computes a standard basis over Loc. K [x]. This algorithm can be
pencralized to any ordering and we can describe it as follows:

S := Standard basis (G)

S:=G"
§:= Standard (S, NFMora)
S:=8{t=1).

Let & ¢ Kt x]” be a finite and ordered set of homogeneous elements and pe K [, xJ'
homogeneous. Note that an element of K [t, x]" is homogeneous if its components are
homogeneous polynomials of the same degree. The generalization of Mora’s normal form
o any semigroup ordering is as follows:

h:= NFMora (p|G)

h:i=p

Ti= G

WHILE exist f e T, such that L{f){¢*L{(h) for some & DO
choose the first fe T with L{f){t*L{h) and o minimal
IF o >0 THEN

T:=Twu{h}

h:=spoly (t*h, )
IF t{h THEN

choose o maximal such that t* divides h
. h

[



168 G.-M. Greunn and G. PRISTER ARCH. MATH,

Theorem 1.9. 1) NFMora terminates.

2} If his a normal form of p with respect to G = { f1,..., f;} computed by NFMora then
there are homogeneous polynomials g, &4,..., & € K1t, x] such that
~gp=2&fi+h
- L{g) = t*
- degp + o =degé + degf, =deg(h) (f &#0,h#0)
L{fyieL{h) forall i, a.
If < is a wellordering on K{x] then g = t%
Proof. 2) By induction suppose that after the v-th step in NFMora we have

- g.p = z giv.fi + hv:
- L(gm) = ttl\-’
- degp + av '“: deg ii,v + degf: = deg hv (lf éi,v :#' o: hv 3{: O)
- t7% L(h,) > t7*L(h,) for p<v.
If L{f)tt= Lk, for all i, « then we have finished.

Since T comsists of elements f; € G and of h, constructed in previous steps we have to
constder two cases:

(a) If L{f)|t*L(h,) and « is minimal for all possible choices for f, € G then

t°g,p = Lt fi + 10y — nfi + ik
with L{f)n = t* L{h,). We obtain

Ry =t"h, =1k

gor1 =19,

Cnvar =18, i v#k

Srvwr =17Cp + 1
and the induction step follows with o, ; = o + a,.

(b) If L(h,)|t* L(h,)for some pu < v and « is minimal for all possible choices from T then

trgyp =2t i t5h, ~ nh, + ik,
with L(h,)#n = t*L(h,). We have

oy =1t4h, —1h,

Gvr1 =179y — 119,

Enwr =178 — &, . :
Now t* 7% L(h,) > L{h,) implies ¢**** > L(y)t*, thatis %+ % = (g, ). This proves 2).

To prove 1) let I, = <L{f)|f € T.>, T, be the set T after the v-th reduction. Let N be
an integer such that Iy = Iy, , = ... (such N exists because K [t, x]" is noetherian). This
implies Ty = Ty, = .... The alogorithm continues with fixed T and terminates because
< is a wellordering on K [1, x]".
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Remark 1.10. 1) If the ordering < on K [x] is global, then the standard basis
algorithm is equivalent to Buchberger’s algorithm because then x%|x” implies x* < x’.
This shows that only elements from G are used for the reduction in NFMora. Moreover,
if G is homogeneous but < arbitrary, the standard basis algorithm even coincides with
Buchberger’s algorithm.

2) If < is a tangent cone ordering then the algorithm is Mora’s tangent cone algorithm.
In his algorithm Mora uses the same normal form, just in another language. Instead of
passing from K [x] to K [t, x] by homogenizing and extending the ordering, he uses the
notion of ecart, where ecart (p) = deg, (p*). During the implementation of SINGULAR we
discovered that the normal form with ecart (p): = deg, (L (p") terminates for any ordering,
not only for tangent cone orderings. This was found also by Gribe (cf. [6]).

Corollary 1.11. Let S = {f,,..., f;} be a finite subset of the submodule I < K [x]".
1) If S is a standard basis of I then:
{i) For any f € K|[x]" there are g, ;e K[x], he Kx, such that

A +g)f=2&N+h,
Llg)<1if g# 0, LGS = Lf) if & # 0 and, for all i, L(f)}L(h) if h+0.
(i) felif and only if NFMora (f"5" = 0.
M) felifandonlyif(1 + g)f = ¥ & f; for suitable g, &, e K [x], L(g) < 1if g # O and

LE/HSLN)if & #0.
(i) I Loc. K |x} = (8> Loc. K[x] that is S generates I Loc. K [x] as Loc. K [x]-
modiile,

2) The following are equivalent:

(1) S is a standard basis of 1.

(i) S* = Standard (S", NFMora).
(ii1) NFMora (spoly(f, g). S =0 for all f, ge §*
(iv) One of the conditions (ii), (ii'} of 1).

The corollary is an easy consequence of 1.9.

Remark 1.12. 1) If one extends the ordering < given by the matrix 4 on K [x] to

Kit, x] by

Towy,,w

0 , all w0

0
and uses homogenization with respect to the weights w, ,..., w, then the standard basis
algorithm works as well. Grabe discovered (cf. [6]) that for a suitable choice of the weights
adapted to the input (the polynomials should become as homogeneous as possible with
respect to these weights) the algorithm can become faster. We call this the (weighted)

ecartMethod. It is implemented in SINGULAR with an automatic choice of an “optimal”
weight vector.
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2) Given < and G there exist, of course, many normal forms NF (—|G) (choose, for
instance, in the described NF-algorithms not the first element). But if < is a global
ordering, we can apply the normal form algorithm to each monomial of A and we can
achieve that for any f e K{x],

(*) f=2&fi+h,

for suitable & e K[x], he K[x]" such that L(ff;) £ L(f) if & # 0 and, for all i, no
monomial of h is divisible by L(f); h is then unique. Hence, there exists a distinguished
normal form NF (—|G), characterized by the property that L{g) does not divide any
monomial of NF(p|G) for any g € G and any p € K [x]” with NF(p|G) # 0.

If we try the same for local or mixed orderings, this procedure will, in general, not
terminate. We can only derive a presentation () with & e K {[x]] and ke K{{x]]" (formal o
power series) having the above properties. In particular, a distinguished normal form
does only exist as a function with values in K{[x]}".

3) A reduced standard basis is uniquely determined by I and <. If < is a wellordering
or if dimg Loc. K [xJ'/I < oo then there exists always a reduced standard basis in K [x}". -
In general, it exists only in K [[x]]"

2. On Schreyer’s method to compute syzygies. In this chapter we shall prove that
Schreyer’s method to compute syzygies (cf. [5], [18]) extends to any semigroup ordering

< on K[x¥ = ¥ K|[x]e;. For the treatment of syzygies in a different context, or for i!-i_:'
i=1 i

different algorithms see [1], [13], [14] and [15].
Let S = {g,....,g,} be a standard basis of I & K{x]"

qtr i
For K[x}¥= 3 K]|[x]e we choose the following Schreyer ordering < (depending
i=r+i L
on 8): x*e;,, < xPe;,, il and only if either L(x*g;) < L(x*g)or L(x*g) = L(xg)) and .
i>].
For g;, g; having the leading term in the same component, that is L(g,) = x%e,, -
fem(Ligy), Lig;)

L{g) = x"e, we consider spoly (g;, g;):= m; g; — My;4; with mj; = ¢(g)) P

Because S is a standard basis we obtain (Corollary 1.11)
(A + b mug — myg;) = >&ig,
with L{h;) < 1if h;; 7 0 and L(¢Fg,) < L{m;gy)-
For j > i such that g;, g; have leading term in the same component, fet
Tije= (1 + hy) (mye;s, — mijej-i-r) —Y&le.,.

Let ker(K[x]F = K[x]", T w;e;,, — 3 w;g;) denote the module of syzygies, syz(I}, of
{g5:..-» 4, The following proposition is essentially due to Schreyer.

Proposition 2.1. With respect to the ordering <, the following holds:

1} L(Tfj) =M€y i
2} {vli <j st L{g), L(gy) are in the same component} is a standard basis for syz(l). .

Proof. 1) L(t;) = L(mje; ., — mye;y,) = mye;,., holds by definition of <,. To

prove 2) it has to be shown that L(syz(1)) = {{mje;s,}>.
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Let ¥ w;g; =0, thatis t:= 3 w;e;,, e syz(I), and let me, ., = L(7) with respect to <, .
Let

T:={ne,,ine,,, bea monomial of 7, L(ng) = L(mg,)}.

Then, obviously, t|;:= ¥ ne,,,is a syzygy of L{gy),..., L(g,). Especially, # T = 2.
ne. 46l

Choose ! such that ne,,, € T for some n and ne, ,, # me,,,. Because L(1) = me, ,, and
the definition of <, we have k <l Since mL(gy) =nL(g) we have m,|m. But
L(zy) = myey.,., implies L(ty)iz, that is L{t) € L({{mye;,,}>), which proves the propo-
sition.

The algorithm “Standard basis™ of paragraph 1, together with repeated application of
the algorithm “Syz”, provides an effective way to construct finite Loc . K [x]-free resolu-
tions and gives a sharpened version of Hilbert’s syzygy thcorem which generalizes
Schreyer’s proof (cf. [5], [18]).

Lemma 2.2. Let {g,,..., g,} be astandard basis of I = K[x] = 3 K [x]e;. We assume
i=}

that the leading terms are a basis vector of K [x]', that is L(g,)) = e, for suitable v;. We set
J = {v|Ai s vy} and for veJ we choose exactly one gi, such that L(g, ) = e,. Then
ILoc. K[x] is a free Loc. K [x]-module with basis {g;|veJ} and (Loc.K[x]y/
I'Loc. K[x] is Loc. K[x]free with basis represented by the {e g T}

Proof. Let us renumber the g; such that g; =g, for ve J. First of all, the subset
{g.lveJ} = {g:,..., g,} remains a standard basis of I since the set of leading terms is not
changed. Hence, we may assume that all leading terms are different. By Proposition 1.4,
{g,lve J} generates I Loc. K [x]. Now consider a relation

2 ey =3 tg, & eLoc.K[x].
j&J jed
After clearing denominators we may assume that &, e K [x]. Since the leading terms
involve different ¢; on each side, we obtain &; = -+ = ¢, = 0, This shows that the g, ve J
are linear independent and that the ¢;, j ¢ J, are independent modulo  Loc . K [x]. Since
{Lg)lie I} u{eli¢ J} generate LK [x]) = (ey,..., e) K[x], {g,lie J} U {eli ¢ J} is a
standard basis of K [x]" and this set generates (Loc . K [x])” by Corollary 1.11. Therefore,
{e;lj ¢ J} generates (Loc. K [x])'/I Loc. K [x] over Loc. K [x].

Theorem 2.3. Let S = {g,,..., g,} be a standard basis of 1 < K[xI. Order § in such a
way that whenever L(g;) and L(g;} involve the same component, say L{g) = x*e, and
I{g) = x“ey, then o, Z o; in the lexicographical ordering if i <j. If L{(g,),..., L{g,) do
not depend on the variables x,,..., x,, then the L{z;;) do not depend on the variables
Xpyeeos Xyqy and

M := (Loc. K [x]y/I Loc. K [x]

has a Loc. K [x}free resolution of length < n — 5. In particular, M always has a free
resolution of length = n and, by Serre’s theorem, Loc . K [x] is a regular ring.
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Proof. Fori <Jjand L(g) = x%e,, L{g}) = x e, we have o =(0,...,0, Oigpgaess),
oy =(0,...,0, Ljsv1s- ) Withe | > s+ Therefore, L{ty) = mje;,, does not depend
O XyseevsXoyy. Let gy i=g and @1 K[x]% - K [x]" the morphism given by {g:},
2oWie, Y Widp and @, 1 K [x]92 - K [x]% the analog morphism given by the standard
basis {1}, g, = 4 {ry}. Applying the Same - comstruction as  above (o
syz' (I}:= syz(I) = ker (0;) and {t;} we obtain a standard  basis {z2} of
Syz*(I}: = $yz(syz(1)) = ker (p,) such that the leading terms of ti; do not depend on
Xisaey Xggq.

Continuing in the same way we obtain an exact seguence

Pn-s

K s L B R S R & [XF/T > 0.

0= K [x]™</ker (p,_)

Moreover, ker (g, ) = $yz"7*(I) has a standard basis {zi7%} such that none of the
variables appear in Lz %), Hence, by the preceding lemma, K [x]%-</ker (¢, ;) becomes
free after tensoring with Loc_ K {x]. If we tensor the whole sequence with Loc . K {x] it
Stays exact (since Loc . K[x]is K [x]-flat) and is the desired free resolution of M.

Remark 2.4, The above algorithm almost never gives a minimal free resolution (in
the local or in the homogeneous case), on the contrary, every syzygy module is generated
by a standard basis, Nevertheless, it is ofien quite fast (cf. [8]).

3. Zariski’s question, Milnor numbers and multiplicities. The generalization of Buch-
berger’s algorithm presented in this paper has many applications, in particular to local
algebra and Joca] algebraic geometry. For instance, most of the algorithms described in
(5], I1. 15 can be tfransferred from k [X]to Loc. K [X]. Some use extra tag variables to
be eliminated later, hence they require mixed orderings even for pure local computations.
Here we shall only explain how the implementation in SINGULAR helped to find a
partial answer to Zariski’s multiplicity question and prove the theoretically relevant
results (cf. Proposition 3.3 and Corollaries 3.4, 3.6) which Justify such kinds of applica-
tions.

g with the same embedded topological type have the same multiplicity, where for
JfeClx,,..., X, = Clx}, f = 2.¢,%% f{0) = 0, a not constant convergent powerseries,
mult({f) = min {laljc, # 0} is the multiplicity of f. Zariski’s question {usually called
Zariski’s conjecture) is, in general, unsettied but the answer is known to be yes in the case
n = 2, that is for plane curve singularities (Zariski, L& Ding Trang), and if / is semiquasi-
homogeneous and ¢ is a deformation of S {Greuel, O’Shea).

Recall that £ is called semiquasihomogeneous if there exists an analytic change of
coordinates and positive weights for the new coordinates such that the sum of terms of
smallest weighted degree has an isolated singularity.

The idea for the search for a counter example to Zariski’s conjecture is as follows: et
JX) =1(x) + tf, (x) + L)+ be a deformation of f(x) and #(f) = dime € {x};
(©f/0x,,..., ¢ f/0x,) the Milnor number of £, which we assume to be finite for t = 0 (then
it is finite for ¢ close to 0). Then, if the topological type of Ji1s independent of t, the Milnor
number x(f,) is independent of ¢ (for ¢ sufficiently close to 0). The converse is also known
to be true if n # 3. Hence, if 1(£)) is constant but mult ( £) is not, we get a counter example
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(at least if n # 3). Because of the above mentioned positive results, a candidate for a
counter example must have a big Milnor number which cannot be computed by hand.
The standard basis algorithm of Section i, together with a good choice of strategies
and special improvements for zero-dimensional ideals (cf. {8]), as implemented in
SINGULAR, allowed these Milnor numbers to be computed for several series of candi-
dates (all other systems failed). The failure to find a counter example led to the following
positive resulf.

Let f,{x) be a (1-parameter) holomorphic family of isolated hypersurface singularities,
that is 0 & € is an isolated critical point of f; for each t close to 0 e €. The polar curve
of such a family is the curve singularity in € x @ defined by the ideal (8 fi/0xy, ..., o 1,/0x,)
c C{x, t}

Lemma 3.1. Let [, be a family of isolated hypersurface singularities. Let Hz= @ " be
a hyperplane through 0 such that formation of the polar curve is compatible with restriction
to H. That is: polar curve (f\H) = polar curve (f) H. Then

w(f) = constant = p(f,|H) = constant.

Proof. We may assume that H = {x, = 0} and then the polar curve (f,|H) is given
by (B f,/8%,,-..» 0fif 0%, 1, %) while polar curve (f) » H is given by (0 £,/0x,,..., 0f/0%,,
x,). Hence, the assumption is equivalent to 8 f/0x, € (0£/0x:,.. . B f,/0%, - 1> Xuh

We shall use the valuation test for p-constant by Lé and Saito ({10]):

1 (f,) = constant<>for any holomorphic curve y : (€, 0) — (€ x €, 0) we have vat (0 f/
ot (y(s))) = min {val(® filox(ysM i=1,.., n}. Moreover, this is equivalent to “Z” re-
placed by “>7. (val denotes the natural valuation with respect to s.)

Now let y(s) be any curve in H = {x, = 0}. Then 8 ff0x, € (0f/0xy,. .-, B £,/0x, - 15 %)
implies that val(0f/0x,(y (s)) 2 min {val (@ f,/0x;(y (M, i=1,....n— 1}.

Applying the valuation test to f, and to f;{H, the result follows.

Proposition 3.2. Let fi(x,,--., X,) = G (Xqseees Xpe 1) + x2h,(xy,-..,%,) be a family of
isolated hypersurface singularities. Let g, be semiquasihomogeneous or let n=73 If the
topological type of f; is constant then the multiplicity of g, is constant { for t close to Q). In
particular, if mult(g,) < mult (x2 h,) then mult{(f) is constant.

Proof. Since f, has an isolated singularity we may add terms of sufficiently high
degree without changing the analytic type of f;. If n = 3 we may replace g, by g,(x;, X5}
+ x¥ + x5, N sufficiently big, which has an isolated singularity and the same multiplicity
as g,(x,, x,). Hence, in any case we may assume that g, has an isolated singularity.
Applying the preceding lemma to the hyperplane {x, = 0} we obtain u(g,) constant. But
since Zariski’s conjecture is true for plane curve singularities and for deformations of
semiquasihomogeneous singularities ([7]), mult{g,) is constant.

The Milnor number p(f) of an isolated singularity can be computed as the number of
monomials in K [%,,..., x,J/L{) where I i the leading ideal of (8 f /Cxy,..., 0 f /ox,) with
respect to any local ordering. This follows from Corollary 3.4, for which we need the
following construction:

Let gq,-..,g9,bea standard basis of I = K[xI' = Y, Kx]e;. Any monomial x*¢, may
i=1
be identified with the point {&;,..., %y, 0,...,1,...00e N"*". For a weight vector
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we=(w;, .., w,,)eZ""" we define
degwxaek = Wy Cxl + WnOﬂ" + Wn-w‘-k

to be the weighted degree of x“e,. Let in,, ( f) the initial term of f € K [x]", that is the sum
of terms (monomial times coefficient) of / with maximal weighted degree and in,, (I) the
submodule generated by all in, (f), feI.

It is not difficult to see that there exists a weight vector w e Z"*" (indeed almost all w
will do} such that in,, (¢} = ¢{g,) L(g), i = 1,..., g, and, moreover, in,, (I) = L(I).

We choose such a w and shall now construct a deformation from Liyto It

For e K{x]" we can write f = Jo+ Jo—i 4 fpoa + - such that the weighted degree
of each monomial of f, is v. Let t be one extra variable and put

TCat)= 1,00+t () + 021, () + e K[x, |

Let T < K [x, t]" be the submodule generated by all f, JSel. On K|[x, t]” we choose the
following ordering: x*t?e, < x"t%¢,if p + deg, x*¢, < q + deg,, x" ¢, or, if these terms are
equal and x%e, < xfe,.

With respect to this ordering we_have L) = L(f) and, moreover, §,,...,4,
is a standard basis of [. (If hel then h = t"f, fel, hence, L{h)=t"L(f)
e (L(d),..., L{g,)>). In addition, setting ¢ = 0 or 1, we obtain sections of the inclusion
of multiplicative sets S (K [x]) = S (K [x, ]).

Let R:= Loc.K[x], S:=Loc. K|[x, ] and K (t) the quotient field of K [t].

Proposition 3.3. If | +# R then S”/f S is a faithfully flat K {t]-module with special fibre
(S"/TS) ®xq K = R/LUI)R
and generic fibre
(S/TS) ®xmK (1) = RYIR @ K (1),

Proof. The statements regarding the special and the generic fibres are easy. Note
that for 4 # 0, (S’/f 5) & g K{tl/t — 4) = R7/IR. Therefore, if I # R’ then the support of
S/LS is surjective over Spec K[t} and hence it remains to show that ¢ is a non-zero divisor
of S/IS. Let fe S and tf ¢ IS. By Corollary 1.11 we have (after clearing denominators)

NFMora(t f"{Z},..., ) = ¢ NFMora (f*{},..., 3" =0,
hence, feTS.

Corollary 3.4. Let either < be a wellordering or R'/IR a finite dimensional K-vector
space. Then the monomials in K [xI\L(I} represent a K-basis of R'/IR.

Proof. If < is a wellordering, the monomials not in L(I} are a basis of the free
module §7/1 S (Theorem of Macaulay, <f. [5]), hence the result. In general, it is easy to see
that these monomials are linear independent modulo I R. (Use a standard basis of I and
Corollary 1.11.) If R"/I R is finite dimensional, there are only finitely many monomials in
K [xI\L(I). The proposition implies that S”/f S is K [t]-free with these monomials as basis,
hence they also generate R”/IR.
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Remark 3.5 In general, the monomials notin L{J) are nota basis of Loc . K [x}/1.
Take, for example, K [x] with lex™ and I = (0). Then Loc. K x] = K[x)s, s not K-gen-
erated by monomials. If < is a wellordering, then §7/IS is even free over K 11} (cf. [SD.

Corollary 3.6. For any module ordering dim R'/IR = dim K [x]/L{I) where dim de-
notes the Krull dimension.

Proof. I =R implies L{) = K [x]', hence we may assume [ + R*. Faithful flatness
implies that dim R'/IR = dim R/L{ R, hence the result.

Let us finish with a final remark about multiplicites in the local case:

Consider the local ring R = K {xy with maxima} ideal (x) = (x,.-+> x,)and M = R/IR
a {initely generated R-module, where [ is given as a submodule of K [x] by finitely many
generators. Let mult(M) denote the (Samuel-)multip‘iicﬁty of M with respect 10 (x).
Consider

gr M=% () M/x)"T M,

iz0
which is a graded module over gr R = K[x]. For any graded module N let hy denote the
Hilbert function of N and degree (hy) the degree of the corresponding Hilbert polynomial.
The following proposition now follows easily.

Proposition 3.7. Let < be a degree ordering (cf. Chapter 1) on the monomials of Kix]
such that w, = degree{x;} = ~1fori=1,...,1n which is extended to a module ordering on
K [x]" arbitrarily. Let M = R’/IR be as above and L(I) be the leading ideal of 1. Then the
Hilbert function hy y coincides with the Hilbert function g O the graded module
KIxT/L). In particular, dim M = dim K [x/L(I) and mult (M) = degree (hpr )
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