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Abstract We prove that the property of a finite set of formal power series to be a standard
basis of the ideal it generates is locally stable in the space of admissible term orders.
Consequently, universal standard bases exist. We give a criterion for an ideal basis to be a

n

standard basis which is an analogue to Buchberger’s "critical pair criterion” for Groebner

bases.

1. Introduction Let K[[X,,..., X,]] be the ring of formal power series in
the indeterminates X,..., X, with coeficients in the field K. We denote
by T the set of all terms (i.e. power products) in X,,...,X,, and by an
admissible order on T we mean an ordering of T that satisfies 1 < ¢ for
allt € T, and t, < t, implies st, < st, for all s,t,,%, € T. Dizon’s lemma
states that every subset S of T has a finite subset F such that for each
t € 5, there is s € F with s|t. One concludes easily that every admissible
term order < is a well-ordering of T'. For f € K[[X,,..., X, ]], we let T'(f)
be the set of all terms that occur in f, i.e. whose coefficient in f is not
zero, and LT_(f) the <-least element of T'(f). We drop the subscript < if
there is no danger of confusion. The following theorem summarizes known
facts about standard bases.

Theorem (HiRoNAKA THEOREM) Let < be an admissible order on T', I
an ideal of K[[X;,..., X, ], S={g1y-.-+9,,} a finite subset of I. Then the
following are equivalent.

(i) For each f € I, there is 1 < 1 < m such that LT (g;)|LT(f).

(ii) S i3 a basis of I, and for each f € K[[X,,...,X,]], there exisis r €
K[[X,,...,X,]] which is unique with the following two properiies: r =



[ =21 49; for some qq,...,q,, € K[[X,,...,X,]], end ZT(g,}{t for
elteT{r), 1 <i<m.

(i) For each f € I, there exist q;,...,q,, € K[[X,,...,X,]] such that
[ =Tk a9 end VI(f) < LT(q;)LT(g;) for 1 <1 <m.

Moreover, every ideal I of K[[X,,...,X,]] has o finite subset that satisfics
the equivalent condifions above. Such a subset is then called o standard
basis of I (w.r.{. <).

The above theorem goes back to [4] and {3]. For more details on the
history of the theorem and its contributors we refer the reader to [2]. If, in
the Hironaka theorem, one replaces power series by polynomials and lowest
terms by leading termns, then one obtains the basic {non-algorithmic) facts
about Groebner bases. The aim of this paper is to "transfer” two more
results from the theory of Groebner bases to standard bases.

It is shown in [7] (non-constructively) and [5] and [9] (constructively)
that the property of a finite set of polynomials to be a Groebner basis is
locally stable in the space of admissible term orders, and that consequently
every ideal in the polynomial ring has a finite basis which is a Groebner
basis w.r.t. every admissible term order. In section 2 of this paper, we
show that the analogous statement holds for standard bases in power series
rings. Section 3 contains a few remarks on admissible orders of order type
w which will be needed later on. In section 4, we give a criterion for a
finite set of power series to be a standard basis of the ideal it generates.
This criterion is the obvious "translation” of Buchberger’s "critical pair
criterion” for Groebner bases.

The Hironaka theorem as stated above together with the results of sec-
tions 1 and 3 of this paper can be interpreted as saying that all basic non-
algorithmac facts concerning Groebuner bases translate into valid results on
standard bases in rings of power series. Naturally, questions concerning
computability raise additional difficulties in the case of power series. Sec-
tion 5 of this paper contains a few remarks on the state of the art and the
nature of the problems that occur.

The author is indebted to V. Weispfenning and T. Mora for stimulating
conversations on the subject of this paper.



2. Stability of standard bases The set of all admissible orders on the set
T of terms can be turned into a topological space by taking as a neighbour-
hood basis of any < all sets of the form { <'|<’ is an admissible order on T,
and 8 <'t & s <t for all 5,t € F}, where F ranges over all finite subsets
of T'. This topological space will from now on be denoted by AG(T).

Lemma 2.1 Let <€ AO(T"), S,,...,S5,, CT. Then there exists a neigh-
bourhood U of < in AO(T) such that min_.(S;) = min_(S;) for all <'€ U,
1< <m.

Proof It obviously suffices to consider the case ¢ = 1, 5, = S. Let s =
min .(5), and assume for a contradiction that for every neighbourhood U
of <in AO(T), there exists <'e¢ U and 1 € § with # <' 5. Denote by T, the
set of all terms whose total degree is < n (n € N). For each n € N, we can
thus pick <, € AO(T') such that <, (T, xT,) =< (T, x T.), and ¢, € S
with £, <, s. By Dixon’s lemma, there exist n,,...,n, € N such that for
all n € N, there is 1 < j < k with tylt,, and thus ¢, <, 1, <, s Butif
we pick n € N such that n is greater than or equal to the total degrees of
& and L, (1 <j<k) thens<_t for 1 <j <k, a contradiction. O

n n

Theorem 2.2 Let S be a finite subset of K[[X,,...,X,]], <€ AO(T) such
that S is a standard basis of the ideal it generates w.r.t. <. Then there
ewisls a neighbourhood U of < in AO(T) such that S is a standard basis of
the ideal it generafes w.rit. each <'€ U.

Proof By 2.1, we can find a neighbourhood U of < in AO(T') such that for
all <€ U and g € §, LT..(g) = LT (g). It is now obvious that condition
(ii) of the Hironaka theorem as stated in the introduction (with the ideal
generated by S taken for I} holds w.r.t < if and only if it holds w.r.t. <’
forall <'e U. O

The following corollary follows immediately from the fact that AQ(T)
is compact (see e.g. [7]), and from the trivial observation that a standard
basis w.r.t. some admissible order may be arbitrarily enlarged by finitely
many elements.

Coroliary 2.3 Lel I be an ideal of K[[X,,...,X,]]. Then I has a uni-
versal standard basis, i.c. a finite basis which is a standard hasis w.r.1.
every admaissible term order.



3. Admissible orders of order type w We will later make use of the
fact that every open set in AO(T) contains an admissible order of order
type w. This fact seems to belong to the general folklore of the theory. For
clarity, we give a brief discussion here.

Lemma 3.1 Leta,,...,a, be strictly positive real numbers. For cach term.
t=X{" .- X2, we write w(t) = YL, v.a,. Let <€ AO(T) such that for
all 8,8 € T, w(s) < w(t) implies s <t. Then < is of order type w.

Proof Assume for a contradiction that there exists ¢ € T and an ascending
sequence {f_}, . of terms such that ¢, < ¢ for all n € N. Using Dixon’s
lemma, it is not hard to define by induction an ascending sequence {n, };on
such that ¢, [¢, = for all i € N. Then w(t,, ) —w(t,)>minfe|1<i<
n }, and thus there exists j € N with w(t, ) > w(t). This implies £ < b
a contradiction. O
Let R(f) be a simple transcendental extension of the reals, ordered by
setting R < 1. 1t is shown in [8] that an ordering < of T' is an adimissible
term order if and only if there exist strictly positive Qyy.eny 6, € R(E) such
that . )
i X S X X ey Y g <5 vay
i=1 i=1

(The a; can actually be chosen to be in Rif]).

Proposition 3.2 The admissible orders of order type w form a densge sub-
sel of AO(T).

Proof Let <€ AO(T), F a finite subset of T, Gyy-.vyt, € R(E) (¢ tran-
scendental over R, R < ¢) such that

L] L
1
X X <X X = Y s < Y v
=1 i=1

By the model-completeness of the theory of real-closed fields, we can find
strictly positive b,,...,b € R such that Yo ihy < YR vh, for all

ceg Uy,

Xt X X Xin € Fowith XL X < XP . X By
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varying the b; in a suitable manner, we may assume that they are alge-
braically independent over Q. We can now define <'€ AO(T) by setting

n n
g [ ! vy v
Xl ‘...‘XTI‘"< Xi '...‘Xnn@Zlﬂ"bi<zv}bi.
=zl t=1

Then <’ lies in the neighbourhood of < defined by F and has order type w
by 3.1. O

In the above proof, we used the fact that if a;,...,a, € R are strictly
positive and algebraically independent, then by 3.1, the corresponding lin-
ear form induces an admissible order of order type w on T'. In the view of
Weispfenning’s characterization of admissible term orders via positive lin-
ear forms in [8], one is tempted to conjecture that the converse is true ,too,
that every admissible term order of order type w is induced by a positive
linear form whose coeflicients are strictly positive real numbers. Inspection
of Weispfenning’s proof shows that even in the case of order type w, the
coefficients of his linear form will in general end up being in R(#) \ R. In-
deed, the conjecture is false: let n = 2, a;,a, € R such that a;, < a, and
ay and a, are algebraically independent over Q. Then there exists n € N
such that ((n +1)/n))a; < a, and thus (n+ 1)a, < na,. It follows that the
induced ferm order satisfies X! < X2, This shows that the total degree
orders on T (e.g. the one where ties are broken lexicographically), which
have order type w, can never be induced in this way.

4. Buchberger criterion for standard bases In order to be able to
formulate and prove a ”critical pair criterion” for standard bases we need to
introduce some terminology and notation. Let < be a fixed admissible term
order. If g;,...,9,.,f € K[[X,,...,X,]], then we say that f has a standard
representation in terms of {g ..., g,.} (w.rt. <), if there exist ¢;,...,q,, €
K[[X,,...,X,]] such that f = 70, q.g; and LT(f) < ET(g,)LT(g,) for
1 <4 < m. Condition (iii} of the Hironaka theorem can thus be rephrased
by saying that S is a standard basis of I if and only if every element of
I has a standard representation in terms of 5. (Here, "has a standard
representation” corresponds to “reduces to 0” in the case of Buchberger
theory in polynomial rings.) If f € K[[X,,...,X,]], t € T, then we denote
by c(t, f) the coefficient of ¢ in f. Now let f,¢ € K[[X,,...,X,]] with



8 = IT(f), t = LT(g), us = vt = lem(s,1). Then we define S(f,g) =
e(t,g)uf — c(s, flvg. Choosing analogy with polynomials over phonetic
elegance, we call S(f,g) the s-series (w.r.t. <) of f and g. We say that
S C K[[X,,...,X,]| is closed under s-series (w.rt. <)if for all f,g € S,
5(f,g) has a standard representation in terms of S. Our goal in this section
is to prove the following theorem.

Theorem 4.1 Let S be a finite subset of K[[X,,...,X,]]. Then, w.rt. a
fired admissible term order, S is a standard basis of the ideal il generates
if and only if S is closed under s-series.

The next lemma shows that if S is closed under s-series and we have a
representation of f € K[[X,,..., X ]] in terms of § which is not standard,

then this representation can be ”improved”. For f € K[[X,,...,X,]], we
denote by LC(f) the lowest coefficient of f, .. ¢(LT(f), f), and by LM(f)
the lowest monomial of f, i.e. LC(f)LT(f).

Lemma 4.2 Let < be an admissible term order. Assume that {g,,...,9,.}
is a finite subset of K[IX,,..., X ]] which iz closed under s-series, { =
Ty a9 with g, ..., q,, € K[[X|,...,X,]} such that

in IT(q)IT(g.) < LT(f).

Then there exist qi,...,q,, € K[[X,,...,X,]] such that f = 7, q¢lg; and

wmin LT(q;)LT(g;) < 121'1(11 IT(q;) LT {g;).

1<i<m

Proof We proceed by induction on the number & of indices j such that

LT(q;)LT(g;) = m.i<n LT(q;)LT(g;)-

i<r<m

k=0ork=11is impossible. Let k¥ = 2. W.Lo.g., we may assume that

LT(9)LT(91) = LT(0,)LT(gy) = min I(g;)LT(g,).

Let 3272, q'g;be a standard representation of S(g,,g,). Since k = 2, we
must have

LM(q,)LM(g,) = —LM(g,) LM (g,).



Hence we can find v € T and ¢ € K such that

n

LM (q)g; + LM (q,)g, = auS{g;,0,) = au . ¢'g;.

i=1
Now we define
@ = ¢ — LM(q,)+ aug]

G = ¢, — LM(q,)+ aud)
% = ¢ +aug for 3 <1< m.

Then we have

bigd

D49 = g9, — IM(q)g — LM(q,)g, +au Y ¢y
=1 =1

=3l
= Z a.9; = f.
i=1
Furthermore, we see that for j = 1,2 and 1 <7 < m,

LT(q;)LT(g;) < LT(LM(q)g, + LM(q,)g,)
= LT(auS(g,,4,))
< LT(ug!)LT(g;).

From this and the definition of the ¢!, we conclude that
. . . . '
(in IT(g,)LT(g;) < min IT(¢;)LT(g;),

which finishes the proof for k = 2. Now let k£ > 2, and assume w.l.o.g. that
for j = 1,2,
-LT(QJ')LT(QJ') = 11<T,1i<r}n LT(q;)LT(g;)-

Then we write

f = ZQ;Q;
i=1
I’C(‘hgl) (LC(‘I191) ) “
= GG~ 7Aooyt s L g0+ ) g
e LC(%%) w LC(%Q?) 2 ;



We may now apply the induction hypothesis to the first two summands and
also to the remaining 7 — 1. Recombining, we obtain the desired result. O

Next, we show that the property of a finite subset of K[[X,,..., X, ]! to
be closed under s-series is locally stable in AO(T).

Lemma 4.3 Let < be an admissible term order, S = {g,,...,9,.} o finite
subset of K[[X,,...,X,]] which is closed under s-series w.r.t. <. Then
there exists a neighbourhood U of < in AO(T) such that S is closed under
s-series w.r.t. every <'e U.

Proof Let {f,,..., f.} be the set of all s-series of pairs of elements of S, qf
(1 <i<m,1<j<k)such that 107, q‘fg; is a standard representation of
f;interms of S w.rt. <forl <j < k. By 2.1, we can find a neighbourhood
U of < in AO(T) such that LT_.(f;} = LT (f;), LT (q) = LT (g), and
LT (g;) = LT (g;) forall <'€¢ U, 1 < j < k,and 1 < i< m. It is obvious
that U has the desired property. O

We are now in a position to prove the main theorem of this section.

Proof of theorem 4.1 The direction from left to right follows immediately
from condition (iii) of the Hironaka theorem as stated in the introduction
and the definition of s-series. Now assume that S = {g,,...,0,,} is closed
under s-series. We denote by I(S) the ideal generated by S.

Case 1: < has order type w. We verify condition (iii) of the Hironaka
theorem with I = I{§). Assume for a contradiction that f € I(S) does not
have a standard representation in terms of § w.r.t. <. Since there are only
finitely many terms below LT(f), we can find ¢,,...,q,, € K[[X,,..., X, ]]
such that f = Y. ¢,0;, and

. _ : 1
in LT(g;)LT(g;) = max{ i LT(¢)IT(g,) |

Qoo € KXy, X)) F =) digs )
fex]

By 4.2, there exist ¢f,...q/, € K[[X,,...,X,]] such that f = 57 ¢’¢g; and

min LT(q;)LT(g;) < min LT(q/)IT(g;),

I<i<m

a contradiction.



Case 2: < has order type greater than w. Here, we verify condition
(ii) of the Hironaka theorem with 7 = I(S). By 2.1 and 4.3, we can find
a neighbourhood U of < in AO(T) such that for all <'e¢ U, LT, .{g,) =
LT (g;) (1 <i<m)and S is closed under s-series w.r.t. <'. By 3.2, we
can find <’eé U such that <’ is of order type w. Then S is a standard basis
of I{S) w.r.t. <’ by the choice of U and case 1 above. Hence condition (ii)
of the Hironaka theorem is satisfied w.r.t. <'. Since LT(g,),...,LT(g,,)
are the same w.r.f. <’ and <, this condition remains valid w.r.t. <. O

5. Remarks on computability The main thrust of Buchberger’s critical
pair criterion for ideal bases in polynomial rings is that it provides the
correctness of an algorithm which computes a Groebner basis from any
given basis of an ideal. Power series being infinitary objects by nature,
things cannot be as smooth in power series rings. The following propositon
provides us with an abstract procedure to produce a standard basis from a
given basis. We will use proposition 2.1 of [2], which states the following:
given an admissible term order < and f,¢,...,9,, € K[[X,,..., X,]], there
exist r,¢y,...,q, € K{[[X,,...,X,]] such that

(i) f=23 g9+,
(if) ZT(g;){t for allt € T(r) and 1 <1 < m, and

n

(iti) LT(f) < LT{q;)LT(g,) for 1 < i < m.

Let us call such an r a standard remainder (w.r.t. <) of f mod {g,,...,9,,}
(The characteristic property that distinguishes a standard basis from an
arbitrary basis is thus not the existence of the Hironaka remainder », but its
uniqueness.) The standard remainder is produced by successive elimination
of unwanted terms similar to reduction of polynomials. This reduction
process, however, has ” ) many” steps, where A is the order type of <.

Proposition 5.1 Let < be an admissible term order. Assume that an ideal
machine were given which could store power series and calculate o stan-
dard remainder w.r.t. < of any power series modulo any finite subset S of
K([X,...,X,]]. Then there would be an algorithm that compuies a stan-
dard basis of any ideal of K[[X,,...,X,]] from any given finite basis.



Proof Let I be an ideal of K[[X|,...,X,]], B a finite basis of I. We con-
struct an ascending sequence {B, },.n of finite subsets of K[[X,,...,X,]]
as follows. Set B, = B. Now assnme that B, have been defined for ¢ < n.
For each pair (f,g) of elements of B, let 7(f,g) be a standard remainder
of the s-series S(f,¢) mod B,,. If all »(f, g) are zero, weset B,,, = B,. If
not, let » be any one of the non-zero r(f,g) (e.g. the first one encountered
in the "computation” on our ideal machine), and set B,,, = B, U {r}. We
claim that the sequence {B,,}, cn is eventually constant: if not, then there
would have to be a sequence {r,},cx such that foralln € N, », € B, ,\ B,
and LT(f){LT(r,} for all f € B, which is impossible by Dixon’s lemma.
Let ng € N such that B, = B, for all n > ny, and set S = B, . (Le. we
let our "algorithm”™ terminate when B,,, = B;.) Then S is closed under
s-series by one of the properties of the standard remainder, and it is clear
that all B, generate the same ideal. O

Two observations are in order. Firstly, if we only wish to decide whether
or not a given basis is a standard basis, rather than compute one, then by
4.1 1t suffices to be able to decide wether or not any given power series has
a standard representation in terms of some finite subset of K{[X,,..., X, ]].
Secondly, the above proposition of course provides an existence proof of
standard bases. But this not really relevant: once the equivalence of condi-
tions (i)-(ili) of the Hironaka theorem has been established, Dixon’s lemma
together with condition (i) of the Hironaka theorem provides an existence
proof that is almost trivial.

Now as far as realization of the above Yalgorithin” is concerned, it is of
course obvious that any actual computation with power series has to work
with truncations, i.e. approximations up to a certain degree or weighted
degree. Now if the admissible term order in question has order type w,
then it is fedious but rather straightforward to turn the above proposition
into an actual algorithm that computes truncated standard bases. This,
however, has already been achieved directly in [6]. In the general case,
e.g. when < is the lexicographical term order, the problem is that at any
stage of the computation, it is necessary to know what the actual lowest
term is of the new element that is being added to the given basis. But
this cannot be inferred from any given truncation: lowest terms can have
arbitrarily and unpredictably high degrees. It is not clear how an ideal
basis could naturally be given by some sort of oracle that would provide
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this kind of information. In [2], we show how at least we can compute
the Hironaka remainder w.r.t. the lexicographical order modulo a principal
ideal. Then the assumption that I is principal eliminates the necessity to
compute a standard basis. Another promising approach is presented in [1]:
here, the computations are performed in the ring of those power series that
are algebraic over the polynomial ring.
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