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~EXTENDED ABSTRACT-

Many computations relating polynomial ideals are
reduced to calculating polynomial solulions of a system
of linear equalions wilth polynomial coelflicients{1].
Zacharias{2} pointed out that Buchberger's aigorithmi{ 3}
for Grbbner basis can be applied to selving such a
linear  equatlion, From the computational viewpoint,
Zacharias' method seems to be much better than the
previous methods, Hence, we have generalized his method

to solve a system ol equations directly, After comp-

feting the paper, we knew that similar works had been

done by several authors[4,5)}. This paper describes our

method brielly,

§1. Definitions of monoideal and order

Let ZZG be the set of nonnegative integers, and 7]3

the Cartesian product of 220. For an elemenl A =
(ai ..... &} in Z, we define [A] = @, et o We
write {{,..., 0) as Q. Let K[xl ..... xﬂ] {abbreviated to

K{x]) be the ring of polynomials in n variables with

coeflicients in a field K. We express [ in K{x} as [ =

A . A _
{‘_, a,x". where A = (o.fJ ,,,,, a ), a, £ K, and x° =
x?lx;z,,.x:“_ We call |A| the degree of xA. ie.,
degix™ = 1Al
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BY A we dencte an r-tuple (A1 ..... A, Let § =

T
$,} and T = (T,..... T} be r-tuples of subsets
in particular. we write ($,....¢)} as &. Then,

union and intersection of § and T are defined as
SUT = (SLUTI. S_oU T
SNT =, NT,. .. .5 AT
Furthermore, if A = (Ai _____ Ar) [ (?Z;)r is such that
A} [ Sl'
Definition 1 [monoideall,

n

and A_ €3, then we write AeS.

A subset }M of :zg is a

moneideat if Lo+ Z, = 1, O
Definition 2 itotal-degree lexicographic order [ in
<}
JZ’,GJ.
P i n

Let A = o, a3, B = (8.8 ¢ Z; We
defline A > R ff either AT > {B| or tA] = B} and
there 1s an inleger 1, ! 5t %n, such that & = Bj for

all 3, | £j<i, and & > ﬁi_ We define A & iff Ab B
B, O

Delinition 3 [exponent set exs(i}),

or A =
leading exponent
lex{f), and head term ht{f), of f e K[x]],

For nonzero [ in Kix], we define

exs(f) = <A e 23; Ain f = EaAXA, a, # 07,

lex(f} e exs{f}, where

fex{f) [|> any other =tement of exs({},

ht(r} = a term anA of f, where A = lex({},
Similarly, exs(0} = ¢, lex(§) = ¢, and ht{() = §, and we
consider that ¢ < (0....0). OO
Pefinition 4 [highest-order smallest-suffix compenent

order > an (27.3)'3.

Let A = (Al""'Ar) and B = (Bl,....Br) be any
elements of (ZZB)r_ We reorder the components of A and
define A' = (A ...A ) as follows: i) =

1} !r r



{{....r} and A, BA & .- RA ., where £ < m for
1 2 T
any (£,m) such that A.l‘ = A, . Similarly, we gefine B' =
™

{B .,Bj) by reordering the components of B, Then,
T

I
we define A [> B iff there is an integer kX, 1 sk s,
such that [Ai‘ = Bsl and iz = 51 forall #, 15 £2<Kk] and
[either A, > B. or A, = B,

ix ix ik ix
define & 2 B itf A p Bor A =8 (3

with i, < jk}, We

Note. We can define an order in (ZZ’D‘)r variously. When
solving a system of linear equations, however, the
efficiency of calculation depends crucially on choice of
the order.

Definition 5 [head term hi(T), nhead position np(f), and

rest rest(T), of T1.

Lel T = (.00 e (KIxD)' AL = tex(l),
=1, r, and A, be the highesi-order smallest-suffix
compoenent of (A,...A).  We define

puf) = he(r),

hplf) = Kk,

rest(f) = T - (0...0. i) 0.0, O
kK~-th gomponem

H T # ©, we have lex(f) > lex{rest{T}). In the
following, we say [ is higher order than g if lex{) I>
lex(g).
Definition § (exponent set, leading exponent, and
lex-monoideal tme(T), of T7J.

With the notations in Def. 5, we define

exs{f) = (exs(fi).....exs(fr)).

lex (T} (0.0, Tex{f) 9,..0).

imo(T) = (&....9. 1ex§rk>+zg $.ng). O

k-th component

§2. Grobner basis of a module over K[xi,...,x“_'i

By a module T = (F0T) with 7 oe (Kix1)",
i=1,...s, we mean the set <h T, + -o- 4 h oI
h.a e K[x)., i=1,.. .87

o

Definition_7 {reducibility].
Let F = {?1,,,,,T=} be a subset of (Kix])', and put E

= g]lmO(Tl)' An element h of (K{x])' is called
reducible with respect to F if exs(h) (\E # &, and } is
calied irreducible wr.t, F if exsMNE = 4. OO
Definition 8 [reduct].

With the notations in Def. 7, et B'e (K[x1)", and

F' is called a reduct of B w.r.t. F and written as b

= h* if one of the followings holds:
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(a) B =
() B =

when h is irreducible w.r.t. F,

- t:-x“‘?k when exs(r_{)ﬁlmo{f’k) =3,

|
= =

where ¢ and A are determined as follows: let ht(?’k) =

a, x™. nence the hp(f'k)—th component of T contains a

L3
A+A
x =
term bAth , then ¢ bm—Al/aA," In the case of

(b}, this rteduct is called a genuine {one-step} reduct
w.r.t. Tk‘ N
Definition 9 i{normal form],.

Suppose © in (KI[x1)" is reduced successively as h

——t Bt et +n+ — I, and if B is irreducible w.rt,
F F F
F then h is called a normal form of W w.r.t. F. We

=

denote the above reduction sequence by h -
Definition 10 [S-polynomiall.
Let T and g be clements of (K[x1)", and tet ht(f) =

]

anA and ht(g) = beﬂ_ The S-polynomial of T and g, to
he abbreviated te Sp(f.g). is defined by

o wl’ - (a, /b )vg i he(T) = holg),
Splf.g) = 4
[i] otherwise,
where u and v are monomials satisfying LCM(:-:A.XB) =

LA B
UK = X

. with LCM the least commeon mulliple, &
Theorem |. Let G = {g,....8,} be a Gribner basis of a
modute T in (K{x1)", and B ¢ (K{x1)" Let El and EE
be normal forms of & w,r.t, G, then El = Ei'

Theorem 2. Let [.= {EE,__,.EL) be a medule in (K[{x31)°
and put G = (g8 ). If Sp(& &) — U for any
pair (Ei,—g—j). i#j, 1sSijst then G is a Grébner
basis of I,

Procedure BUCHBERGER

input:  a module T = (T ...T) in (K[x1)".

1
output: a Grobner basis G = (El.....é'l) of T.
3
Poi= ((£.8)1 8.8, ¢G i#i ho(g) = holg)):
while P s ¢ do begin

p; = 2 pair (Ei,?g}} in P;

P =P ~ {p;}i
£ = a normal form of Sp(gi.gj) w.r.t, G:
if g # & then begin
P = P (B! tp(E) =hp{E), & &6
G =G U (&)
end;

end,

Theorem 3, The procedure BUCHBERGER terminates and it

gives us a Grobner basis of the module .




§3. Solutions of a system of linear equations

Let us consider to caiculate the sotutions (y;,,.,.yr)
of the foliowing system of linear equations:
oyt =T, (i)
P in (KIxD) T =0,

ir

£+ e

Y1
where in = (f.l

First, we consider the homogeneous equations:

2,8 4 vee 428, = T, @
where G = {El ..... £ ) is a Grdbner basis of the module
T = (F .. T)

Let Ei and Ej satisly hp({ij) = hp(gj). and let ht{Ei)

= a, x™ and ht(F) = v x® with a, b ¢ K. Thea,
Aj i B

Ay Bj
since G is a Grdbner basis, we have Sp(g—i._g'i) - .

This reduction relation can be rewritten as
1

;58 {aai/baj}"’ngj = g} YixBre

where g, and vii are monomials satisfying LCM(xAi.xaj)
. A - B . . -—

= n“x' = vijzncJ and wij.k satisfies lex(wij‘kgk) <
Iex(ujjgi) = ]ex(vijgj)_ .
Proposition ]. With the above notations, let 397
(¥ e W%y Wip gt (A Py v wy ) (3)
whe:e we assumed i< j  Then, (zl ..... 2)) AR

the lowest order solution of (2) satis{ying

lex(z,g,) = lex(z€) B> lex(z,¥,)
for ali k #1,j,

Theorem 4. With the above notations,

{pz) = 31 ho@) = ppE). i <)
constitutes the set of generators of the polynomial
solutions of (2},

Now, consider the system {1}, We note that G =
(€,...8,} is a Grébner basis of T = (...
Tracing the construction of G from [f‘l._,..-f'a). we can
calculate polynomials a; ¢ Kixl., j=i..... t,o=1,.., 5
such that \

B, = 2, a7, bt {4)

T
i

=]
Conversely, t]he reduction
P, € K[x], li=l.....s, =1t
o= § 0,8, i=lL..s. {5)

Using (5), wé can transform the system (1) with ?o =%

Vo T gives us polynomials

such that
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Algorithm SOLVE

Input: lel + o

+yF =T T, e (KIx1)™,
Output: generators of the solutions Yo 1Ss, in K(x).
Step ). By using procedure BUCHBERGER,

calculate a Grébner basis G =

of (T,,...T);

(F,....5,)

Step 2. By reducing ?O w.r.t, G,
calculate polynomials z.w). i=1,....t, such that
Fu = 5_);_; z;“’gj + Eu' Iﬂ is irreducible w.r.t. G;
it fo # 0 then return @ (no solution),
else 1et 0 (z§0)“m250)) (particular soiution);
Step 3. Calculate polynomials ay satisfying (4);
Step 4. For every pair (§i,Ej) in G

such that hp{Ei) = hp(Ej).
calculate the generator 304 by the formula (3):
Then,

transform these generators and

5(0)

particular solution 2 by formula (7}

and return the results,
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