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0. INTRODUCTION
Let ¥ denote the set {0,1,...}, let n>1 and let Zn be the set
{1,2,...,n}. We consider the cartesian product " as embedded in Z" for
addition, and partially ordered by the relation < on each component. Thus,

i = (il’iZ""’in) <] = (31,12,..‘,Jn) if and only if 1Sy for each index

kEZn. We use j > i synonymously with i < j, and i‘ﬁ j will mean that, for at

least one index k, i > g

Let {¢) := (oi) be a sequence of elements from a field F, where iﬁﬁn and

i»0:=(0,0,...,0). If (o) satisfies a linear recurrence relation of the form

ch . =0 for all i >0
s's+i - ==

3€S

where S is some finite non-empty subset of ' and fs € F for all s, then (o)

is called an n-dimensional linear recurring sequence {or n-D Irs) in F. Ve

denote the power series ring E[[Xl,Xz,...,Xn]] by FI{X]] and abbreviate the

i i

. i n
mopnomial X "...X
1 n

to E;.

The corresponding polynomial

fD) = ) £
ses

in F{X] is the characteristic polynomial of (¢) associated with the relation

above. For convenience we define the zero polynomial to be a characteristic



polynomial of every n-D lrs.

The set Q(o) of characteristic polynomials of {¢) clearly forms an ideal
in FlXI, the characteristic ideal of {0). By Hilbert’s Basis Theorem, £(o) has
a finite set of generators. Our aim in this paper is describe a constructive
method (Algorithm x-BASE in Section 2} by which such a basis may be
determined when (o) is rectilinear, that is, when (o) contains a polynomial
in Xk with non-zero constant term for each k € Zn‘ (cf. Definition 2.2).

From this we can derive a reduced Grobner basis (RGB) for &(c¢) for appropriate
(¢). The construction of a basis for &(¢) is equivalent to the synthesis of
an n-D linear feedback shift register (LFSR).

In [6,7] we considered the problem of finding the minimal polynomial f of
the {principal) ideal &(o) where (o) is a 1-D lrs in a factorial domain. The
theory for such Irs developed in those papers will be used extensively in the
present work. In particular, we shall have occasion to refer to the algorithm
MINPOL developed there. For the convenience of the reader, Theorem 4.1 of [7]
is repeated here as Theorem 2.1.

Sakata (22,23] also gives a solution to the problem of synthesizing an
n-D LFSR, based on an extension of the Berlekamp~Massey (BM} algorithm to n
dimensions. On the other hand, a/!/ the steps in the x-BASE algorithm may
be carried out using techniques which are by now well-established. We

illustrate our methods by applying them to [22, Example 2, p. 2341, to a 3-D



example over GF(2) and te¢ a 2-D example over Q.

Apart from rectilinearity, we shall also assume in Section 3 that either
(a) certain degree bounds and beginning terms of (¢} are known or (b) certain
l-variable characteristic polynomials are known. These hypotheses are
reasonable, since our methods apply in particular to doubly periodic arrays
[20,21,22], 2-D linear recurring arrays [14], 2-D eyeclic {or TDC) codes
[8,9,10,11,12,21], and also to more general polynomial codes in several
variables [3,4,5,15,16,17}. Moreover, our results may be applied to related
areas such as the theory of the rational transfer functions associated with

the synthesis of digital filters. (cf. for example, [18]}).

NOTATION
F a field
Q the rational numbers
U a factorial domain
N {0,1,2,... }
e cartesian product of r copies of N
i1, elements of W' (r will be clear from the context)
< partial order on N : the usual < on each component
zZ {1,...,n}

£
>4
—
e
e



(o)
Gl{o)]

(g)(k)

al(e) ¥

Q{o)

() (k,1))

Xl""’xk—l’xk+1""’xn ({ Xk omitted")
the polynomial domain

power series domains

the factorial domain F{[gk}]

n
: ...Xn

i Je_, ] }
1 % k-1 e k+1 x D

. -1
PERRE PR DS % (here j N and the context

makes clear which element from Zn is not used as subscript)
an n-dimensional linear recurring sequence (n-D lrs) in F
the generating function of (o), as element of F[[X]!]

(6} regarded as a 1-D Irs in Uk

the generating funection of (a)(k)

in Uki[Xk]}

the characteristic ideal of (o)

the 1-D lrs obtained from (¢) by fizing j € N ' and
allowing the kth index to vary

polynomials in X

greatest common divisor of the polynomials u,v
minimal Xk—polynomial of (o)

minimal product polynomial PP, P, of (o)

reciprocal of f



of degree of f

ef min{s,: s € S(f)}

S(f) support of f

u~v u(X) = av(¥) where acF, a#0.

1. PRELIMINARIES

Let f € F[[X]]. The set S(f) := {5 € N : f, # 0} is called the

support of f, where S(0)=¢. Thus the polynomials in X are precisely the
elements of finite support in F[[X]] and are expressed in the form

f=0X= ) fX>.
seS(f)

If f is a polynomial, the kth partial degree 6kf of f is the degree of f
regarded as a polynomial in Xk. If Xk does not appear in f then 6kf = 0 except
that 6k{g) = -1 for all k. The degree of f is the vecter éf whose E th
component 1is 5kf. The reciprocal f* the polynomial f is f*(ﬁ) i=
géff(llxl,...,lfxn). Note that when n = 1 this reduces to the usual
definition {cf. {6,71).

It is clear that 6kf = max{sk : 3 € S(f)}. To clarify the relationship
between f and f*, we define the corresponding vector &f, by ekf 1=

min{s, : s € S(f)} for f non-zero. If u,v € F[X] we denote their greatest

common divisor by (u,v).



1.1 LEMMA Let f € FIXI be non-zero. Then
(i) there is a polynomial g(X) satisfying €g = 0 such that f(&):ﬁgfg(i),

(10) S(E) = 66 -~ S(f) = {§f -5 : s € S(6)},

(iii) §f = §f - f,

t
(iv) gt = E: féffg-&“,
tes(f)

(v) S(E ) = S(f) - ef = (s - ef : se S(D)},

*® ok

u(X)v(X) then £ = u'v .

i

(vi) if £(X)

Ef * %k

fvii}) f = f

* * *&*
{viii) if g € FIX] then (f,g) = (f ,g ).
PROOF Properties (i)-(iv) are straightforward consequences of the definitions.
* * *
From (i1) S(f ) = §f - S(f ) = §f* - (8f - S(£)) = S(f) - &f by (iii). This

proves (v),

*
Next, note that §f = fu + év so f*(ﬁ) = ép+§yu(1/§)v(l/§) =u v*, as

required for (vi). Finally, applying (vi) to f = Xifg(é) where £g = 0, we

* 4ok ¥k

* ef . * * . . * %
have f = (X~)g =g, s0f =g . But g = 0 implies S(g ) = S{g) by

* %

* %
(v), and (iv) applied twice gives g = g. Thus f = §£f

f and (vii) is
proved. Part {viii) is a straightforward extension of the proof of
[7, Lemma 4.7] using (i), (vi) and (vii).

We also need a lemma similar to the following result in the theory of



Grobner bases: Let u be a polynomial in the ideal V C F[X], and let

{Vl,...,vf} be a {robner basis of V. Then u can be expressed in the form

(LR At K

hivi where the leading power product in each summand hivi is less than or

i=1

equal to the leading power product of u in the total order under consideration
(¢f., for example, [19, Theorem 5.2A]). The following result, which we refer

to throughout as the Reduction Lemma, differs in that we are not using a total
order - it depends crucially on the assumption we shall make that each 5 is a

1-variable polynomial.

1.2 LEMMA (Reduction Lemma)} Let v, & F[Xk] for k e Zn be non-zero and let

k

n
u =k§13k(§)vk where a, € F(X]. Then there exist polynomials bk(i), k € Zn

n
such that u =k§1bk(§)vk , where bu > m;x {é(bkvk)}.

PROOF We consider degrees in Xlz there are three possibilities.

Case 1 6la1 + 61v > 613 for all k > 1, Here

1 k

61u = 5131 + §1v1 = mix{51(akvk)}

and the required condition on the degree of XI holds with bk = ay for all k.

Case 2 51a1 + élvi = 51ai = ... = élai > 5lai' for all lj Z {1,12,...,1r}.

Now, either 51u = 5131 + & v, = max{ﬁl(akvk}}, in which case the condition

b a +d v
11 1

already holds for the degree of Xl, or else the coefficient of Xl on



the right hand side is zero. In the latter event, we may write

5131 61v1 5lai2 6iair
u X cX + u, X v, + + u. X \ = 0
171 1 i i1 i
2 2 T r

A 513.

where uj e E[Xl] is the coefficient of Xl 3 in aj and ¢ € F is the
51V1
coefficient of X1 in v, Thus,
cu1 + ui vi + ... + ui vi =0
2 2 r T

and we observe that this is an equation not involving XI. By induction on the

number of variables (the result is clearly true for n = 1) we may replace,

if necessary, the Uy by polynomials ui' such that u = ui'vi where
] j j j

2] 7]

I D3t

u, € E[gi] and 5Su1 > max {5S(ui’vi )} for s = 2,3,...,n and we have divided
i 7

through by the coefficient ¢. Then,
§. a

11 ,
u={(uX +a')v. +a. v, + ...+a.v, + ¥ a,v
171 171 i i i1 £ £
2 "2 T T 7

for some polynomial a! where 61a; < Elal and where £ runs through those

indices not appearing in the set {1,12,...,ir}. Thus
! 6 a
171 E
u = [[ E u,’ v ] X + a’ ]v + a. v, + + a, v + a,v

i i 1 1 1 1, 12 1r 1r £ £

j=z 33 4
r 51a11

= g’y 4+ Z: [u.’ v X Jv. +a, v. + +a, v + z: a,v
1 i 171 i. i i i3 F A
j=2 j j 2 "2 T T 7
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d a
= a'v + Z: [u.‘ v X bl + a, ]v. + E: a,v
11 lj 171 i, 1. A

j=2 J j £

Now the degree in Xl of the first summand has been reduced, while that of the

other summands has not been increased. Also, for 2 < s < n, the degree in XS

of the first summand has clearly not been increased and the inequalities

max 6 (a,v.}>édu > max 6 (u.'v, )
1<k<n s kk s 1 a<j<r s 1j 1j

show that the maximum degree in XS of the other summands has not been

increased. A similar siatement holds for the other variables.

Case 3 61a1 + 61v1 < 61aj for some j > 1. Here,

da, = ... = . > . > ... > > ...
(24 . 61a1 5131 > ... > 61a1 + 51v1 >
1 T T+1

Now either 51u = 6131 , in which case the condition already holds for Xl, or
1

else the coefficiént of X1 on the right hand side is zero. Thus,

51311 6lair
u X1 Vi o# +uy X1 Vi = 0
1 1 r r
61a1_
where 0y is the coefficient of X1 ¥ in a; . These terms may simply be
J ]

omitted from the summation thus reducing max{él(a )} and without increasing

'k
the maximum degrees in the other variables.

The process outlined above may be repeated until eventually, either
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51u = §1a1 + 51v1 = max{51(akvk)}, or 51u = 5lai1 = max{&l(akvk)}. The process

clearly ends since max{&l(akvk}} is reduced at each stage, and it produces an
expression for u in which the degree condition holds for X1 without

increasing max{éj(akvk)} for j > 1., It can now be repeated for each of the
k

other variables in turn to give an expression of the required form.
1.3 REMARK Although the proof of the Reduction Lemma is constructive, it is
impertant to notice that only the existence of such an expression for u is
used in the Ideal Basis Theorem (Theorem 4.2) and the y-BASE algorithm
(Algorithm 2.8).

We continue with an example to illustrate the proof of the Reduction
Lemma,
1.4 BXAMPLE Take F=GF(2), v (X) = X"4X+1, v (¥) = Y°+1, v (2) = Z+1 and

W = XYZ+X2ZeXZ+Z+KY +XY+X

(XZ+X+1)V1 + (X3Z+X3+X)v2 # {X3Y3+XY+1)V3.

i

Note that 5lu = 2, and the conditions for Case 2 hold. The equation for the

term which is a multiple of x® on the right hand side is
[(Z¢1)X]X% + (Z+1)X3v2 + Y3X3v3 =0 .
Thus,
(Z+1) + (Z+l)v2 + Y3v3 = 0 (the coefficient ¢ = 1).

This is an equation in one fewer variables which can be rewritten to satisfy
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the conclusion of the lemma as

Z+1 = O.v2 + 1.v3

On substitution into the original equation, this inductive step gives

=
11

{{O.v2+1.v3)X + 1]vi +av, +av,

. v + v v N
1 Voot A, t (a3 X 1} 5

Transferring the labels a; to the coefficients in this new equation we have
51(alv1} = 2, El(ajvj) = 3 for j=2,3 and so the conditions for Case 3 hold.
The equation for the term in %% on the right hand side is
(Z+D)X%v, + (Y+DX’v, = 0
and hence these terms may be omitted to give
us=1.v + X.v2 + (XY+X2+X+1)V3

which satisfies the degree condition in X and also in Y,Z.

2. THE ALGORITHM Y-BASE
For the convenience of the reader we collect the main concepts and
results in this section. This enables us to state the algorithm x-BASE. We
illustrate our approach by cemputing the reduced Grobner basis (RGB) for
[22, Example 2, p.324].
We begin with a statement of one of the main results of [6,7]. Here U is
a factorial domain and we recall that if f is a polynomial in U[Z] of degree

*
m >0 then £ (Z) is defined as Z™£(1/2).
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2.1 THEOREM Let (o) be a l-dimensional lrs in U with generating function G and
let € be a characteristic polynomial of (o) of degree m > 1. Then there c¢xists
a polynomial g of degree at most m—-1 such that f*G = g. Conversely, let u, v
be polynomials with v#G and let (o) be the sequence of coefficients of the
power series G = u/v. Then (o} is a linear recurring sequence with generating
function G having Zev* as a characteristic polynomial where e=max{0, édu-bv+1),
2.2 DEFINITION The n-D Irs (o) is rectilinear if for each k € Z &(o)
contains a polynomial in Xk with non-zero constant term. In particular (o) is
ok .
periodic if, for each k, &(o) contains Xk - 1 for some positive integer 1.
2.3 REMARKS
(i) Clearly every 1-D Irs is reetilinear.
(ii) The definition of periodic for n=2 is equivalent to that of doubiy
periodic as given in [22, p.3241).
{iii)} If ¥ is finite, every rectilinear n-D Irs is periodic.
(iv) The requirement in the definition that the polynomial in X have
non~zero constant term is used in the proofs of Theorems 4.1 and 4.2.

2.4 DEFINITION Let (o) be rectilinear. Then (a) the monic¢ polynomial in Xk of
least possible degree in Q(¢) will be called the minimal Xk—polynomial of (o)
and dencted by pk(Xk} (px, Py, Py when only twoe or three variables are

involved), (b) the minimal product polynomial of (o) is pl{¢)]=

pi{Xl)pz(Xz}. . .pn(Xn).
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The requirement that pk(Xk) be monic is clearly no restriction. Moreover
it will be clear from our analysis that pk(Xk) has non-zero constant term (cf.
Corollary 3.6).

We associate with the n-D lrs (o) its generating function

(o) := Z 0. X

ieN” B

which lies in F[[X}]. To illustrate the concepts of this section and the
algorithm x-BASE we shall work with the following example.
2.5 EXAMPLE ({22, Example 2, p.324]) n=2, F=GF(2) and (o) is the doubly
periodic sequence whose generating function GI(o)] satisfies
(X6+1}(Y6+1)G[(0)] = (X5+X4+X3+X2}Y5 + (X4+X2)Y4 + (X5+X4+X+1)Y3 + (X4+1)Y2 +
{X3+X2+X+1)Y + X2 +1 = h(X,Y). (Note that this is the transpose of Sakata’s
array.)

To calculate the minimal Xk—polynomials for Example 2.5 we invoke the

following theorem which is proved in Section 3.

It

2.6 THEOREM (c¢f. Theorem 3.3, Corollary 3.4) Let (o) be periodic, with ka -1
"k
€ o) for keZ . Then (1) Gl(o)] = h(X)/ {] {Xk -1) for some polynomial h,
keZ
n
. Bk = Mk
where 5kh < nk—l, and {(ii) pk(Xk) = (Xk -1)/(h , Xk -1).

6

*
In Example 2.5, a simple calculation gives (h X +1)=X2+1, so that

by Theorem 2.6, pX=X4+X2+1. Similarly pY=Y4+Y2+1.
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In Section 3 we shall show how the results of [6,7] may be used to
calculate the minimal Xk—polynomials under two hypotheses which generalize
[7, Theorem 4.8] and [7, Theorem 5.1] respectively. The first hypothesis is
used when l-variable characteristic polynomials are known, so it applies in
particular to Example 2.5.

EFFECTIVE RECTILINEARITY (ER-) HYPOTHESIS : the following are known
(i) for each k € Zn’ some (non-constant) gk(Xk) € Q(o) satisfying
gk(O) # 0, and

(ii) the beginning terms o, of {o) for all 0 <1< {dl—l,...,dn—l) where

= gy

k
BERLEKAMP-MASSEY (BM-) HYPOTHESIS : the following are known
(i) an upper bound m > 1 on the degree of pk(Xk} each k € Zn’ and

(ii) the beginning terms o of (o) for all 0 < i < (2m1~1,...,2mn—1).

The main tﬁeorem on which our methods depend is the following. It will
be proved in Section 4.
2.7 THEOREM (x-Base Theorem c¢f. Theorem 4.2, Corollary 4.3) Let (o) be a
rectilinear n-D Irs in F. Then f € Q(0) if and oniy if there exist polynomials

u (X) such that

=)
fq =) up
ko1 kY k

where q = pl(0)] Gl(0)].
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We are now able to state our algorithm.
2.8 ALGORITHM : x-BASE
Input : an n-D lrs (o) satisfying either the ER- or the BM-hypothesis.
Output : a basis for Q{o), converted to an RGB if required.
1. Calculate the minimal Xk—poiynomials pk(Xk) for k € Zn'
* *

2, Determine q := pi(o)] G[(r)] and hence determine q .
3. Find a set of generators for the polynomial solutions of the

homogeneous egquation

*
fq + ap +...+ap = g .
The set of polynomials f thus determined forms a basis for &(e).

4. (if required) Convert the basis found in Step 3 to an RGB by standard
methods.

2.9 REMARKS (i) In the following section we use the theory of 1rs over a

factorial domaiﬂ to show how to carry out Step 1 in case (¢) satisfies the

BM~hypothesis. (We have already seen in the example how this is carried out

for the ER-case.) However, it should be noted that (even in the BM-case) Step

1 requires only calculations {MINPOL or Berlekamp-Massey) with lrs over F.

(ii) Step 3 is the calculation of a basis of syzygies of the ideal J generated
*

by {q , Pir-o s pn}, which can be carried out using [2, Method 6.17, p.219],

for example. It is known {c¢f. [1]} that the complexity of calculating
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syzygies is - in the worst case - doubly exponential in n., However, because of
the special form of the generators and their interrelationships there is
reason to believe that the regularity of J (as defined in [1}) is "small" and
hence that x-BASE is inherently tractable. It should also be noted that in
most of the applications mentioned in the Introduction it is the case n=2

that is of current interest.

To apply the algorithm to our running example, we first find ¢ =
vty P YR XYY+l and q = X°YS+X°Y2XPY24XY+X+1, The three polynomials f
which arise from the calculation following [1, p.219] and using lexicographic
ordering are Cyayiaxly +X3+1, (Y247 %ev+1) (Y4x34%+1) and x*+x%+1. The ROB
for the ideal generated by these three polynomials is {X4+X2+1, Y+X3+X+1}
which (after account is taken of the change of ordering - Sakata uses

graduated total degree ordering) is the same as that obtained in [22].

3. MINIMAL XkuPOLYNOMIALS
In this section we show how the minimal Xk—polynomials may be calculated,
beginning with easier case of 1rs which satisfy the ER-hypothesis.
The first result establishes a fundamental property of characteristic
polynomials which reduces in the case n = 1 to the first part of Theorem 2.1.

Note that for this lemma (o) need not necessarily be rectilinear.

ok
3.1 LEMMA Let f € Q(o). Then for all t > 6f the coefficient of gﬁ in f G{(g)]
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is zero.

_ *
PROOF For each s € S(f) there is a term fsééf 2 in f which multiplies the
term orm5f+5§£7£ff§ in G = G (¢)] (note that r - éf +s > 0 by virtue of the

%
hypothesis on 1) to give o —5f+sfs§£ in f G. Thus the coefficient of EL in

*
f G is Z: f o which is zero since f is a characteristic polynomial
s r-6f+s

s€S(f) -
and r -~ 6f > 0.
When (o) is rectilinear with minimal Xk~polynomial pk(Xk) for k € Zn’

p = pl(o)] is clearly in 9{o). Note that 5kp = 6kpk for each k. Applying

the previous lemma we have

E3
3.2 COROLLARY Define ¢ := p Gl(¢)]. Then q is a polynomial satisfying

g < Lﬁlpl—l,...,5npn~1)‘

*
Similarly, under the ER-hypothesis, we can write g (X)G[(o)] = h(X) where

g is the product of the known characteristic polynomials gk(Xk) and heF[X]
satisfies the corresponding degree restriction.

*
3.3 THEOREM Let (o) be rectilinear and suppose that G[(o)] = h(X)/g (X}

where g(X) =[] gk(Xk) is a monic polynomial with gk(O) # 0 for each k. Then
keZ
It

*
gk!(h ,gk) is the minimal Xk—polynomial of (o).
PROOF In the following ]| denotes the product taken over keZnand the symbol ~

means "is equal to, up to multiplication by a non-zero element of F".
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Let p = [] Py be the minimal product polynomial of (¢) and q = p*G{(U)},
* * *
so that hp = g q. If dk = (h,gk), then
* * *
(th/ Td)p = (g /[ d)a = (] g, /4. )q
*
by Lemma 1.5{vi). Further {q,pk) = 1, because otherwise we could replace Py by
*
a polynemial of smaller degree. Since = is a polynomial in Xk, any divisor
& *
of h and || g, is a divisor of h and of g, for all keZ (and conversely).
* *
In other words (h,g } = H(h,gk) = [} dk and h/ [] dk is relatively prime to
g*/ I dk' Using unique factorization in FIX], we conclude that
* * . * * . . . * *
p ~g /] dk , that is, [] Py ” H(gk /dk}‘ This implies that P gk/dk
**N * * *
(because P8y € E[Xk]) and so Py = Py (gk /dk) = gk/dk . Now Py and gy

are both monic so the conclusion follows from Lemma I.5(viii).

n
In the periodic case gk(Xk) has the form ka~1 and clearly the product g

n

satisfies g* = tg. Thus Gl(e)] = h(X)/ [] (kawl) for some h. Applying the
keZ
n

theorem to this case, we have

3.4 COROLLARY Let (o) be periodic and express GL(o}] in the form given above.

ny . Dy
Then (Xk ~1)/(h , X ~1) is the minimal X, ~polynomial of (o).

* * *
We note that Theorem 3.3 also yields q = p GI(0)] as h/ [[(h ,gk) . In
general, the ged calculations of the theorem would be carried out using, for
example, a polynomial remainder sequence algorithm in F[X}. Hewever, in the

periodic case described by the Corollary, we may take advantage of the
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. "k :
special form of g = Xk - 1, when its factors are known, to reduce the
calculation to a systematic sequence of trials, as illustrated in the
Example 2.5.

Turning now to the general case we observe that the seguence (¢) may also
be regarded for each k ¢ Zn as a l-parameter sequence each term of which is
itself an (n-1)-parameter sequence of elements from F. When (o) is so regarded

A
we shall denote it by (0)(k). ¥e write .58 (read R omitted") for the list

X "Xn (and make the corresponding extension to monomials

1""’Xk—1’xk+1,"
Al _ . A .

such as Ek where j € B, By [24, Theorem 6, p.148] Ukz E[[Ek]] is a
factorial domain: this fact will be used without further mention. The
generating function G[(U)(k)} is a power series in X each coefficient of

: . ) (k) . -
which may be represented as a power series in Ek‘ Thus G[(e) ™" ] is simply
G[{o)] regarded as an element of Uk[[Xk]}. Qur first aim is to show that

(a}(k) is a 1-D 1rs in U, , whose minimal polynomial is in fact the minimal

K’
£ -~polynomial of (o).

3.5 THECQREM Ler f = f(Xk) where £(0) # 0. Then £ € Q(o} if and only if (U)(k)
is al-DIrs in Uk with f as a characteristic polynomial.

PROOF For ;implicity we consider the case k = 1. The analogous proof for k »

2 is similar. If (0)(1) is a 1-D Irs in Ul with f = f(XI) as a characteristic

*®
polynomial, let d be the degree of f. Then, by Theorem 2.1, f G[(a)(l)} =g is
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a polynomial in Xl of degree at most d - 1 with coefficients in Ul. Thus
*
f Gl{o)] =g e F[[X]]. Also, if f is regarded as an element of F{X], then

&
S(f) = S(f ) = {s=(s,0,...,0) : O<s<d}. Since g is a polynomial in X, of
il *
degree less than d, the coefficient of X1 in £ G{(o}] is zero for il >d. In

order to write out this coefficient, we denote vectors in N by (r,t), where r

e Nand t € H'' The required coafficient is
Al
3 [fo”{i1~d,3_) +"'+fd0(i1,j_J]§1 :
jent

* d
where we have used the fact that f = fd+fd“1X1+...+f0X1.

Putting this equal to zero we find that for all i >dand all j € Nt

d

Z: £59¢4 ~d+s,i) T 0.
1
s=6)

Since (ilud,i) is an arbitrary element, i say, of N?, we have

> fo., =0 forall ix0

and this means that f ¢ 2(¢).
Conversely, it is clear that the argument above may be reversed to show
*
that if f = f(Xl) € (g}, then f G[(o)] is a polynomial in X1 of degree £ less

*
than d. Since this is just f G[(a)(l)], we conclude, by Theorem 2.1, that

)(1) )(1)

* ¥
(o is a 1-D 1rs in U1 and Xff is a characteristic polynomial of (o

# %
where e=max{0, £-d+1}. Thus e = 0 and since f = f the theorem is proved.



- 99 _

3.6 QOOROLLARY The minimal Xk—polynomfal pk(Xk) of the rectilinear n-D Irs (o)
‘ oo . (k)
is the minimal polynomial of (o) . Furthermore, pk(O) 0.

PROOF The theorem implies that p,(X,) is a characteristic polynomial of
k' Tk

(0)(k). (k)

if pk(Xk) is not the minimal polynomial of (&) then some polynomial

gk(Xk}eUk[Xk] of smaller degree is a characteristic polynomial of (0)(k},
divides Py and hence by the theorem is in Q(s)., Since any polynomial which is
irreducible in E[Xk] is also irreducible in Uk{Xk], g divides Py in E[Xk],
which contradicts the definition of Py Now, by definition &(¢) contains some
polynomial f(Xk) with f(0) # 0 and by the theorem f is a characteristic

polynomial of (J)(k)

. Thus pklf and consequently pk(O) # (.
We can therefore regard a rectilinear n-D Irs in F as a 1-D lrs in

U, for each k.

k
3.7 COROLLARY Let (og) be rectilinear and assume the BM-hypothesis. Then the
minimal Xk—polynomial of (o) can be calculated using MINPOL in Uk'

In theory this calculation involves applying the XPRS algorithm of [6,7]

Zm

to Xk

and a polynomial in Xk of degree (at most) 2m ~ 1 with coefficients
in Uk‘ If those coefficients were arbitrary elements of U, , the calculation
could not be carried out effectively: it is the presence of the minimal
szpolynomials for £ # k that will make this possible. Qur next aim is to

reduce the determination of pk(Xk) to finding a finite number of minimal

polynomials of 1-D Irs in F.
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Let (o) be rectilinear with minimal Xl—polynomial pl(Xl):pl +p X +

,0 1,171
51p1 . -1 , )
L+ p}’61p1x , and let } € N be fixed. Then, as in the proof of Theorem
3.5,
51p1
Z: pl,sg(s+i1,l) =0 for all il > 0.
s=0

3.8 DEFINITION Let j € N"! be fixed. We denote by (e(1,j)) the sequence whose

ilth term is T and call it the X ~subsequence of (¢) associated with j.

1 ¥
For k > 1 the kasubsequences (0(k,£)) of (o) are defined similarly (where £

. A

Is an exponent of X ).

The following lemma is a consequence of the definition.

3.9 LEMMA The minimal kapo!ynomia[ pk(Xk) is a characteristic polynomial of
each Xk—subsequence.

We shall now prove that in order to determine pk(Xk), it is sufficient to
consider only a finite number of the kasubsequences of {¢}. The precise
sense in which this is true is given by
3.10 THEOREM The minimal Xk—po!ynomiai of (g} is the least common multiple of
the minimal polynomials of the Xk—subsequences (o(k,£)) for

£S(61p1—1,...5 "1"-'15npn—1)'

OgiPyog ~ b 6k+1pk+1

PROOF In the following discussion we take k = 1 for notational convenience and

clarity of expression. The argument for k > 2 follows the same pattern.
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We have seen that P, is a characteristic polynomial of each
Xl—subsequence. Let ul(Xl) be the least common multiple of the (monie) minimal
polynomials of the Xl—subsequences (o(1,j)) for j < (52p2 - 1,...,5npn - 1).

Thus u1|pl. We shall prove that, in fact, p, =u. For this we show that X?ui

1)

is a characteristic polynomial of (J)( for some exponent e > 0., Then

pl[Xfu1 by Corollary 3.6 and since p, is not divisible by X we have pl|ul.
Since P, and u, are both monic this means they are the same,.

)(1)

To prove that X?u1 is a characteristic polynomial of (o , 1t suffices

* *
to show that ulG{(a)] = ulG[(a)(I)} is a polynomial in Xl' By Theorem 2.1 this

* %
will imply that X?ul is a characteristic polynomial of (G)(l) for some e > 0,
* %

and the desired conelusion will follow since u1|pl implies u, o=u.

Write G = G[(G)(l}] in the form

2l
{:Z: ,l) 1 §1 ’
iﬁm i em

Since u € 2o(1,3)) for j < (52p2 - 1,...,r5npn - 1), it is clear that for

A sk
such j the coefficient of §% in the product ulG is a polynomial in Xl‘ We

As
prove that this is also the case for the coefficient of g%-for 1% 6,p,-1,
"5npn - 1). To achieve this we use induction on each component of j

n:
separately. Consider, then, the coefficient of E%-with j= (5292, 6,p, -

il
i %

.,5npn ~ 1) and write this coefficient as z: o( . We also define

i €N
}16
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jle N2 by j = (52p2, 1'). By hypothesis p,€E Q(g) so

6292
Z Py s%0,s,0,...,00+(i.,...,i) = 0 forall 120
1 n
s=0
62p2
where we have written pz(Xz) = Z: P, SXE In particular, taking
s=0
i= {il,O,if}, we have
52p2
E: pz,sg(i ,8,37) =0,
1
s=0)

and, since P, is moniec, we can write
§.p. -1
2P2

7(i ,6.p 1) * z: Py.s%(4 .8,
1'72% B

n:
Thus the coefficient of Ei-above is

i
1

Note that each of the sums ) a( for 0 < s < 62p2 « 1 is the

coefficient of §§ for some £ < (62p2 - 1,...,6npn - 1) and thus the

A
. . j_ s _ ~ . 13
coefficient of X~ for j = (62p2,53p3 1,...,6npn 1) is an F-linear
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combination of coefficients of ﬁ% for such £. Consequently, when this
coefficient is multiplied by u:, the resulting product is a polynomial in
Xl. The induction step is now clear and we have proved the claim for

i= (j2,53p3 - 1,...,5nprl - 1} for arbitrary jz_

When n > 3 we need to consider the coefficient of 2% for j = (jz,éspg,jf)
where j, is arbitrary and j* € N0 satisfies j* < (54p4~1,...,5npn—1}. An
argument similar to the foregoing reduces this coefficient to a sum of
coefficients of ﬁf for £ < (jz,éspg—l,...,énpn—l) each of which gives, by the
previous step, a polynomial in X1 when multiplied by uj . The induction

necessary to complete the argument for j = (j j¥) for arbitrary j2,j3 and

yris
for j* < (54p4—1,...,6npnu1) is now clear, as is the induction on the number
of variables necessary to complete the analysis for the first variable. As
remarked earlier, the other minimatl Xk~polynomials for k > 2 may be treated
similarly, and this completes the proof of the theoremn.

3.11 REMARK Assuming the BM-Hypothesis we have an upper bound on the degree
6kpk so the theorem provides a (finite) procedure for determining the minimal

Xk—polynomial from at most H m Xk—subsequences. In practice this reduces to

j#k
I (6.p.)m, since the actual degree may be used instead of the upper bound
jk 14
25k

once the corresponding polynomial has been found. When the ER-Hypothesis is

assumed at most [f 6.pj Xk—subsequences must be analysed.
ik
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We illustrate the ideas developed thus far with several examples.
3.12 EXAMPLE (Example 2.5 revisited) We have

GLo)] = (1+X%+. . ) + (L+xex+3+ . )Y + (+x vt
The upper bounds for the BM-Hypothesis can both be taken as 6, and so the
minimal X-polynomial Py is the lcm of the minimal polynomials of the
X-subsequences corresponding to Y£ for £ < 5pY—1 = 5. Using MINPOL or BM
over GF(2), or simply factorizjng x%+1 and trying each factor in turn, we find
that x*+x%+1 is the minimal polynomial of each of these sequences, and hence
Py = x*+%x%41. This means 5pX = 4 so Py is the lcm of the Y-subsequences
corresponding to X£ for £ < 5pX -1 = 3. Again, a simple calculation gives
Py = Y4+Y2+l.
3.13 EXAMPLE n=3, F=GF(2), and (o) is the triply periodic sequence such that
(X2+1)(Y3+1)(24+I)G[(0)] = (Yo1)(X2%41) . It is easy to see that the minimal
S ATE

Xkupolynomials are Py = X2+1, = Y2+Y+l,

Py Py

3.14 EXAMPLE n=2, F=0 and (o) is the doubly periodic sequence such that

(-1 (YP-1)6[ ()] = (X%+1)(-XY+1). Here Py = x?-1 and Py = vi1.

4. CHARACTERISTIC POLYNOMIALS IN MORE THAN ONE VARIABLE
For the characteristic polynomials f of (¢) which contain more than one
variable, we generalize Theorem 2.1.

4.1 THEOREM Let (o) be rectilinear with minimal product polynomial p and let
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p G = q. Suppose that f € Qo). Then there exist polynomials gk(ﬁ) such that

f* E *
q = Ei Py -
Kol k¥k

Conversely, if v is a non-zero polynomial and there exist polynomials uk(ﬁ)

such rthat

n *
vqg = Y u.p
k:1kk

then v e &(a) .

PROOF Suppose first that f € Q(¢). By Lemma 3.1 the coefficient of §; in f*G
is zero for all r > §f. Thus, for each monomial §§-in f*G with a non-zero
coefficient, at least one of the components jk is less than 6kf. We group the
terms of f*G together according to the following partition of the set

J:=HN - (reN" : r>6f}. Define g o=1{leT ] < 6 f} and, when

k-1
31""’jk—1 have been defined, define jk ={jed -~ 191 5i : jk < 5kf} (It is

n *
clear that |} I, =73 and that jiﬂ ji =¢ for i #j.) Thus f G = G +G o+ ...
i=1

+ Gn where Gk € Uk{Xk} and has support jk‘ As such, we can denote its degree
by 5ka and observe that 6ka < 6kf. We now prove that, for all k, g =
* *
(p /p, )G, is a polynomial in X.
k" 7k =
For a contradiction, suppose that k is the smallest index for which
g is not a polynemial in X. It is certainly a polynomial in Xk, by definition

of Gk, so let r be the smallest exponent such that the coefficient of X; in gy
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A #*
is not a polynomial in Ek' Since pk(O) # 0 this means that the coefficient of

T

* * A *
X in p Gk = P8y is not a polynomial in gk. But p G is a polynomial in X so

X

the term in X;

*
other multiples of Xi in the expansion of p G. Now r < 5ka < 5kf and for £ >

6kf

k, Xk

*
the summands p G£ for £ > k. Also, by definition of k, either k = 1 or all
* *® , .
the previous terms p Gl,...,p Gk—l are polynomials in X and so the required

cancellation cannot take place. From this contradiction we conclude that

gy is a polynomial for each k, and

* * ok * *
fgq=pfG=pG + ... +p G
1 n
* *
= plgl *o * pngn

Conversely, let v # 0 be a polynomial in X and suppose there exist

*
polynomials uk(é) such that vq = % Up - Define e by ey = max{O,ékuk~6kv+1}

so that ¢ > 0 and

v e e { 6kv if 5kv > 6kuk + 1
k k 5kuk + 1 if 5kv < 5kuk
The assumption on vq implies that
Z” u, (X) Z“
vG = ) ——— = }» H
N k
k=1 ][] p. ka1
j#k !

where H, € Ul (X, ] and has degree 6kuk. The coefficient of X- in vG is 0 for

*
in the expansion of p Gk as a polynomial in Xk mast cancel with

divides Gg by construction, so these cancelling terms cannot come from

fr
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> v + e , by hypothesis, and thus

E: v o . =0 for all i >0 .
s vre-s+i -
seS{v)

*
Define t = év + ¢ — s, so that t runs through ¢ + S(v ) as s runs through

S(v). Then,
L, Vavee%up =0 forallizo,
tee+S(v )
that is,
E: . wl?ifl =0 forall i >0
tee+S(v )

*
where the corresponding polynomial w(X) satisfies S(w) = e + S(v ), w € Q(0)

e*
and w = X~v .

%
However, by the Reduction Lemma we can assume that §(vg) > max{éﬁukpk)].
k

Corollary 3.2 now implies ékuk < 6kvk' so that ekmo and this completes the
proof.
We now consider the relationship between Q(¢) and the syzygy module (cF.

{24, section VII.13, pp. 237ff.]) of the ideal in F[X] generated by
*
fa pooop ).

4.2 THEOREM (x-Base Theorem) Let (o) be a rectilinear lrs. Then feQ(o) if

and only if there exist polynomials uk(i) such that

« n
fq =3 u.p, (X,
e Kk Tk

* *
PROOF Suppose f € Q(¢). Then by Theorem 4.1 f q = ) ap where by the
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& *
Reduction Lemma we may assume 6(f q) > Qak + épk for k € Zn' Now,

*
* oK Q(f q) *
(f q) =% ¥ ak(l/xl,...,1/xn)pk(1/x1,...,1/xn)
so that
* *
LT é(f q)—éak—épk * okk
f a =%% APk

since the exponent of X in each summand is non-negative. Therefore,
multiplying both sides by §§f, we obtain

*
6(f q)-ba, -bp, +£f
D

where we have used the fact that p;* = Py and ﬁp; = ﬁpk . But the left hand
side of this expression is fq* by Lemma 1.5(vii), and the right hand side is
in the required form.

Conversely, if fq* =y W Py then, again using the Reduction Lemma, we
may assume éﬁfq*) > épk + épk so that

*
6(fq )-bu, ~bp
¥ Kk % % - = 2 * ik
fq =(fqg) = ¥X k =k WP -

Hence, multiplying both sides by gﬁg, we obtain

*
6(fq )-bu, -bp, +£q
* = .......k.....k...... * ok *
fa=3% weey = 1 bbby
X ] Ef** R N
By Theorem 4.1, £ € Q(¢) and since f = X~ f , f itself lies in (o).

As a consequence of the previous two theorems we have
4.3 COROLLARY Let (o) be a rectilinear lrs. The following are equivalent

(i) f e &lo),
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*

n
*
{ii) there exist polynomials gk(g) such that £ q = E gkpk ,
=1

k

n

*
(iii) there exist uk{ﬁ) such that fgq = ;lukpk.

k

PROOF It only remains to see that {ii) implies f**e&(a) by Theorem 4.1 and
hence by Lemma 1.1(vii), feQ{o).

We end by reconsidering Examples 3.13 and 3.14. (Recall that
lexicographic ordering is used.)
4.4 BXAMPLE (from 3.13) Here q = XY224XZ%4¥+1 = (X2%4+1)(Y+1) = q . The
polynomials f which arise in the caleulation are X2Y2+X2Y +1, XYZZ+K2Y, X2+1
and Y24Y+1. The RGB for the ideal generated by these four polynomials is
(Z°+X, Yiave1, X541} .
4.5 EXAMPLE (from 3.14) Here q = -XY+1 and q* = XY-1. The polynomials which
arise in the caleulation are —X2+1, ~XY-x* and ~X*+X. The RGB for the ideal

generated by these three polynomials is {Xz—l, Y+X}.

REFERENCES
1. D. BAYER and M. STILLMAN, On the complexity of computing syzygies, J.
Symb. Computation 6 (1988) 135-147.
2. B. BUCHBERGER, Grobner bases: An algorithmie method in polynomial ideal
theory. In (Bose, N.K., ed.) Multidimensional Systems Théory, Dordrecht-

Reidel (1985) 184-232.



10.

-~ 33 -

P. CHARPIN, Les codes de Reed-Solomon en tant qu’idéaux d’une algébre
modulaire, C. R. Acad. Sc. Paris (1), 294 {1982) 537-600.

, Codes cycliques €tendus et id€aux principaux d’une algdbre
modulaire, C. R. Acad. Sc. Paris (I), 295 (1982) 313~315.

, Codes cycliques &tendus invariants sous le groupe affine,
These de Doctorat d’Etat, Univ. Paris VII (1987).
P. FITZPATRICK and G. H. NORTON, Linear recurrence relations and
an extended subresultant algorithm, In {G. Cohen, J. Wolfmann, eds.)
Coding Theory and Applications, Toulon (1988) Springer Lecture Notes in

Computer Science 388, 232-243.

, The Berlekamp-Massey algorithm and
linear recurring sequences over a factorial domain (submitted to J.
Algorithms}.

T. IEAI, H. KOSAKO and Y. KOJIMA, Two~dimensional cyclic codes,

Electronics and Communications in Japan,, 57A (1975) 27-35.

, Basic theory of two-dimensional cyelic
codes - periods of ideals and fundamental theorems, Electronics and

Communications in Japan, 59A (1976) 31-38.

, Basic theory of two-dimensional ecyelic
codes ~ structure of cyclic codes and their dual codes, Electronics and

Communications in Japan, 59A {1976) 39-47.



I1.

12,

13.

14,

15.

16.

17.

18.

- 34 -

H. IMAI, Two dimensional Fire codes, [EEE Trans. I1T-19 {1973)
796-806 .
, A theory of two~dimensional codes, Info. and Control,

34 {1977) 1-21.
R. LIDL and H. NEIDERREITER, Finite Fields, Encyclopaedia of
Mathematics and its Applications, Vol. 20, Addison-Wesley, Reading,
Mass. (1983).
T. NOMURA, H. MIYAKAWA, H. IMAI and A. FUKUDA, A theory of
two-dimensional linear recurring arrays, [EEE Trans. IT-18 (1972)
775-785.
A. POLI, 1d&aux principaux nilpotents de dimension maximale
dans 1’algébre Fq[G} d’un groupe abelien fini G, Comm. Alg. 12 (1984)
391-401.

, Important algebraic calculations for n-variable polynomial
codes, Disc. Math. 56 (1985} 255-263.

and M. VENTOU, Codes antoduaux principaux et groupe
d'automorphismes de 1’algébre Eq[Xl,...,Xn}/(Xf—l,...,Xi-l), q=pr,
Eur. J. Comb. 2 (1981) 179-183.

K.A. PRAHBU and N.K. BOSE, Impulse response arrays of discrete-space

systems over a finite field, [EEE Trans. on Acoustics, Speech and Signal

Processing ASSP-30 (1982) 10-18.



19.

20.

21.

22.

23.

24.

- 35 -

L. ROBBIANO, Introduction to the theory of Grobner bases, Queen’s Papers
{Kingston, Ontario) (1988},
S. SAKATA, General theory of doubly periodic arrays over an

arbitrary finite field and its applications, [EEE Trans. IT-24 {1978)

719-1730.

, On determining the independent point set for doubly
periodic arrays and encoding two-dimensional cyclic codes and their

duals, TEEE Trans. IT-27 (1981) 556~565.

, Finding a minimal set of linear recurring relations
capable of generating a given finite two~dimensional array, J. Symb.

Comp. 5 (1988) 321-337.

» Extension of the Berlekamp-Massey algorithm to n
dimensions, Information and Computation 84 (1990) 207-239.
O. ZARISKI and P. SAMUEL, Commutative Algebra Vol. 2, van Nestrand,

Princeton {(1960).

June 1989

revised April 1990






