Greater Easy Common Divisor and standard basis completion algorithms

ANDRE GALLIGO!, Loic POTTIER!, CARLO TRAVERSO!

"Université de Nice et INRIA — }Universita di Pisa

INTRODUCTION

The computation of a standard basis (also called Grébner basis) of a multivariate poly-
nomial ideal over a field K is crucial in many applications. The problem is intrinsically
time and space consuming, and many researches aim to improve the basic algorithm due
to B. Buchberger [Bul]. One has investigated the problem of the optimal choice of the
term ordering depending from the use that has to be made of the results, [BS], and the
systematic elimination of unnecessary reductions [Bu2], [GM], [Po]. We can call all these
problems “combinatorial complexity problems”.

The present paper considers arithmetic complexity problems; our main problem is how
to limit the growth of the coefficients in the algorithms and the complexity of the field
operations involved. The problém is important with every ground field, with the obvious
exception of finite fields.

The ground field is often represented as the field of fractions of some explicit domain,
which is usually a quotient of a finite extension of Z, and the computations are hence
reduced to these domains.

The problem of coefficient growth and complexity already appeared in the calculation
of the GCD of two univariate polynomials, which is indeed a very special case of standard
basis computation; the PRS algorithms of Brown and Collins operate the partial coefficient
sinplifications predicted by a theorem, hence succeeding in controlling this complexity.

Our approach looks for analogies with these algorithms, but a general structure theo-
rem is missing, hence our approach relies on a limited search of coefficient simplifications.
The basic idea is the following: since the GCD is usually costly, we can use in its place
the “greatest between the common divisors that are easy to compute” {the GECD), this
suggestion allowing different instances. A set of such instances is based on the remark
that if you have elements in factorized form, then many common divisors are immedi-
ately evident. Since irreducible factorization, even assuming that it exists in our domain,
is costly, we use a partial factorization basically obtained using a “lazy multiplication”
technique, i.e.performing coefficient multiplications only if they are unavoidable. The re-
sulting algorithms were tested with a “sirnulated” implementation on the integers, and
the results suggest that a complete implementation should be very efficient, at least when
the coefficient domain is a multivariate rational function field.

1. STANDARD BASIS COMPLETION ALGORITHM REVISITED

Let A be a domain, K its quotient field, and X = (z1,...,z,) a set of indeterminates.
A polynomial in K[X] is a sum of monomials, each one being composed of a non-zero
coefficient and a multiplicative term (term for short}, i.e. a product of indeterminates.

A term-ordering is a total ordering on the set of terms, making it an ordered monoid,
and such that 1, identified with the empty term, is the minimum of the monoid. From
now on, we assume that a term-ordering is given.

Research with the contribution of Ministero della Pubblica Istruzione (Italy) and C.N.R.S. (France).

if f is a non-zero polynomial, define Lim(f), Lt(f), Le(f) (leading monomial, leading
term, leading coefficient of f) being respectively the monomial of f with the maximum
term, its term and its coefficient. Similarly, define the sets Lm(8S}, Lt(S), Le(8) for any
subset S C K|[X],

A polynomial (a subset) is called monic if its leading coefficient(s) is (are) 1.

A standard basis is a finite set G of generators of an ideal I € K[X] such that Lm(G)
generates the ideal spanned by Lm (I). By noetherianity of K [X] any family of polynomials
can be completed into a standard basis; the effective computation is not straightforward.
B. Buchberger gave in [Bul] the first completion procedure.

In this paper we propose an improved approach whenever K is not a finite field.

We describe here the Buchberger algorithm as an “algorithm scheme”, i.e. as a serjes
of named (but undefined) data structures and subalgorithms. Our algorithms will consist
in alternative definitions for some of these structures and algorithms, keeping unchanged
the overall structure of the algorithm, and undefined some of the subalgorithms (meaning
that any correct algorithm available can be used).

Data structures.
The data structures for the algorithm are:

(1} a polynomial basis G of I

(2) aset S of elements of 7 (the simplifiers); in the original Buchberger algorithm this
coincides with G.

(3) a set B of pairs of elements of G (the pairs to process)

{4) additional auxiliary structures {(non existing in the original algorithm)

Subalgorithms.

The subalgorithms are defined as functions, having arguments, values and side-effects
on the data structures (no side effect in the description means that side-effects are not
necessary to the correctness).

A (Initialize). Arguments: a polynomial basis G. Values: none; Side-effects: initialize
the data structures.

B (Selection——strategy) Arguments: none. Values: either an element o of B; or empty

(#). Side-effects: delete o from B.

(Compute-S p) Arguments: a pair o. Values: a polynomial.

(Simpiiﬁcation-strategy). Arguments: a polynomial f. Value: either an element

gi € G, and a term T such that T - Lt(g;) appears as a term of [; or empty.

(SimpIify). Argument: two polynomials and a term. Value: a polynomial

(Normalize). Argument: a polynomial. Value: a polynomial.

(Add—polynomial). Argument: a polynomial. Value: none. Side effects: adjust all

data structures.

H (Finai—post—processing) Argument: none; value: a polynomial basis {the final re-
sult}. This procedure may use both Simplification-strategy and Simplify.

A simplification strategy is called a Lt-simplification if we always have that T- Lt{g;) =
Lt(f), and a full simplification if we have @ as value only if no Lt(g;) divides a term of f.
To simplify the descriptions, we will always assume that we have an Lt-simplification, but
the generalization is straightforward.

The algorithm scheme is the following:

(1) Initialize

wile!

Q =

(2) Let o be the value of Selection-strategy; if o = § then exit with the value of Final-
post-processing.

(3) Let f:= Compute-Sp(o)

(4) if £ =0 then go to (2)

(5) Let «y := Simplification-strategy(f). If v = @ then perform {Add-polynomial(Nor-

malize(f)) and go to (2)

(6) Let f:= Simplify(f,~); go to (4)

Steps B, D and G (especially the deletion of useless pairs) are the basic strategical
points of the algorithm; they decide its combinatorial complexity, and also have a strong
influence on the coefficient growth. We review some points concerning them in the next
section.

In this paper we are mainly interested in improvements to subalgorithms C, E and F;
the aim is to control both the growth of coeflicient complexity, and the cost of operations
needed to perform this control.

2. ON UNNECESSARY REDUCTIONS

There are at least three points concerning combinatorial strategies in standard base
completion algorithm:

(1) the choice of the term-ordering, if we are allowed to choose.

(2) the choice of the order in which we choose the pairs of elements to process and the

simplifications to perform. (Selection and Simplification strategies).

(8) the early identification of “useless” pairs, i.e. of pairs of elements {(g;, g;) of the basis

that are not going to contribute a new element to the basis since we eventually reach
f =0 at point {4). (Redundancy criteria).

A partial answer to (1) is that “generically” in the homogeneous ideal case one of the
best choices is the one that approaches as well as possible the “reverse lex” ordering [BS].

The answer to (2) is at present unsettled; many numerical experiments are needed to
discover either theorems or heuristics for this problem.

For the third point, two types of results are known: the first type corresponds to choosing
a. suitable set of generators of the module of relations between the leading terms of the
basis; these are binomial relations, and the pairs not involved are useless, if we choose
a correct evaluation order. A criterion of this type was first described in [Bu2| in an
implementable form. See also [GM], [Po] for improvements. The second type of result
says that if GCD(Lt(g:), Lt{g;) = 1 (extraneous pair) then the pair (gi,¢;) is useless (the
proof is immediate).

D. Lazard had suggested a possibility to extend the extraneous pairs criterion consid-
ering the “history” of a monomial. Namely, a “monomial with history” is a pair (m,t)
where ¢ is a term that divides the monomial m. When we multiply a monomial by a term,
we multiply the history by the same term, and when we add two monomials we take the
GCD of their histories. In the completion algorithms we start with empty histories.

The suggestion was that when we have suitable division properties between Lt(g;),
Lt(g;) and their histories, then the pair is useless. We show a counterexample to the
following conjecture, that seems the weakest possible form of this suggestion to be useful.

We state that a pair o is eventually useless (with respect of a previously defined redun-
dancy criterion) if we can omit ¢ in the standard basis completion algorithm, and still
have a correct result; or equivalently, if we keep the redundancy criterion and modify the
selection strategy delaying the treatement of ¢, we have that o becomes useless.

(FALSE) CONIECTURE. If GCD(Lt{g:}, Lt(g;) divides the histories of g; and of g;, then
the pair (g:,9;) is eventually useless (i.e. is useless if it is evaluated as the last pair).

COUNTEREXAMPLE: Consider the following polynomials in kz,y, z,a,b,¢,d] with lexi-
cographic ordering:

(g13g23g3$g4) - (SCZ—CL, il:-—b, yz ¢, y""d)

Then let Sp(g1,92) => g5 = 2b~ a, Sp(gs,g4) => g¢ == 2d — ¢, where (f,g) => h
indicates that h is obtained simplifying Sp(f,g). One sees rapidly that (gs,ge) satisfies
the hypothesis of the conjecture, and all other pairs are eliminated by the usual criteria
(these have as a particular case the criterion that if Lt(g;) divides Lt(g;) and we have
already processed the pair (g;,g;) then all other pairs (g,,gx) are useless). However,
Splgs,g6) = ad — be.

The suggestion of Lazard was however very fruitful, since shifting the history concept
from the terms to the coefficients we obtain the representation of coefficients in explicitly
factored form, that is the core of the GECD concept, and is the subject of the following
sections. - -

3. THE GECD (GREATER EASY COMMOCN DIVISOR) COMPLETION ALGORITHM

In this section we look more closely at points {C}, (E) and (F) of the Buchberger
algorithm. As already stated, we assume a Lt-simplification strategy.

Points (C) and (E) allow a common description as pseudo~division. Pseudo-dividing f
{or g;} by g; means computing a “smallest” monomial m, such that the leading monomial
of m- f is multiple of Lm{g;}, (say m-Lm(f) = n-Lm(g;)), and then compute m-f —n-g;.
If we assume that all g; are monic (this can be done if we want to use field arithmetic)
then m can be taken monic, and more precisely

*) m =Lm(g;)/GCD(Lm(f), Lm(g;))
n =Lm(f)/GCD(Lm(f), Im(g;)) -

The GCD can be taken without any assumption on A since Lm(g;}, being a term, is an
explicit product of irreducible elements (the indeterminates). This describes the {classical)
points (C) and (E).

To be able to continue with the assumptions that we have made, whenever we add
an element to the basis we have to make it monic; this is step (F), and this introduces

denominators.
If we want to use arithmetic on A, we cannot make the polynomials monic, hence the

remark above on the existence of GCD(Lm(f)}, Lm(g;)) does not apply. At this point we
have two possibilities;

- if Ais a GCD—-domain, the formula above can remain unchanged:; we can moreover
make a polynomial primitive (step F) whenever we add it to the basis. However,
the result is that most of the algorithm time may be spent in GCD computations.

~ If instead we do not have GCD’s on A, or we don’t want to use them, we have to take
GCD(Lt(f), Lt(g;)) instead of GCD{Lm(f), Lm(g;)) in (*) (we want to interprete
this as a purely combinatorial, hence easy, GCD of monomials). Moreover, we
cannot make polynomials primitive (step (c) is empty). The result is that we have
very rapid coefficient growth.

We have seen that systematic GCD may be very costly, and no GCD is even worse,
since coefficients grow intolerably. The best thing to do, is to use, instead of GCD, “the
largest common divisor that we can find with reasonable effort”.

Since we want to give many variations of this concept, we want to formalize it, defining
a Greater Fasy Common Divisor (GECD) of elements of 4 (and of monomials in A[X]).
We want to use GECD instead of GCD in formula (*) to describe the pseudo-division
process.

More precisely, we want to modify the reduction algorithm precisely at those points
where we have GCD computations, namely C, E and F. For all other points of the algorithm
(in particular, strategies and useless pair elimination) any correct subalgorithm can be
used. Since we need additional data structures, also subalgorithm A is involved, and also
step H, for which we do not describe the obvious details, if we want the result to be a
reduced standard basis.

We want to use in the GECD any knowledge that we have, hence GECD is not a map
Ax A — A, but a map A X A X context — A. The formal meaning of context will
be defined in the different specializations of the algorithm. Context—free examples are
the GCD (when existent) and a constant map with value 1, and lead to the two classical
versions of the algorithm described above. We always write GEC D{a, b) without explicitly
mentioning the context,

The GECD of two monomials mq, my has the following properties:

~ GECD(mj,ms) = m is a common divisor of m; and ma.
~ We can compute mi/m and my/m
~ If mg = GEC D(my,m3) and m; = a;t; is the coefficient-term decomposition, then
ts = GCD(ty,t2).
(remark that these are precisely the points needed to be able to perform the computations
indicated in (*))

We can also talk of GECD of more polynomials, (we do not insist on associativity), and
of LECM (least easy common multiple), LECM (mq,mq) = mimq/GECD{m,my)

To understand the spirit of the GECD definition, consider the reduced and primitive
PRS algorithms for GCD calculations; in the course of the algorithm we know at some
points that all coefficients of some polynomial are multiple of some previous coefficient;
we can take this as GECD (it is the easiest ever possible: no computation at all!). These
systematic factors can be known “a—priori” due to the deterministic, almost straigth—line
character of the Kuclidean algorithm (we always know to which elements we have to apply
the pseudo-division algorithm, and the only branch point is the termination check}. This
does not happen with Buchberger algorithm, so the same type of procedure cannot be
applied. We try in different versions to simulate this knowledge with different types of
bookkeeping.

4. DATA STRUCTURES FOR COEFFICIENT PARTIAL FACTORIZATION
PARTIAL FACTORIZATION GECD

We describe two types of structures for elements of A, that give good “contexts” for
GECD calculations. For both we maintain a vector C' = {c¢;) of elements of A, called
systematic factors, and in both an element of A is represented as a pair (a,v) {called
generalized element of A), where ¢ € A and v = (n;) is a vector of non-negative integers.
The two structures differ in the element of A that they represent. We say that {a,v)

represents « in partially factored form (p.f.f.) if
(p.f.f}) . a=q- H e

Instead, (a,r) represents @ € A with explicit divisors (e.d.f.} if
(e.d.f) a=a, [[e divides a.
f
The product of generalized elements is (X, -+); the sum is different for the two represen-
tations;

(p.f.£) {a,v) + (b,p) = (a - CV ¥ M 4 b- CF ¥y A p).
(e.d.f.) (a,v) + (b,) = {a + b, A u)

(where A denotes componentwise inf, and C* denotes [] ¢/*).
We define the GECD with the following formulas: -

(p.f.1f.) GECD((a,v),(b,i)) = (1, v A p)
{a,v}/GECD((a,v), (byu)) = (a,v — v A p) ;

and

(e.d.f.) GECD((a,v),(b,u)) = (C"™,v A)

(a,v)/GECD{(a,v),(b,u)) = {a/C*" ", v—vAy).

The two forms are equivalent, but not computationally: one trades many multiplications
for fewer exact divisions.

A generalized monomial {a, V) is called almost-monicif a = 1 (p.f.f.) or a = C¥ (e.d.f.).
A polynomial is almost—monic, if its leading monomial is almost-monic. A polynomial is
called quasi—primitive if the GECD of the coefficients of its monomials is 1.

Remarks on exact divisions. We do not know the existence of computable rings in
which no exact division exist (but we strongly suspect that they can be constructed adapt-

ing the example of [vdW] of a computable ring non explicitly factorial).

We want to remark that the exact division test a|b corresponds to checking ideal inclu-
sion bA C aA, and computing the exact quotient /b corresponds to finding a generator
of bA : aA. Hence finitely generated rings allow exact division test and exact division.
These however may be costly, especially the second. We want to analize the theme with
some details.

-t A=1Z, A= Z[X], A=TF,X] (Fy is the finite field with ¢ elements) then exact
division is easy, being reduced to linear algebra. Remark however that sparseness
is not preserved.

— If A = k[X]/J or A = Z[X]/J where J is a prime ideal, then to check and to perform
exact division of elements ¢ € A one has to consider the ideals J, = aA + J. The
direct computation of J, : J; finding then d such that J; = J, : Jp is possible but
is an hard problem.

In the second case, since we are going to divide several times by the same divisor, we can
improve the performance with a pre-processing of the data for any systematic divisor c.

Compute a standard basis for Je, (71,...,7m), and represent v; = g¢; - ¢ + hy, h; € J.
This can be obtained at {almost) no extra cost from the completion algorithm for J..

Now, to test divisibility of e by ¢, we have to test a € J,, and this can be made reducing
a with the v;, obtaining @ = _ a;7;+r, where r cannot be further reduced. Then, if r = 0,
a =c-Y a;g; mod J, otherwise a is not divisible by ¢. This shows that it is convenient
to store, along with the systematic factors, the lists (i) and (g:).

We can also remark that when we work with an A = Z[X|/J or 4 = k[X]/J it is
somtimes better to change the ring A; namely, we are interested in the computation on
the quotient fleld K of A, so any other A’ having the same quotient field will suffice. For
example, if A’ can be represented by k[Y]/L, where k is a field and I is a principal ideal,
the exact divisions are usually simpler. However, we have to check that the data of our
original problem do not become excessively harder.

When exact divisions are not easy, the p.f.f. of generalized monomials has to be pre-
ferred. In some versions of the algorithm we have nevertheless to perform exact divisions,
when we maintain the systematic factor list. .

Another advantage of the p.f.f. is that the length of the representation of a coefficient
is far smaller: (1,[100]) is smaller than {¢1°,[100]). However, when doing additions we
have often to redo over and over the same multiplications of systematic factors. We still
do not have enough experimental evidence to give an heuristic strategy for the choice of
the representation.

5. MAINTENANCE OF SYSTEMATIC FACTORS AND POST-PROCESSING.
PARTIAL FACTORIZATION GECD COMPLETION

In this section we describe a series of ideas to design different forms of the subalgorithms
I" and G of the completion algorithm as described in section 1. One of these forms is in
course of being implemented, and we give a more precise description in section 7.

The core of the algorithm is the maintenance of the systematic factor list, adding to it
new factors appearing in the course of the algorithm. We expose only a few of the many
versions that we have considered, which seem to be the best ones and seem not to require
an overlong list. The different versions correspond to different properties of the ring A
that we are willing to use {existence of exact division, of GCD, of factorization).

In these versions the list maintenance is done when we add a new element of the basis (at
the same moment that we make its post-processing and the maintenance of the critical
pair stack). More precisely, one of the meanings of the list maintenance is to allow to
represent the new element as almost—-monic, almost-primitive polynomial.

The list maintenance consists in adding new elements, and maybe splitting or deleting
some old ones. Whenever we add new elements, no maintenance is needed in the represen-
tation of the existing monomials, but when we split or delete an element then the existing
monomials have to be reviewed. Of course, when implementing the algorithm this can be
delayed, e.g. replacing an element of the factor list with the list of its factors, or marking
it for deletion, and adjusting the monomials when they have to be used. We describe a
form of this list maintenance with delayed updating (but without deletions) in section 7.

To simplify the description, we assume that we use the partially factored form, but the
algorithms apply with minor changes to the explicit divisors form.

The simplest form of the algorithm starts with the factor list coinciding with the list

of leading coefficients of the elements of the basis (deleting duplicates and invertible ele-
ments). The leading monomials of the basis are trivially partially factored, making them
hence almost—-monic.

Whenever we add a new element f to the basis, let (a,~) be its leading coefficient. Then,
if a is invertible, divide f by it; if a already appears in C, increase the corresponding n;
in v; otherwise, add a to C. This makes f almost-monic (without any division, indeed).
Moreover, make f almost—primitive, dividing it by the GECD of its coefficients.

We can make several modifications to the procedure. We give a non—exaustive list:

(1) We may ask that no element of C is a multiple of another; then, when adding an
element, we have to check this condition, and maybe split one of the elements. We
have thus to continue the checking with the new factors.

(2) Assuming that A has GCD’s, we may ask that the elements of C are coprime. Then
when adding an element ¢ we have to check that its GCD with any existing element
¢’ is 1, otherwise we have to split both ¢ and ¢’. The control does not propagate,
since the factors of ¢’ are already coprime with the already existing elements. This
choice is explained with many details in section 7.

(3) Assuming that A has factorizations, we may ask that the elements of C are irre-
ducible. Hence, factor an element before adding him.

(4) When we add an element f to the basis, we ask that it is almost-primitive, i.e. we
have to divide its coefficients by their GECD. But we may ask before doing that
to discover the “concealed factors”, i.e. we may test for division by elements of C
the unfactored part of all coefficients of f (of course, only factors dividing all the
preceding factors have to be tested for the next). This too is detailed in section 7.

(we refer as version (0) the basic form with no variation).

Point (4} may be tricky if elements of C may have common multiples not divisible by the
product {e.g., they may have common factors) since we have to choose for which element
we have to divide. So it is easier to implement point (4) when point (2) is implemented.

With feature (4) the GECD completion algorithm contains as a subcase (when K[X]
is a univariate polynomial ring) the Reduced and Improved PRS algorithm of Brown and
Collins, [Lo]. Of course, the PRS algorithms are better, since they do not need any
bookkeeping, but the coefficients are the same.

Deletions. When we add many elements to the factor list, and especially when we sys-
tematically split them, the list may become unmanageable. Moreover, the PRS algorithms
show that the full coefficient list is useless, since we may forget the factors when we have
used them, hence in this case at most a list of three factors needs to be kept.

We want to show what one has to do to delete a systematic factor from the list. The
actions are different in p.f.f. and e.d.f.; namely, in e.d.f. we have simply to delete the ref-
erence to the corresponding factor (and this may be delayed, simply binding to a “deleted
factor® reference the value of the deleted factor; when treating a generalized coefficient
(v, &) with such a reference, we can delete it in the v list}.

When we use the p.f.f. instead, assuming e.g. that we delete ¢, we have to transform
all (v, @) into (', ¢} @), where ny is the first element of v, and v/ is v with the first item
deleted. This too could be delayed, but we need however to keep a list of the deleted
factors: moreover, we lose the advantage of having shorter representations. So maybe, in
this setting, we can simply label a factor as “deleted”, not to use it in the division tests.

At present, we do not have an heuristics to delete useless factors. This themes shall be

considered only after extensive experiments.

6. MODULAR GECD COMPLETION ALGORITHM

In the previous section we have described a main form of maintenance of the factor list,
with three variations, and a main post—processing for the polynomial to add to the basis
with a variation {(n. (4) of the list). If we make an example of GCD calculation for two
dense univariate polynomials of the same degree with the basis algorithm, (version (0))
we remark that the algorithm leads to absolutely nothing, since no systematic factor of
the coefficients is evidenced. The basis algorithm works fairly in very sparse situations
(and this is often the case in multivariate polynomials).

To recover the full strength of the reduced and improved PRS algorithm, we need to
apply at least variations (1) and (4). We have remarked that (1) may be intriguing, so if
GCD in A exists and is not too expensive we would rather choose (2) and (4).

We show how a modular approach can help in reducing the cost of GCD computations
or of exact division tests. To simplify the discussion, we assume that A is a GCD domain,
that P is a prime ideal of A and that A/P is an euclidean domain (but not a field). The
most common examples are: _

~ A =k[t1,...,tn], P is generated by n — 1 linear forms, hence A/P = kt|;

- A =1Zty,...,ty], P is generated by t; — a;, hence A/P = Z;

- A=2Z[t1,...,tn), A/P = Z/p|[t] where p is a primme number (indeed, the generator
of PNZ).

We have an ideal I C A[X], and we want to compute its standard basis. We assume
that I reduces “well” with respect to P. This can be expressed abstractly as a flatness
condition, {namely, normal flatness of a suitable presentation of the ideal), but practically
it means that the polynomials that we consider in the course of the algorithm do not have
leading coefficient in P. This condition is verified in the course of the algorithm, and may
lead to failure of the algorithm: recovery is made choosing another P (we can use all the
computations up to that point). This is possible if A has infinitely many suitable prime
ideals, and this is indeed the case if A is finitely generated.

We run parallel completion algorithms for A and 4/P. This means that we run on A/P
the GECD completion algorithm for I/P with variations (2) and (4). At the same time
we run a completion algorithm on A for I; this algorithm is lead by the algorithm on A/ P,
i.e. we use the selection strategy and the simplification strategy of the algorithm for A/P
also for the algorithm on A. The assumption that I reduces well means that these choices
are applicable and correct.

We keep the list of systematic factors for the computations on A, in parallel with the
computation on A/P, and we use the GECD found on A/P as an “oracle” to look for
GECD on A. Of course, it may happen that common divisors existing on A/P do not
correspond to common divisors in A. If this happens we can either discard P and trying
another, since for generic P the GCD reduces to the GCD, or (better) consider on A/P
only those divisors that lift to A.

The advantage of this form of the algorithm is that we make many exact division tests
and many GCD on A/P where they are less expensive, and when the result is negative
we can avoid completely the computation on A.

One can remark that this is also made with the modular GCD computations on A.
However, the idea can be generalized to the general situations (we only need for 4 an
exact division test and procedure), using for A/P variations (1) and (4). This should be

in general the best choice; indeed, for a basis G with non-special coefficients (1) and (2},
if combined with (4), should give the same result.

Indeed, if ‘on A and A/P we have GCD’s we might as well choose a mixed method
between (1) and (2), using GCD only to resolve ambiguities of (1}.

This algorithm can be seen as an “GECD completion procedure”: the GECD in A is
defined as the GECD in 4/P lifted to A (modular GECD).

Remark moreover that the algorithm combines well with the modular algorithm (see
[Tr]} if a probabilistic algorithm is sufficient. Namely (referring to the notations of the
above paper), on can build a three-step trace reconstruction algorithm: take P C M C A,
where M is a maximal ideal, and P a prime ideal if dimension 1; then find a Grébner
trace in A/M, perform the trace-lifting algoritm for A/P and A as above, addimg to the
trace-lifting algorithm the feature of modular GECD.

Avoiding the full completion. In many applications, the completion of a family of
polynomials into a standard basis is only an intermediate computation. It is hence impor-
tant sometimes to find methods that short—circuits the full completion, since often partial
results are sufficient. The following questions are often encountered:

(1) Prove that 1 € I = (f1,..., fn), i.e. find ¢; such that 1 =5 ¢; f.

(2) Given I = (f1,...,fn) find f € I depending only on the variables (z1,...,zq)
(elimination}. Find ¢; such that f = > ¢ fi.

(3) Find a “non trivial” relation between fi,..., fn, 6. (@1, s qn)(f1,..., fn)t =

{(4) Given a matrix N with polynomial entries, find a matrix M of rank s such that
M-N=0.

In all these problems, if a solution is suggested by an oracle, a direct check can be easily

performed.

7. IMPLEMENTATIONS: PRESENT AND NEAR FUTURE.

The present state of the implementation is the following: we are concentrating on the
form of the algorithm containing variations (2) and (4) (hence assuming that we can
compute GCD on A with a relative ease). The predicted behaviour of the algorithm
should be good if exact division and division test are easy, and GCD is not so easy. A
ring of multivariate polynomials is the typical example.

We have made two implementations on Z; the first one, in LeLISP, is an implementation
of the basic (form (0}) algorithm, with a larger systematic factor list {also intermediate co-
efficients contribute to systematic factors). In this form of the algorithm, special strategies
are needed to control the length of the systematic factor list. The second implementation
is in MuLISP, and is a part of the AlPi package [Tr1]. The explicit factors of the coeffi-
cients are not kept, but are recomputed every times that we have to do a GECD. More
precisely, every time that we have to compute GEC D(a,b), we first completely factor a
with respect to the systematic factor list by trial exact division, then look for the same
factors in b. This is obviously a meanigless procedure if you look for efficiency, but it has
the advantage of being quite easy to implement just modifying a few function definitions
of an existing implementation, and from the other side one can simulate the behaviour of
the full algorithm; in particular, one can see the behaviour of the systematic factor list
and the GECD’s computed. IHence this implementation can be seen as a simulation of
some combinatorial points of the algorithm. We report the results of some of the tests in
section 8.

The results were encouraging: the factor list is usually of a size comparable to the size
of the standard basis found, and also the timings are not bad compared with the usual
algorithm (the running time is in average only 15% higher than with the usual algorithm)

We have done a complete analysis of a full implementation (always with variations (2)
and {4)). The implementation is in course taking as coefficients univariate polynomials,
and will require only small modifications to our current implementations. A complete
implementation will be done in SCRATCHPAD-II, to be able to use the more general
type of coefficients, where we hope to give statistical evidence of the good behaviour the
algorithm in the multivariate polynomial case.

In the rest of the section we give a definition of the algorithms following the analysis.

We start from elements of A, considered as primitive structures; on elements of A we
. have equality test, arithmetic operations including division test and exact division, invert-
ibility test and inverse, and algorithms for GCD. We define now the derived structures
and algorithms.

To simplify the notations we use p.f.f., but e.d.f. is not substantially different. The
implementation will contain both.

Data structures.

(1) The current factor list (c.f.1} is a set of coprime elements of A. The other structures
are defined starting from the c.f.1..

(2) A current generalized element is a pair (o, a), where a {the factored part) is a list
of pairs (¢,n), where ¢ is in the c.f.l. and n is a positive integer, and a € 4 (the
unfactored part). It is updated if o does not contain two (¢,n), (¢,m) with the
same ¢. A c.g.e. is totally factored if the unfactored part is invertible.

(3) The systematic factor list {s.f.1.}) is the union of the c.f.l. and a list of updated,
totally factored generalized elements. (old factors list).

(4) A generalized element (g.e.) is defined as a c.g.e., but referring to the s.f.l. instead
of the c.f.l.. Tt is irredundant if it does not make reference to duplicate elements of
the s.f.l..

One can make an element irredundant replacing for every a all the pairs (e, m;) with a

unique pair {a, Y m;}.
We have obvious coercions between the different structures. The most important is the

updating, sending a g.e. to an updated c.g.e., done replacing every occurrence {a,n) where
a={(a1,n1)...(ax, 7)) by ((a1,nn1),...,(ar, nng)) and making the result irredundant.

Operations.

We refer to the operations defined in section 4. The formula for product is directly
applicable, but the formula for sums should be applied only to updated elements; hence
we first update elements, then make the sum.

The concealed factors retrieval is a kind of coercion from A to generalized elements,
and sends a to (¢, a’} such that no systematic factor divides a’. The obvious algorithm is
composed of subsequent trial divisions. Concealed factors retrieval can also be applied to
generalized elements.

We have to use two types of GECD: we call them the “plain” and the “concealed”
(GECCD). Let o = {(a1,n1),...,(ax,nx)) be a totally factored, updated element, and
(8,b) a generalized element. Then update §, obtaining #’. The plain GECD is obtained
as a A .

The GECCD between a totally factored c.g.e. (a,a) and & € A is defined as the
composition of concealed factors retrieval on the second factor and GECD. It can be
however more efficiently computed as follows:

(1) if « is empty, then the result is 1

(2) if a; does not divide b, then it is equal to the GECCD of ({az,n3),...,{ax, 7))
and b

(3) otherwise is the product of ({¢1,1)) and GECCD(«/({e1,1}},b/a1).

To compute the GECCD between « and (3,b), let § = GECD{e, §).
Then GECCD(a, (B.b)) = 6§ GECCD(a/$,b/T(8), where I is the coercion from totally
factored elements to A.

Updating the systematic factor list.

As remarked in section 3, when we normalize an element before adding it to the basis,
we want to make it almost-monic and almost-primitive, hence we may have to update at
the same time the systematic factor list.

The updating needs a subalgorithm (add-and-split) that, given a list L of elements of A
pairwise coprime elements of 4, and an element b € A produces a new list L' of pairwise
coprime elements and a concealed factors retrieval for all elements of L and for b.

ALGORITHM split-two.

Input: two elements a, b € A.

Output: ag, bo, ¢1,...,¢n € A pairwise coprime, r1,...,7n, S1,...,8, positive integers
such that ((ao, 1),{ci,r:)) = a, ((ci, i), (bo, 1)) = b.

The algorithm runs as follows: consider a list L initialized at {a,b). Represent a =
((a, 1)), b= ((b,1))

LOOP. Repeat until all adjacent elements of L are coprime:

Pick two non-coprime elements {u,v) of L (they are always adjacent)

Let d = GC D(u,v); replace in L the pair {u,v) with the triple (1z/d,d,v/d) (remark that
u/d, v/d are coprime); represent u = ({(u/d, 1),(d,1)), v = ({(v/d, 1), (d, 1)) and update q,
b.

(ENDLOOP)

Delete invertible elements from L, modifying suitably the representations of a, b (at the
level of the invertible factor). At this point, L = (ao,¢1,...,¢n,b0).

The proof that the algorithm does what we have stated is almost immediate, considering
the assertions made during the algorithm.

ALGORITHM add-and-split.

Input: a list L of elements of A, pairwise coprime; an element b € A

Output: a list L' of elements of A, pairwise coprime, and representations of b and the
elements of L as totally factored elements in L’.

The algorithm runs as follows: if b is invertible output L; if L is empty output (b);
otherwise, perform the split-two algorithm for the pair {a,b) where a is the first element
of L; let L" be its output, and b its last element. Append L" {with last element, ¥,
removed) and the list output of add-and-split(£'”,). Update the representation of the

input.

AN

The standard basis GECD completion algorithm.

The comp‘ietlon algorithm is specified, as outlined in sections 1 and 3, desc: 1bmg the
GECD at different places, and describing the operation to perform when we obtain a new
element of the basis.

(1) We represent polynomials with generalized coefficients

(2) When making divisions, we use the plain GECD

(3) when we obtain a new element g of the basis, let («, b} be its lead coefficient. Update
the s.c.l. with the add-and-split algorithm (input: the old s.c.l. and b)

(4) before adding g to the basis, divide it by the GECCD of its coefficients.

The initial installation of the s.c.l. is obtained from the empty list, adding the elements
of the original basis using the above recipe.

Avoid the updating. Frequent updating can be time-consuming, and useless if we are
updating elements already updated. Hence it might be useful to keep for every element
an “updating tag”, i.e. an integer stating “when” the element was updated for the last
time. Ome has to keep the “current date”, increasing it every time that the add-and-split
algorithm changes the current factor list. Elements updated in the current date do not
need further updating.

8. EXAMPLES

We show here with some details one of the first examples that we have tried, and this,
even if it is very short, already shows the power of the algorithm. The computation has
always the same trace, for every non—zero value of seven parameters; we show the ex-
ample with symbolic parameters (a,b,¢,d, e, f,g), reconstructed by an example computed
nurerically. We consider G = (g0, 91,92} = (az® + byz + ¢, dzy + e2?, fzz + gy) with
lexicographic ordering z > y > 2. The trace of the algorithm is the following:

(1,2) — g3 = cay® — cqez®

2

21 3
(0,1) T gy = c?eycacqy + cpcibezt — cocgezze’
1

2 2 4 4
(4,1) ——— > » g5 = cichesz’ — 2epcieicibe®z® + c2ede?2® — ¢Bedcacier?
c1 C2 C1C3C3 €1C3C4
4 4 5
(4,3) ——— , » 0
CiCz C31Cqg C3C3Cy C?C%Cs

1 2 4 4
(0,2) ——————— go = cicies2® — 2e1c5c5be?2° 4 clese® 2t ~ cledeaciz
CiCa €1C3C4

(5,6) —— 0
cics
2 2 2 4 4 4 4 5 5
(2,6) e} > ; ' + N » 0
Co Co C§6263 C1C2C3C, €1€3Cy 0%0263(14 C';'C% C%C%

The trace is interpreted in the following way: every line is the simplification of a critical
pair; every arrow corresponds to a pseudo-division, the superscript, if existing, is the

index ¢ of the dividing element ¢;; otherwise the division is a coefficient division. The
subscript is the divisor discovered by the GECD; if it does not exist, this divisor is 1. The
elements co,’..,cq are the systematic factors following the basic algorithm (version (0)).
The values of {cq,...,cs) are (a,d, f,g,c,b%e?,b%e) (remark that we have not used the fact
that ¢s divides cs; indeed, this would have allowed to split ¢5 (as ¢ - €} and then ¢s (as
e b?).

Here we show other examples, computed with the AIPi package; for each we indicate,
in the order, the term-ordering (R or L for Rlex and Lex), the number of elements of the
basis computed and of the reduced standard basis, the final factor list {with the algorithm
described in section 7), and the number of simplifications needed for the algorithm. In
the algorithm we have followed the following strategies {see [Trl1| for the description}:
for the pair selection strategy, process first the pairs such that the "guessed Lt(Sp)” has
lowest degree, or is lower in the term-ordering; for the simplification strategy, select the
shortest (with less monomials) element of the basis. When simplifying a polynomial,
perform total reduction with respect to the already computed basis. Do not give priority
to interreductions.

(z4+y+z+t+u, zy+yz+ 2t +tu+ux, zyz+ yzt + 2tu + tuz + vzy,
zyzt + yzty + ztuz + tuzy + uzyz, ryziv -+ 1)

R, 51, 20, (2,3,5,7,11,17,23,29,37,47,1013, 1367, 2213), 1258

(starting from the above computed standard basis)

L, 47, 11, (7,2,11,5,3,229,53,673,151,136141), 991

(172° — 23ytu — z + T1u®, 101z2? + 41ztu + 7, 91z2? + 11yt — 5)

R, 7, 6, (17,101,91,41,23,11,71), 38

L, 27,3, (17,101,13,7,41,11, 1142, 5,61, 3,593), 260

(1735y2z — 734zu® — 361zu + 173, 183y — 3172zt — 2964z,
13Tzyzt — 3812xt% + 4285y%u + 183)

R,7, 6, (137,1735,3,61,13,2,19,367), 74
More details on the computations and other examples are found in [GPT].
REFERENCES

Ba Bayer, D. A., The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard {1982).

BS Bayer, D. A, Stillman, M., A theorem on refining division orders by the reverse lexicographic order, Duke
Math. J. 55 {1987 ;), 1-11.

BCL Buchberger, B., Collins, G. E., Loos, R., “Computer Algebra,” Springer Verlag, Wien-New York,
1982.

Bul Buchberger, B., An Algorithm for Finding a Basis for the Residue Class Ring of ¢ Zero-Dimensional
Polynomial Ideal, Aequationes Mathematicae 4 (1970), 374-383. (Ph.D. Thesis, Math. Inst. Univ.
Innsbruck, 1965).

Bu2 ., A Criterion for Detecting Unnecessary Reductions in the Construction of Grobner Bases, in
“EUROSAM 1679,” Lecture Notes in Computer Science 72, Springer Verlag, Berlin-Heidelberg-New
York, 1979, pp. 3-21.

Ga Galligo, A., Algorithmes de calcul de base standard, Université de Nice {preprint} {1982).

GPT Galligo, A., Traverso, C., Pottier,L., Appendiz to: Greater Easy Common Divisor and standard basis
completion algorithms , Rapports de Recherche (1988), INRIA, centre de Sophia Antipolis.

GM Gebauer, R., Msller, H. M., An installation of of Buchberger’s algorithm, J. of Symbolic Computation
(to appear).

Lo Loos, R., Generalized polynomial remainder sequences, in “Computer Algebra,” (BCL), pp. 115-137,

Po Potiier, L., Algorithmes de completion, constructions, preuves, stratégics, applications. (to appear) ;(sub-
mitted to #1988 IEEE Symposium on Logic in ;Computer Science”}

Tr Traverso, C., Grébner trace algorithms, {these proceedings).
Tr2 e, AlPi: a package to test different versions of the Grobner basis completion algorithm.. (to

appear)
vdW van der Warden, B. L., “Moderne Algebra,” Springer Verlag, Berlin-Heidelberg-New York.

tDépartment de Mathématiques ~— Parc Valrose — F-06034 NICE CEDEX
tDipartimento di Matematica — Via F.Buonarroti 2 — 1-56100 PISA

