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Abstract
Let K[X] be a multivariate polynomial riag over a field 7, and Jet U € X. We
call f € K[X] pseudo-homogeneous in U if either it contains no variable of U, or
cach of its terms does. U € X is called an H-set for F C K[X] if each f € F
is pseudo-homogeneous in U, We show that when computing an elimination ideal
of some ideal (F) of K[X] w.ar.t, V € X, one may disregard all those elements of
F that contain variables from some H-set U € X\ V for F. For given F and
V, we compute a maximal H-set for F contained in V. Furthermore, we discuss
how one can compute gradings by weighted total degree that make a given finite
F C K{X] homogeneous. For certain limited purposes, one Can then compute

truncated Grobner bases instead of full ones.

The detection of superfiucus critical pairs in the Buchberger algorithm has long been
one of the main tools to control the combinatorical complexity of the algorithm. In this
a few very special cases, one can actually delete polynomials
ble applications of these methods is very limited.
be impressive, and testing whether

paper, we point out how in
from the input set. The scope of possi
if they do apply, however, the resuiting savings can

or not they are applicable is quite cheap.

1. Pseudo-homogenity and H-sets Throughout, K will be a field, X a finite set
of indeterminates. We assume familarity with the theory of Grobner bases; a good
introduction and further references may be found in [2]. For f € K{X], we denote by
V(f) the set of all variables occuring in f with a non-zero exponent, and by T(f) the set
of all terms occuring in f with a non-zero coefficient. Let U ¢ X, f e K[X]. We call
f pseudo-homogeneous in the indeterminates U if the {ollowing condition holds: either
V(finU=08 o V(I)NU #£ B foralli e T{f). Now let F' C K[X]. A subset U of X is
called an H-set for F if every f € F is pseudo-homogeneous in U.

Lemma 1.1 (i} The union of two H-sels for F' is again an H-set for F.

(1) Let V.C X, Then there is @ unique H-set U CV for F which is mazimel w.r.1.

inclusion among all H-sets for F' that are contained n V.

Proof (i) is immediate from the definitions. For U as described in {ii), take the union
of al} H-sets for F' that are contained in V. O
Proposition 1.2 Let V C X, and suppose U is an He-set for F with U C X\'V. Set
P={feF|V(inU=0}. Then
(FYNK[V]=(P}N K[V}
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In particular, if we take V =9 and for U any H-set for F e.g. the mazimal one, then
(F) is proper iff (P) is proper.

Proof The inclusion "2” is trivial. Now tet ¢ € (') N K[V]. Then we can write ¢ as a
sum of monomial multiples of elements of F, say

k
9= mifi (fi€F),
i=1

where the f; are not necessarily distinct. We may now group the summands into two
parts:

k' L

g= st'f{ + Z mi fi,

[E-3 f=kid]
where V(m) MU =B and V(i)NU =@ for 1 <i<k andfor & +1 < i <k,
Vim)NU #Bor V(fi)NU £ 8. Wesee that V(1) NU = @ for each term in the first
sum, whereas V(1) N U # § for every term in the second sum since U is an H-set for F.
Setting X; = 0 for all X; € U, we sce that

E

g:Zm,-f‘-.D

i=]

If " is a finite subset of K[X], and an elimination ideal of (F) is to be found w.r.t.
V C X by means of a Grobner basis computation, then, by the above proposition, we
may delete from F all polynomials that contain variables from the maximal H-set for
F contained in X \ V. In particular, to test (F) for properness, we may delete all
polynomials containing variables from the maximal H-set. To be able to use this in
practice, we need of course an algorithm computing maximal H-sets.

Proposition 1.3 Let F be a finile subset of K[X), V C X. Then the following algo-
rithm computes the mazimal H-sel for F contained in V and the set P = {ferFri
V(AHiNnU=p).

-Algorithm HSET

Specification: (U, P} «— HSET(V, F)

Given: a finite subset ¥ of K[X}, VC X

Find: (U, P) where U is the maximal H-set for F' contained in V,
and P={feF|V{inU=0)

begin
UeV: P @)y Qle—F
repeat
QR2—10, Ul —1U
while Q1 # @ do
select f from Q1
Q1 — Q1\ {f)
if V() NU = for some t € T(f) then

e
end
Ql +—
until UVl =Ue
return(l/, P)
end HSET
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U e U\ V(f)
P— PU{J]
else Q2 — Q2 U {f} end
end
l— Q2
until /1 = I/ end
return(l/, P)
end HSET

Proof Termination: The repeat-loop is called again only if at least one element of Q1
has been placed in P and not in ©2; so the cardinality of Q1 at the very end of each call
of this loop is less than that at its beginning, except for the last call. Termination of the
while-loop is obvious.

Correciness: During a call of the while-loop, each clement of Q1 is piaced either in P
or in 2, so we have F = 21U Q2 at the end of each cail of the repeat-loop. Just before
a polynomial is added to P, all its variables are removed {rom . If we denote by U the
final vaiue of I/, then obviously U C U for all values of U occuring. So we always have, for
al fe P, VIINU =@ forallte T(f); in particular, each f & P is pseudo-homogeneous
in U. An invariant of the while-loop is given by: for all f € Q2, V()N U1 # @ for ail
L€ T(f). After the last call of the repeat-loop, we have I/ = /] = U; so each fe@2
is pseudo-homogenecus in U and does not qualify to be in P. It is clear that U C V,
and it remains to prove that U is actually the mazimal H-set for F contained in V. If
X € V\ U, then X must have been removed from U during a call of the while-loop.
This means that there is f € F with X ¢ V(f) and V()0 U = § for some t € T(J).
(We are refering to the value of U just before X was removed from it.) Considering that
U C U, we see that U U {X} is not an H-set for f.a

If we assumne that the terms of our polynomials are given by exponent vectors, then
testing the if-condition V(1) N/ = § requires at most {X| many comparisons. The
number of terms that need to be looked at decreases by at least one during each call of
the repeat-loop, so the total number of tests of the if-condition is at most quadratic
in the total number of terms. We see that the complexity of HSET is extremely benign
and certainly negligible in comparison to that of the Grébner basis computation for (F}.
There are of course many situations where one knows in advance that the maximal H-set
that one is looking for is empty: due to the presence of the polynomial Ty 4 - -4+T;, —1, this
is e.g. the case if one eliminates Kronecker variables Ty, ..., Tr,. If the set of polynemials
F' arises in a somewhat random manner, however, the savings from dropping superfious
polynomials can be considerabie at virtually no cost (see Section ”Examples” below).
So whenever an elimination ideal of (F) wrt. V C X is to be computed, one should
routinely replace F by the subset P which HSET(X\ V, F) cutputs.

2. Homogeneous Gribner bases  As before, we let K be a field, X = {X1,..., X,,}
a set of indeterminates. We denote by T(X) the set of all terms in X. By a grading of
K[X], we mean a monoid homomerphism

[ (T(X), . 1) = (IN, +.0).

If T is a grading on K[X)], we refer to the value ai = T(X;) as the (I'-)weight of X;
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(1 <1 < n); the weights determine T' because of the formuia

n

DIXP - NI =) mas

i=1

In fact, every a = {ay,...,a,} € IN” determines a grading Fa where a; is the [a-weight
of Xi. 0# f & K[X]is called T-homogeneous if T'{s) = T'{t} for all 5,1 € T(f). This
common value is then cailed the [-degree of f and is denoted by I'(f). The foliowing
theorem is welk-known ([10], [8]}.

Theorem 2.1 Let T' be a grading of K[X], F a finite subsel of K{X] consisting of
[-homogeneous polynomials, Then the ouipui of any Buchberger algorithm with input
F consisis again of [-homogencous polynomials. Let d € IN, Gy the output of a Buch-
berger algorithm with inpul F which ireats only those crilical pairs {g1, g2} that satisfy
I'(lem(HT(g:), HT(g2))) < d. Then G4 consisis of precisely those clements of the output
of the corresponding full Buchberger algorithm that have U-degree < d. Morcover, f G;e' 0
forall f € (F) tha! setisfy max{ I'(1) {1 e T(f)} <d.

A formal proof of the above theorem is of course somewhat tedious; however, an
informal proof can casily be given as follows. 1t is casy to see that 0 # f, f,p € K[X] with
f and p I-homogeneous and [ — ' implies T{p) < T(f) and f' T-homogeneous with
D{f) = I'{f*). Furthermore, if g1, g2 € K[X] are [-homogeneous, then so is SPol(g1, g2)
(unless equal to zero), and the [-degree of the latter is greater than or equal to the
maximum of T'(g1) and T(gy). We see that in the situation of the theorem all non-zero
polynomials occurring in the Buchberger algorithm are T'-homogeneous; moreover, if
T(lem(HT{g1), T (g2)}) > d, then the normal form of SPol(g,, g2) {unless equal to 7€10)
will have [-degree > d, and the same is true for all its ”descendants” in the course of the
algorithm. It follows that the truncated algorithm as described in the theorem produces
all elements of the full Grobner basis whose [-degree is < d, and it is again easy to see
that this is enough to perform the indicated reducticns,

Theorem 2.1 has been used to obtain complexity bounds on the Buchberger algorithm:
one homogenizes an arbitrary input set w.r.t. the standard grading Iy 1y by means
of an additional variable, proves that the complexity of the homogenized algorithm is
essentially the same as that of the regular one, and then uses complexity resuits on
homogeneous Grébner bases. Here, we propose the following way to exploit the theorem.
Given an arbitrary finite ideal basis I, one may try to compute a non-trivial weight vector
a=(ay,..., as) € IN" such that each f & F becomes ['a-homogeneous. The truncation
at d € IN of a Grobner basis of (F) is easier to compute in general than the full one (see
Section " Examples” below), and it is still good enough to test for membership in {F)
any f € K[X] with max{Ta(t) |t € T(f)} < d.

From now on, F will be a finite subset of K[X]. To facilitate the computation of the
desired weights, we first note the following connection with H-sets.

Lemma 2.2 Let U be the mazimal H-set for F, T a grading such that every f € F 1s
I'-hemogeneous. Then a; = 0 for all i such that X; ¢ U.

Proof Let V.= UU{ X; € X | I'(X;) # 0}, and assume for a contradiction that V # U.

Then V is a proper superset of U and thus not an H-set [or /. Hence there exists f € F
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and 5.1 € T(f) such that V(s} NV =@ and V(1) NV # . Tt follows that VisynU =0
and thus V()N U = @ since U is an H-set for F. We see that V(1) (V'\ Ul # 0, so we
must have I'(#) # 0. On the other hand, V(s) NV = 0 implies I'{s) = 0, and so f is not
I'-homogeneous, a contradiction. O

Let us assume w.lo.g. that U = {X,..., Xi} is the maximal H-set for F. 1t is clear
from the above lemma that for any grading [, all f € F are [-homogeneous if and only
it all f(X1...., X6 1,...,1) (f € F) are [-homogeneous. For the computation of the

desired weights, we may thus set Xpp = ... = X = 1, which amounis to assuming
w.lo.g that X is the maximal H-set for I'. Now we let ay,...,an be unknowns, Tor
=X ... Xh € T(X), I'a(t) has the obvious meaning:

n

Next, we fix some term &; € T{f) for each f € F. 1t is clear that the weight vectors
whose corresponding gradings make all clements of /' homogeneous are precisely the
non-negative integer solutions of the system

Palty) =Ta(s) =0 (feF se{TNH\{1,1)) (1)

of linear equations.
In order to compute the a;, one would thus have to apply integer linear programming
(ILP) (see e.g. [12]) to the equations (1) with addtional inequalities requiring

a; >0 for 1<i<n. (2)

Furthermore, one would want to add the condition

minimize a; + ...+ an (3)
to obtain low bounds and avoid solutions with ged(ay, ... ax) > 1. Now this alone would
of course produce the trivial solution a; = ... = a5 = 0, 50 an additional condition is

needed to avoid that solution. The most general way to achieve this is to require

En:a; >1. (4

i=1

Then every non-trivial solution is admissible and so ILT will find one if one exists at all.
On the other hand, it could be that there is a solution with many non-zero a; {which is
desirable in view of the intended truncation of the Buchberger algorithm), and another
one with fewer non-zero a;. To prefer the former over the latter, one has to require
explicitely that many or ail a; be positive; but then again this may of course make the
system unsojvable since some of the a; may have to be zero. The only way around this
would be to start with
Gw>1 (1<i<n)  (5)

and then systematically delete some of these until solvability is reached.
ILP is NP-complete and thus a complex algorithm {[4],[9]}. However, experience
seems to suggest that the attempt to compute a grading making all f € F homogeneous
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still takes only a small fraction of the time required to compute a Grobner basis of (F)
(see Section "Examples” below). Moreover, the truncated Grobner basis G4 can easily
be extended to a truncation (G ai some bound ¢’ > d: the same reasoning that we
used to informally prove Theorem 2.1 shows that Gy can be obtained by performing
on Gq U F a Buchberger algorithm which treats only those critical pairs {g1, g2} that
satisfy d < D(lem(HT(g1), HT(g3))) < &'. The only difference between such a stepwise
computation and the regular Buchberger algorithm is that one may be deviating from the
principle of preferring those critical pairs {g1, g2} where lem(HT(g;), HT(g2)) is minimal
w.r.t. the term order in question. Under all implementations that we know of, the
detection of unneccessary S-polynomials remains fully intact.

We can now summarize the results of this section as follows. Suppose we whish to
test £ € K[X] for membership in (F). We first compute the maximal H-set U for F. Tf
U = 0, then there is nothing that gradings can do for us. Otherwise, set X; = 1 for all
X; ¢ U and try to solve the ILP problem (1), (2}, (3),(4). (If a solution is found with few
non-zero a;, one might try to solve (1), (2), (3), (5) and systematically delete conditions
from {5) 4o obtain a solution with as many non-zero a; as possible.) If this procedure
vields a solution b, then define a by setting a; = 0 for those 7 with X; ¢ U and taking b
for the remaining a; with the obvious indexing. Compute d = max{Ta(t) [t € T(f)},
and let G4 be the result of performing on F a Buchberger algorithm deleting all critical
pairs {g1, g2} with [(lem(HdT(g1), HT(g2)}) > d. Then [ F- 0 iff f € (F).

3. Abstract context The two situations described in Sections 1 and 2 can actually be

placed in a common mathematical context. Let S = K{X], and suppose [ is a grading
on §. If we define

Sa={feSiT{t)y=dforalteT(f)}
for all n € IN, then we get § = ®genSa. and f € S is [~homogeneous with L(f) =4diff
f € Sy. For any ideal  of § and all d € IN we set, accordingly, Iy = I N Sg. Such an

ideal is then called [-homogeneous if [ = g /d. The following proposition is now
easy to prove,

Proposition 3.1 The following are equivalent for any ideal I of 5.

(i) I is ['-homogeneous.

(11} I has a finite basis consisting of T-homogeneous polynomials. O

To describe the situation of Section 1 in a similar manner, let X = UUY, and denote
by (U) the ideal generated by U in S. Then cleatly § = K[Y] & (U). This could be
called a pseudograduation, since it is like a graduation with only the two degrees 0
and 1. An element f € S is then pseudohomogeneous in the indeterminates U if either

fe K{Y]or fe(U). For an ideal I of K{X] we define
Iy =INK[Y} and I, =1n0(U),

and we say that I is pseudohomogeneous w.r.t. U if I = Iy © I;. One can now casily
prove the following two propositions.

Proposition 3.2 For any ideal of K{X], the following are equivalent.

(i} I is pseudohomogeneous w.r.i. U.

%
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(11} I has e finite basis consisting of polynomials that are pseudohomogeneous in U, O

Praposition 3.3 Les7 be an ideal of Ii'{X}

which 1s pseudohomogeneous. 1w, r.t U, Then
INKY]=I,n K[Y]. o

with unpleasant coefficients. (Just a few small prime numbers as leading coefficients can
wreak havoc in 3 Buchberger algorithm.) The examples that we have chosen are such
that the superfluoys polynomials-look similar to the necessary ones. For the following
example, we used the Grébner basis package of Reduce (see [5]) under VM/CMS.

Example 4.1 Lot 7 be the set consisting of the following six polynomials in the ring

Q[Xl,...,ij.
Tli= X14%3 * X3%%3 - B % X1#%2 % X3%%3 4 3 % X1¥%2 % X3%x3 ¢
12:= X1#%3 % X4 - X{rx2 + 1%
£3:= X1 # X3#x3 * X4 - X1 + x4%
$4:= X1%%2 % X2 » x4 4 X1 % X2%%3 * X3 - 3 & X2 * x43%
15:= X1 * X2##2 & X3 % X4 % X5 - X1 % X2 % X3%%9 & A5%%Q
+ 3 % X2 » xX53% ‘
£6:= X1 * X4 * XB - 2 % Y2ox%2 & X3 - X2 % 34 « X5%%28

To find the maximal H-set U for F, we follow the algorithm HSET: starting with the
assumption that J = {x1,.. .+ X8}, we remove x1 and X4 because of 12, then X3 becaysge
of £3 to find that the remaining set {X2, X5} is the maximal H-set. The second output of
HSETis P = [f1, 12,£3}. This means that the elimination ideal of (F)w.rt. {x1, X3,X4}
or any subset theresf equals that of (P}). In particular, the elimination ideal w.r.t.
{x1,x3, X4} can be read of immediately: it is generated by P. Now suppose we wish
to find the elimination ideal w.rt. {X1}, Following the rule that variables occurring
with high degrees should be placed lexicographicaliy low, we used the lexicographical
term order with X4 > x5 2> X2 > X2 > X1 when working with F and the one with

to be reduced (j SPOL) and the number of elements in the Grdbner basis (f GB).

| § GB | # SPOL | Time (sec)
) 76 94
4 13 2

F
P

Both computations found the elimination ideal to be generated by

X1%*5 - Y1343 - g & Xiex2 + B,
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It is perhaps noteworthy that there cannot be a non-trivial grading that makes all ol
ements of F' homogeneous: the only elements of the maximal H-set are X2 and X5, so
the only non-zero weights can be a» and as. But these must satisfy as — 2a; = 0 and
as — (a2 + 2as) = 0 because of £6, and this implies that they must both be zero too.

Next, we give an example of a set F' of polynomials that allows a non-trivial grading
making every element of F' homogeneous, so that one can compute truncated Grdbner
bases as explained in Section 2. To this end, the source code of Reduce’s Grébner basis
algorithm was modified by the author. The resulting program had to be run through the
interpreter, which causes a considerable distortion of the computing times. We therefore
give the number of S-polynomials (} SPOL) and the number of output polynomials (4
GB) as measures of the expense of the computation.

Example 4.2 Let F consist of the following four elements of Q [X7, ..., Xg].

P

Ti:= x1%%3 % x3%%2 + x1%*2 % x3%%x3 §

£27= X1 * x3%%3 #x4%*2 - 2 « ¥3 * x4 + 1§

I3:= x1 % x2 & xB5*%2 - 3 % X3 # x2#*2 + x4 * x5 * xG+*33
£4:= x1 % X2**2 &% x6 ~ X2 * x5**2 * x6%

Here, the H-set equals {Xp,Xg,Xg}, and if we set a = (0,2,0,0, 1, 1), then £1-£4 are [y-
homogeneous with I'a-degrees 0, 0, 4, and 5, respectively. We used the lexicographically
refined total degree order with X; > ... > X;. The full Grébner basis computation

shows a maximal 'g-degree of 20, so we list the partial ones obtained by truncation at
d=1,.,.,20.

d { § SPOL | { GB d | {SPOL | § GB

0-3 16 3 12 136 33
4 21 7 i3 143 34

5 24 9 14 144 34

§ 24 9 15 144 34
7 93 17 16 153 35

8 79 24 17 155 35

9 96 26 18 155 35
10 123 31 19 158 36
11 132 32 20 159 36

Example 4.3 A non-artificial example, originating in physics, to which the methods
of section Section 2 apply is given by Example 1 of Section Some special examples in
(1J. (The example is due to Gerdt, Shavachka, and Zharkov, see also [6].) Here, we
are looking at 13 polynomials in 7 variables with no constant terms oceurring at all.
The maximal H-set thus consists of all seven variables. The system (1) of Section 2
stating homogenity consists of 93 equations (not all of which are pairwise different).
Upon input of all 93 equations together with the conditions (2}, (3), and (4) of Section 2.
the ILP package of SAS produced the weight vector a = (1,1,1,2,2,2,3) as a soluti(?n.
Computing time in full seconds was given as 0. Using a lexicographical term order with
optimized variable ordering as in {1), we found that the full Grébner basis G consisted
of 20 polynomials of maximal I'g-degree 7. 151 S-polynomials weré treated during the
computation. Again we used our modified source code in the interpreter mode of Reduce
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to compute the truncations of G. Since this does not on.ly faiife"léhgéf, but also usés more
50 space than running compiled source code, we were not able to obtain all of G in this way.
ad Computing G, as described in Theorem 2.1, we got up to d = 5 (I7 S-polynomials
treated, §Gs = 13). Starting with G5 and then extending to Gy, Gs, Gg (with.complete
reduction after each step) took 2,3,11,13 S-polynomials, respectively, and produced the
18 19 elements of G whose ['a-degree is less than 7. The attempt to extend to G7 = & then
er produced a stack overflow.
iis
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