A NETWORK IMPLEMENTATION
OF BUCHBERGER ALGORITHM

GIUSEPPE ATTARDI — CARLO TRAVERSO

Dipartimento di Informatica — Dipartimento di Matematica
Universita di Pisa

INTRODUCTION

We report on a parallel implementation of the Buchberger algorithm on a network
of workstations. The algorithm differs from other existing parallel implementations
i two important respects: the algorithm will very rarely have idle processors; and
the running of the algorithm is strictly sequential.

This last assertion may seem crazy for a parallel algorithm, but is very important
for the Buchberger algorithm: it is widely known that the success of a computation
with Buchberger algorithm strictly depends on a rigid application of correct strate-
gies, and even an occasional deviation from the strategy may lead to a dramatic
coefficient or combinatorial growth. Strictly adhering to a strategy seems not to
allow parallelization; this antinomy is solved through a “process manager”, that
subdivides the whole algorithm in many simple tasks, and has the responsability of
“pasting” the different parallel processes in a sequential algorithm, even discarding
some results that appear useless because they do not comply with the strategy.

This is possible only since the experimentations on the “simplification strategy”
(see below) seem to give support to the “older first, never delete” strategy. There are
theoretical motivations that support this strategy (these motivations were suggested
by D. Lazard), but up to now they are conjectural. The same strategy was chosen
in many other implementations, since it is the straightforward one.

The implementation was made on a network of workstations connected in ETH-
ERNET. We think that this is a good choice, even if this choice forces to duplicate
a large amount of information on many workstations. This architecture is very
frequent in many research centers, hence our implementation can be easily applied.
Shared memory processors might be better, (Cfr. [Vi]) but they pose different
problems, and are less frequently available.

The implementation is based on AKCL, extended with network primitives from
DELPHI Common-LISP, [AD}. One processor has to manage the communications
with the other processors, hence many input-output channels. The other processors
communicate only with this one, and they check the input stream periodically, to
determine whether the manager has instructions for them.

Research with the contribution of “Ministero dell’Universith ¢ della Ricerca Scientifica ¢ Tec-
uologica” and Consiglio Nazionale delle Ricerche 30/1/1991, 1177,

Typeset by Aa85-TEX

2 GIUSEPPE ATTTARDIL - CARLO TRAVERSO

The implementation derives from AIPI the system for experimenting the Buch-
berger algorithm developped in Pisa, and will be in a near future integrated in i,

([TD], [ADT]).

A SKETCH OF BUCHBERGER ALGORITHM

We give a short description of (our interpretation of) Buchberger algorithm, just
to fix notations. Refer to any of the standard introductions {e. g. By, [PP], [Ro])
for a more complete description.

Let & be a fledd, and assune that we have a term-ordering in & polynomial ring
EIX) = kley,.. . 2p); & term in & [X] is a product of indeterminates, a monomial
a procduct of a constant € & and a term. The leading term Li(f), the leading
monomial Lm(f) and the leading coefficient Le(f) of a polynomial f are defined in
rapport with the term-ordering. Given two polynomials f, g, we define Sp(f, ¢} =
(Le(g)/ aed(LH(£), L(g))f — (Le(F)] ged(LA), LH(g))g.

Assume that we have a finitely generased ideal (fi,..., fm) = I C k[X] =
Elz1, ... 2], and that we want to compute a Grébner basis of 1.

This is done in two phases:

a} incrementally add elements to B = {fi,..., fm} {obtaining a redundant
Grobner basis)

b) discard recundant elements and interreduce B, obtaining the {uniquely
determined) reduced Grobner hasis of 1.

The first phase 1s the main part of the algorithm, and consists of an initialization
phase and of a main loop. The main loop is governed by a set of eritical pairs, i. e.
a set of pairs of elements of B, called the pair queue, and the loop ends when this
queue is empty. The leading term of a pair is the least common multiple of the
leading terms of their elements, and is often used in the algorithm, so in practice
it is pre-computed and stored with the pair.

Each iteration of the loop sclects one pair (f, f;), computes its S-polynomial
Sp(fi, f;) = [, shoplifies it {this is another loop, that will be discussed in a following
paragraph), then, if f has been reduced to a polynomial f different from 0, add f
to G, adjust the pailr queue (in this phase some pairs are deleted, and some pairs
involving the new element f are added). This ends the main loop. When the queue
18 empty, B 1s a redundant Grobner basis.

The final reduction consists in sorting B with increasing leading term, discarding
the elements whose leading term is multiple of some other one, then simplifying each
element using only the preceding ones.

The inner loop (the simplification loop) has two phases: the Li-reduction and
the total reduction {the second phase is optional, but experimentally convenient).
Both consist in rewriting one monomial of the polynomial f with an element f; of
the basis in the following way: if f = ar + p and f; = wm + p;, with @, a; € k
constants, 7 and 7; terms such that 7 1s the leading term of f; and mju = 7, then we
replace f with «;p —app;. The terin 7 usually is the highest rewritable term, hence
as long as the leading term of f is rewritable, onc has to rewrite it, {this is the
Li-reduction), and in the second phase the leading term of f remains unchanged.
However any other rewriting schemne can be applied: the algorithm remains correct,
but in general more rewritings ave necessary to obtain a non-rewritable polynomial.

A NETWORK IMPLEMENTATION OF BUCHBERGER ALGORITIHM 3

When a monomial can be rewritten, it may be possible to rewrite 1t in different
ways {i. e. with different f;); several strategies have been tested, but experimentally
the best strategy seews to be the frivial one: pick the first one, 1. e. add new elements
to the end of the basis, and when looking for possible simplifications scan the basis
from the first element ou. The experiments confirn: that this strategy leads to lower
coefficient growtl, and there arve hints that one can prove connections between this
strategy and algorithis based on linear algebra with controllable complexity.

At the end of the simplification loop, if f is not zero, three actions are performed:

a) fisappended to the basis (optionally after making it monic — or primitive,
if & 1s a quotiens field of a factorial ring 4 and we want to use A-arithmetic)

b) a pair (fi, f;) 18 deleted from the queue if the leading terms of (f;, f) and
of (f;, f) both strictly divide the leading term of (f;, f;)

¢) consider the set S of all pairs of elements (fi, f); discard from S all elements
{fi, f) such that the leading terms of f; and of f are coprime, as well as
every other pair having leading term equal or multiple to the leading term
of {fi,).

d) sort S in a convenient order (selection strategy), and discard every pair
whose leading term is equal or multiple of a preceding leading term

e} merge S with the pair queue, using again the selection strategy.

The same actions are performed to intialize the procedure, taking f from the
mitial basis. Optionally, in this phase, before taking an element, one can simplhfy
1t using the preceding elements.

Remark that to perform the points b} to e) above, one only has to know the
leading term of f, hence (already considering parallelization) one can adjust the
pair queue as soon as the Li-reduction of f is completed, without waiting for the
total reduction to he completed.

There are two points in which there is a big freedom in the Buchberger algorithm:
the selection strategy and the simplification strategy (the choice of a simplification
between the different simplifications possible for a single monomial}. We assume
that both strategies are orderings, meaning that the relative order of two pairs (or
simplifiers} does not depend from the others, hence the changes ave always additions
or deletions.

It 15 a common experience that a correct choice of the strategies is critical for the
complexity of the algovithm. A wrong choice, maybe a single seemingly harmless
modification, may lead to incredible growth of the coefficients and of the number
of pairs to process.

A “wrong” parallelization is the following: give to different processors different
pairs, and add to the basis new elements as soon as they appear as a result of one
of the processors. On the other side, if a processor has to wait for the previous
pairs to be completed, it may happen that a lot of time is lost: the computing time
of different pairs is uneven. Apparently, up to now all parallelizations have been of
these kinds: our remark might explain some problems of other implementations.

Our parallel algorithm tries to avoid both difficulties; the strategy is stricty
followed, and a processor is rarely idle: if a processor is waiting, he can ask for
more work to dao.

4 GIUSEPPE ATTARDI - CARLO TRAVERSO

PARALLELIZING THE QUTER LOOP

We describe a parallelized Buchberger algorithm, with n + 1 processors. One of
the processors (the process maenager} performs a special task and the other proces-
sors (the pair reducers) all pexform the same tasks.

We completely deseribe an algorithin that computes a redundant, non reduced
Grobner basis. At the end we give a short description of a parallel implementation
of the final total reduction.

The communications (input and output) are always from one processor to the
central manager. Every processor {excluding the pair manager, that has only the
leading terms) has a complete copy of the current basis. (This can be seen as a
useless duplication of information. However, the experience with other implemen-
tations shows that the information contained in the hasis is small with respect to
the total amount of the computation. A sequential computation may take several
Lours, and the final output, including the formatting of the redundant basis, only
a couple of minutes,)

The pair reducers. We describe the state of one of the pair reducers in the course
of the algorithin, and the actions to perform.

Every pair reducer hias a copy of the current basis, a working list of critical pairs
{sorted with respect to the selection strategy), each with a partial simplification of
the corresponding Sp, a Hag (stating if the processor is the first that has to answer),
and a current pair being reduced, an input channe! and an output channel.

a) If the flag is TRUE, then the current pair is to the first pair in the list; in
this case, the processor does not need to check the input channel, and proceeds
to perform the simplification of the first pair. As soon as the Lt-simplification is
completed, the processor sends the Lt $o the output channel, and proceeds with the
rest of the reduction: as soon as the reduction is completed, it sends the reduced
polynomial to the output channel, resets the flag to FALSE, adds the polynomial
to the basis, deletes the fivst pair (the one that has been completed), selects the
first pair as current.

b) If the flag is FALSE. one Las to check the input channel; one can receive four
types of messages:

bl) a new element of the basis: this is added to the basis, the first element of

the working list becomes current.

b2} a message to reset the flag: this is set to TRUE, the first element of the

working list becomes current.

b3) a new pair to process: it is inserted in the working list {in the correct

selection strategy order) and, [if the new pair precedes the current one in
this ordering]. the new pair becomes current.

b4} an mterrupt message, stating that one of the pairs is useless: such pair is

deleted, and if it was the current one, the next pair becomes current.

¢} If the flag is FALSE and the input channel is empty, then try to perform one
Lt-reduction! to the polynomial corresponding to the current pair. If no reduction

PThis point has a vaviant, consisting in trying here to perform a reduction whatsoever: an
Lit-reduction if possible, otherwise a reduction of the largesi possible monomial. This point will
be discussed later.

[

A NETWORK IMPLEMENTATION OF BUCHBERGER ALGORITHM

can be performed, then the vext pair becomes current: if no next pair exists,
send a message to the output channel, and wait until a message arrives in the mput
channel. If the polynomial reduces to 0, then send a message to the output channel,
delete the pair, and move on to the next pair (as above, send a message if the next
pair does not exist}.

The process manager. Its tasks consist in keeping the queue of pairs, distribut-
ing the tasks to the pair reducers, and dispatching messages. The process manager
maintains the pair queune, which consists of elements which are records of four fields:
(1,7, 7ij, @), where ¢, j are the indices of the elements of the pair, 7;; is the least
comimon multiple of the leading termns of f; and f; (this is often used to sort the
elements of the quene) and & is either NIL or the address of the processor to which
the pair 1s carrently assigned for simplification.

The process manager 1s usually idle, walting for messages from the pair reducers.

a) If a pair reducer asks for morve pairs to simplify, it is sent the first unassigned
pair. if one available exists: otherwise, the manager records the processor as idle.

b) If a pair reducer has reduced a pair to zero, delete the pair from the queue.
If this was the first element of the queue, perform d) below,

¢) If a pair reducer sends a new addition to the basis, then send the new element
to all other pair reducers, erase the first element of the queue (this first element
was necessarily the one that has generated the new element: the other pairs are
not authorized to add an element to the basis), Then perform d).

d} Take the first element out of the queue, and if it is assigned to a processor,
send to this processor a request to set the flag to TRUE. Otherwise, if nobody is
reducing the first pair (this may happen, if all the processors are busy reducing
other pairs given to them before the appearance of the pair that is first in queue)
wait until a processor asks for a new pair: this will eventually happen.

e) if a pair reducer sends back the leading term of the forthcoming addition to
the basis, then a series of actions has to be taken:

¢l} check all existing elements of the queue, erase those that have become useless
{sending an interrupt to all pair reducers that are currently reducing them)

e2) prepare all new pairs that have to be added to the queue, sorted in the right
strategy order

ed) merge the new pairs in the existing pair queue.

Remark that point €2} wight be long to perform, and may be given to another
processor, maybe an idle pair reducer: such processor already has almost all the
information needed. (In our first implementation this was not done, and the process
manager does not listen to other messages until point) is complete.) However,
from owr experience with the sequential version, the time spent in adjusting the
pair queue is a small fraction of the total computing time in all the complicated
examples, with the relevant exception of ideals generated by binomials, where the
time spent 1n adjusting the quene may exceed one half of the total execution time.
In these ideals owr parallel implementation i1s not supposed to work reasonably;
anyway, for these ideals, that are important in finding positive integer solutions
to Linear systems (see [O], [Pl [C]) special implementations using shared memory
processors or vectorial processors are being planned.

Dwring the execution of 2} other processors may ask for more pairs: one can

6 GIUSEPPLE ATTARDI ~ CARLO TRAVERSO

give them elements from the old queue, It is improbable (at least for sufficiently
complex examples) that the pair reducer that has given the leading term of the
future addition to the basis will be ready to send the new element before the
completion of the whole of ¢), so we do not consider this eventuality (if it happens,
somebody will wait}.

HEURISTIC CONSIDERATIONS

[n this section we explain the experimental findings that make plausible that
this form of the Buchberger algorithm works fine. These findings come from ex-
perimentation with the sequential Buchberger algorithm implemented in the AIPT
program ([TD]).

The problems with any parallel implementation are: transmission overhead, use-
less duplication of computing, and idle processors, either for bad synchronization
or for bottlenecks.

Transmissions. The basis has to be transmitted in full to every processor. One
form of basis transmission occurs in AIPE the output. At the end of the pair
recduction, the redundant basis computed is formatted and printed. This may take
a couple of minutes for a basis that was computed in a couple of hours. Moreover,
the formatting for the screen in AIP] is complicated: a polynomial is transformed in
a man-reacdable string, then the string is divided in pieces that, if possible, do not
exceed the screen width. then the string pieces are output to the sereen, that still
has to manage scrolling. Communications of machine-readable polynomials are of
course more rapid.

Moreover, inn AIPT it is possible to store the current basis on disk, and every
polynomial needed has to be re-read every time (with random disk access) and
re-parsed, Even with this extreme communication problem the overhead seldom
exceeds 20%, and can be often be compensated by reduced garbage collection.

Useless computations. When adding a polynomial, one can delete pairs from
the queve. Experimentally, this does not happen often, and the pairs deleted are
often not the first in queue. Hence useless computations should not be frequent.

Idle processors. This may happen for two reasons: either the central manager is
busy: usually, to add one clement to the basis, or no pairs are available.

In AIPT one has the possibility to compute separately the reduction time and
the pair managing time. There is a big difference between ideals generated by
binomials (difference of monic monomials) and other ideals: for the first type the
pair managing time often exceeds one half of the total computing time, for the others
usually the pair managing thme is no more than 2% of the total computing time.
Hence binomial ideals are unsuited for our implementation. In a section at the end
we discuss shortly other ideas for these ideals. For the other polynomials, waiting
for the centralmanager to complete the quene managing is usually no problem unless
the number of processors s very high, and in this case one can easily divide the
task of the central manager in two different processes, the queue adjusting and the
task distribution, in such a way that this prohlem too can be solved.

Experimentally, for the long-running computations (and we are interested to
them), the quenc has more often hnndreds of elements than scores, and the queue

A NETWORK TMPLEMENTATION OF BUCHBERGER ALGORITHM 7

15 almost empty only sometimes in the very first and very last phase. Hence, the
lack of work to do is wsnally no problem. There is anyway a possible bottleneck.

An intrinsic limit of the main variant. The possibility of parallelization of
the algorithm proposed has an intrinsic Lmitation, due to the fact that at most
one pair reducer is performing non-lt reductions at the same time. In most of the
examples computed the non-lt reduction phase accounts for about one tenth of the
whole algorithm. hence one can expect from the parallel algorithm a maximum
speed-up of a factor 10, independently of the number of processors. This will result
m some cases 1n having all pairs distributed to the reducers, with their Li-reduction
completed with the current hasis, waiting for the first total reduction to be complete

The variant suggested in the footnote above does not have this limitation, but
has a drawback: the fragments of the algorithm performed by the pair simplifiers
no lenger coincide with the corvesponding fragments of the sequential algorithim.
We try to explain why the difference in the variant is small, and only amounts in
duplicating some shmplifications.

The simplification procedure steps consist in rewriting a monomial with a poly-
nomial whose leading term is smaller than the monomial. The choice of the simpli-
fication strategy “older first, never delete” that we use makes sure that the same
monocniial at different points of the algorithm is always rewritten with the same
pol¥nomial.

Assumne that we arc in the sequential algorithm, and that at some moment we
forget once the existence of the last simplifier; then instead of the Li-reduction with
the last simplifier, we cannot perform another Lt-reduction (otherwise the choice
of the Li-reduction would have been this last one), and we perform the rewriting
of {say) the second monomial.

It may happen that the Li-reduction would have erased or modified this same
monomial. so the same Li-reduction performed later re-introduces the same mono-
mial, with another coefficient; hence the nner reduction performed is a waste of
time: we have to perform again the same rewriting with another coefficient. These
considerations may be generalized, and we see that at the end the result of the
simplification 1s always the same, but the work is larger.

One can also remark that the phenomenon described above is only possible if
either the forgot polynomial is not totally reduced, or the L# of the polynomial is
a proper maltiple of the Lt of the reducer; the first possibility never happens, and
the second one is experimentally not frequent, hence the variant might be a very
good idea. To settle the issue one has however to experiment largely with many
processors, and this will take time (and money) to be done.

We did not worry to compute statistics for the assertions in this section: they
arve just feclings justified by the practice. It is planned to compute statistics for
transmission time. 1dle time and useless computation time for the parallel algorithm.

EXPERIMENTAL RESULTS

A first experimental implementation was made and tested, using AKCL (Austin-
Kyoto Common LISP) modified incorporating some features of DELPHI COMMON-
LISP on the workstations of the Department of Mathematics (we thank the col-

3 GIUSEPPE ATTARDE - CARLO TRAVERSO

legues of the Department that had to stand our pair reducers creeping in at incon-
venient times).

We have tested the first implementation on a network with 7 workstations (3
SUN SPARC-1. 8. 8 and 16 MB; 1 SUN 3-60, 16MB; 3 IBM PC-RT, 16MB). The
configuration is sufficiently heterogencous to be significant, but also to make it
difficult to give a correct interpretation of the timings: we give them in raw form.

The examples tested are the same alveady considered in [TD] or [GT], with the
same name (excepted the examples due to Bjerk, wrongly credited to Arnborg).
The term-ordering is the deree-reverse lexicographic.

We summarize the results i the following table, that gives the execution times
m seconds for the computation of each example sequentially on the diffenent type
of workstallons. In average (harmonic mean on the 7 execution times), and in
parallel on 2 (one manager and one reducer, both SPARC-13, 3 (SPARC-1) and 7
workstations. It was impossible to performn the experiments in ideal conditions (no
other processes active on the workstations), so the results are not really significant,
but anyway they are encowraging.

We did not arrive to finish our tests in time, also due to system maintenance on
some of the machines al the losi moment. The teble, or an equivelent one, will be
filled . nest week-end. Up fo now, the algorithm has run on wp to { workstation,
bul with greot wncveness of timmings, also duce to the varying load. We hope to be
MOTE CONTNCING SOOTL.

SPARCT SUN-3|PC-REPJAverage 2 3 7
Natsiead | 137151 25773 16753
vatsurad | 2055"0 713" 1'57"
Biorks 15743) 103" 20"
13jorkG
Cohn 2 4'55"|2122"
Cohn 3
Valla
Butcher 42731 3'03" 59" 25"

We are planning further experiments with more workstations, including exper-
unents with workstations in different locations connected in INTERNET. These
experiments, as well as more details on the mmplanentation, will be reported in

(ADTY

[MPROVEMENTS AND REVISIONS

We list in this section some possible improvements and revisions of the algorithm.

It may happen that at some stage one of the processors begins many computa-
tions, and this may cause a hottleneck at a later stage. One obvious possibility is
to determine a maxinnun number of palrs to give to a single processor (this may
be dynamically adjusted. looking at the length of the queue). A danger is to be
stuck when every processor has many pairs, and none has the first in queue; this
may happen. but is casy to avoid.

A NETWORIK IMPLEMENTATION OF BUCHBERGER ALGORITHM t

Another possibility 1s to give to every processor a minimum number of pair to
process: this in order to minimize the time in which a processor is idle (between
the IDLE message and the receiving of another pair). Also, if a pair exists that
precedes the first pair given to a pair reducer, send this pair, to do first the work
with higher priovity.

A considerable inprovement can be the possibility to reclaim from one processor
a partly done computation; this inay be useful if one processor is idle, and another
has a long list to complete, or even if one processor appears to slow down the
others. This can very well happen in a situation of this type: we are using a large
set of workstations for which this task is a task to be performed in spare time (for
example, in UNIX witl a high “nice” setting). If at some moment the workstation
15 used for anothier thne-consuming job, we want to stop using it, but we want to
use the work done up to that moment.

All these mmprovements require that the central manager controls the algorithm
1 a more cloever way: they risk that the central manager becomes the bottleneck.

Another modification might be the following: a pair reducer does not have au-
tomatically the full hasis, hut only the leading terms; as soon as an element of the
basis is needed for a simplification, the element is asked to the process manager,
and stored. Less used elements might be discarded, if the space becomes tight.

This does not seem to he a true improvement, since usually almost any new
pair will need almost every clement to be simplified. Moreover, the communication
problem: inereases. This conld however be an useful idea for paraliel computers
with a large shared memory and a small cache memory for every processor.

Binomial ideals.

As remarked above, binomial ideals, 1. e. ideals generated by term differences
have special properties. In particudar, every polynomial appearing in the Buch-
berger algorithm is difference of terms. This allows to use special data structures:
for example. we may represent polynomials as pairs of vectors, instead of lists of
pairs {vector. cocflicient}, that is the usual representation for polynomials in Grob-
ner basis computations. The fact that polynomials use a fixed amount of memory
malkes it easy to use shared memory processors (the space reserved for the reduction
of a single polynomial is fixed and small). There is no risk of growth for coefficients
or for the length of polynomials, so even the strategies have to be reconsidered.
Operations on polynomials ave easily vectorized: the key operations are term prod-
uct, divisibility test. quotiont, term-ordering comparison, and they correspond to
simple vector operations.

The reduced need of garbage collections, and the fact that no long integers are
needed (unless exponents grow too much; this too can happen!) show that LISP is
mayhe not necessary any more: C and FORTRAN might be considered instead.

Using the special properties of binomial ideals should improve considerably the
performance of the algorithim: one mnight expect that in that case most of the time
would be spent in the pair quene management, hence different parallelizing ideas
should be found. Moreover, vectorial operations could be used in this management,
and vectorization seems to he casier and more useful than parallelization.

A preliminary analvsis of a vectorial implementation of Buchberger algorithm
for binomial ideals Las been made, and a preliminary implementation might follow

10 GIUSEPPLE ATTARDD - CARLO TRAVERSO

in a short time: the relevance of the problems that can be solved with Grébner
basis computation of binomial ideals {(e. g. diophantine equations and integer pro-
gramming, [[o], {Col). makes this issue very interesting for applications.

REFERENCES

[AD] Attardi, G, Diomedi, S0 Multithread Common Lisp, BESPRUT MADS TR87/1, DELPHI,
1985,

FADT] Altardi, G., Douati. L., Traverso, C., AIPT User Manual and fplementation Report, (in
preparation), Dip. Mat. Pisa. Availalle by anonymous FTP on gauss.dm.unipi.it.

[BI] Buchberger. B., An Algorithin for Fuding @ Basts for the Residue Class Ring of @ Zero-Dimen-
stenal Polynomial [deal Acquationes Mathematicae 4 (1970}, 374-383, (Ph.D. Thesis, Math.
Inst. Univ. [nnshruck. 19657

[B2] Buchberger, B.. Grobuer bases: an algorithinic methed in polynomial ideal theory, Recent
trends i maltidhimensional systems theory, No K. Bose, ed., D. Reidel Publ. Comp., 1985,
P 184-232.

[B3] Buchberger, B.. The parallelization of Critical pair completion procedures on the L-machine,
Proc. of the Japanese Syinposiun on Tunctional programming, 1987, pp. 54-61.

[Co} Conti, P.. Basi di Grébner o sistems fineart diofanted, (preprint), 1990.

(PP} Paner, I, Pleifhofer. M., The theory of Grobner boses, L'Enscignement Math. 34 (1988),
215--232.

[(Po] Potticr, L., Minimal solulions of lincar diophanline systems : bounds and algorithms, 1990
(sulnnitied],

[Ro] Robbiano. L., Grébner hoses: o foundalion for commutative algebra, Computer and Mathe-
matics, Springer Verlag, 1989,

[Se] Senechaud, ., haplenentalion of a parallel algorithm 1o compute ¢« Grébner basis on boolean
polynomials, Compuler Algebra and parallelism, Academic Press, 1989, pp. 159-166.

[TD] Traverso. ., Donali, L., Ixperimenting the Grébner basis algorithm with the AIPT system,
ISSAC 89, AL C ML 1980,

(Vi) Vidal, J. P, The compulation of Grébner bases on a shared memory mulliprocessar, Design
and implementation of symbelic computation systems, Lecture Notes in Computer Science
429 | Springer Verlag, Berlin: Heidetherg-New Yorlk, 1990, pp. 81-90.

GIUSEPPE ATTARDI
DIPARTIMENTO DI INFOUMATICA
Conrso ['rania
[-5G7100 PisA

L-madl atlardi€dipisa.diunipiit

CanrLo TRAVERSO
IVIPARTIMENTO I MATEMATICA
Via L Buonanrpor 2
I-56100 PISA

Ianard: raverso®dmounipi.i

