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Abstract

In this paper we show that it is possible to construct a Koszul-type complex for
maps given by pairwise commuting matrices of polynomials. This result has applica-
tions to surjectivity theorems for constant coefficients differential operators of finite
and infinite order.

1 Introduction

Let us consider a system of linear, constant coefficients partial differential equations of the
form

(p1(D),...,pr(D))f = P(D)f =0

where p1,...,p, are polynomials in R = Clz1,...,2,], D = (-i0/0z1,...,—10/0z,) and
f:U C R — R is an infinitely differentiable function. It is well known that some
important information on the system is contained in the polynomial matrix P; whose
rows generate the first syzygies of the r — vector P = [p1,...,p;]. When the sequence of
polynomials pq,...,p, is regular (see [18]), the matrix P; can be constructed in a simple
way because its rows consist of all the vectors of the type

0,..., — p;,0,...,0, p;,...,0]
—— ~~
1 — place 7 — place

One can repeat this procedure to find the syzygies of P;, and so on, until one obtains the so
called Koszul complex that is nothing but the minimal free resolution ([18]) of the module
M = R/I, where I is the ideal generated by pi,...,p,. When considering more general



systems, in which the unknown function f is a vector and the matrix P(D) of differential
operators acting on it is an r; X 79 matrix (in the scalar case 1 = 1), the situation becomes
more complicated and the matrix of the first syzygies cannot be easily computed. The
theory of Gréobner bases offers some algorithms that can be useful to compute the first
syzygy module, but the complexity of the problem is doubly exponential in the number of
variables as shown in the paper [6]. Moreover, the procedure of computing syzygies with
Grobner bases does not take into account the structure of the matrix P: even though in
some cases P can be seen as a block matrix, in which every block represents an operator
(see e.g. the case of the Cauchy—Fueter system [1], [5], [3] and the case of the Dirac system
[21]) a priori the matrix of the first syzygies is not necessarily written in terms of those
blocks; this is dramatically demonstrated in [5] for the case of the Cauchy-Fueter system.
On the other hand, given a matrix

Py (D)

Pr(D)

where each P;(D) is a n X n matrix, it might be interesting to understand under which
conditions it is possible to build a Koszul complex starting from the matrices P;. Obvi-
ously, it is not always possible to construct such a complex mainly because of the non
commutativity of the ring of matrices and one may wonder what are the conditions under
which the procedure can be applied. There are several questions that can be answered if

one can solve the problem of finding the syzygies of the operator P(D), and ee devote the
rest of this introduction to a quick discussion of a few applications.

Suppose we consider the system
P(D)f =g

where we want f and g to be in some space
Q ={f:R* — R™ | f differentiable, P,(D)f = 0},

for some P(D). We ask when the operator P;(D) : Q — Q is surjective. The equation
above can be rewritten as the system for C*® functions

{ P(D)f=yg
Py(D)f =0

and the surjectivity of P;(D) is equivalent to the request that the only compatibility
condition on the datum g is P»(D)g = 0. This is not true in general. When Q is the space
of holomorphic functions, i.e., P»(D) is given by n Cauchy-Riemann operators and

Q={f:C" —C|8f)0z =...=0f |0z, =0},

the surjectivity of an arbitrary differential equation is a consequence of the Lindel6f the-
orem. If, on the other hand, Q is the space of regular functions of a quaternionic variable
(i.e. Po(D) is given by n Cauchy-Fueter operators and Q@ = {f : H* — H | df/0q1 =
... = 0f/0g, = 0}), then we have no immediate way to prove that any operator on Q is
surjective. The results we prove in this paper will have this fact as an immediate corollary.



More generally, given a matrix P(D) we would like to compute not only the matrix of the
first syzygies of the polynomial matrix P associated to P(D) but also the free resolution
of the module M =coker P* where P! is the transpose of P. In fact, by the Hilbert syzygy
theorem, there is a finite free resolution

Pt Pt pt
0—R*-3R*!'— .- 53R —R°—M-—0

that together with its dual
0—Ro Zygn Dy R DA pre g (1)

are key tools in the algebraic analysis of the system associated to P(D). Our results will
allow us to calculate the sequence (1) rather easily, at least in some cases. Finally one can
show that, under suitable hypoteses, if we set () = P., and we denote by £ the sheaf of
infinitely differentiable functions and by D’ the sheaf of Schwartz distributions, then for
any bounded open set K C R”

[HO(K,EP) = HY(R",R* \ K, D'?).

Our results can be used to construct such duality in many concrete cases (see [11] for a
more elaborate discussion of this aspect of the theory).

2 Commutative matrices

In this section we study a system of differential equations of the form P (D)f = --- =
Py (D) f = 0 and we seek conditions on the polynomial square matrices P ... Py such that
the compatibility conditions on the system, i.e. the first syzygies of the rows of the matrix

Py
P=|:
Py

can be easily written in terms of the matrices P; themselves. For example, given k = 2,

if the matrices P; and P> commute, we may expect that the syzygies are the rows of the
matrix [—P» Py]. This is suggested by the fact that the following matrix product is zero:

[-P, P [2] = 0.

this commutativity, however, is not enough to guarantee that [—P, P;] contains all the
syzygies we need as we can easily see for example taking P, = P5. In general, the validity
of this result depends on whether or not we have relations between rows of P; and rows
of P, or among rows of the same matrix. According to well known results in algebra, the
situation can be fully understood through suitable algebraic conditions on the matrices
involving the notion of regular sequence. In the sequel R = Mat, (R) will denote the ring
of n x n matrices with entries in the ring R; if R is an integral domain, Frac(R) will denote
its field of fractions.



Definition 2.1. Let R be a ring, and let Py,..., Py be square matrices in R. We say that
the k-uple (P1,...,Py) is a left reqular sequence if

1) P is a left regular element of R, i.e. the only B € R such that BP; =0 is B = 0;

2) P; is not a zero divisor in R/(Py,...,Pi—1)R for all i =2...k where (P1,...,Pi_1)R
is the left ideal in R generated by Pi,...,P;_1.

When k = 1 we have the square system P;(D)f = 0 and the condition that P; is a non-
zerodivisor in R is fully equivalent to the fact that we do not have nonzero sygyzies for
its rows, as stated by the following

Proposition 2.2. Let R be an integral domain. The following are equivalent facts for a
square matriz P € R.:

1) Det(P) # 0;

2) P is a left reqular element of R;

3) Syz(P) = (0) C R"™ where Syz(P) means the first module of the syzygies for the rows
of the matriz P.

Proof. 1)= 2): let B be a nonzero square matrix such that BP = (. Then, in particular,
any row of B is a solution to the linear sistem (z;...z,)P = (0...0) which has only
trivial solutions since Det(P) # 0. Hence B = 0.

2)= 3): ifz = (z1...2,) € Syz(P) is a nonzero row, than the matrix X whose n rows
are all equal to x is such that X P = 0 and that is a contradiction since P is left regular.
3)= 1): suppose Det(P) = 0. Then the linear system P = 0 has a non trivial solu-
tion (z7...z,) € Frac(R)", and multiplying this solution by the product of all nonzero
denominators of its elements, we get a non trivial syzygy (s1...sp) € R™. O

If we require the condition of regularity on the matrices of an overdetermined system, we
are able to describe the module of the first syzygies. This fully corresponds to what we
would obtain if we considered the syzygies of k polynomials g1, ..., g, forming a regular
sequence. The free resolution for the ideal I = (g1,...,g%) in this case is the Koszul
complex, and in particular the first syzygies are of the form

Syz(g1,---,9%) = ((0,...,—9;,0,...,0,g;,...,0)| i < j)

If we consider for example three commuting matrices Py, Py, P3 forming a left regular
sequence, the syzygies can be written as the rows of the following matrix:

- P 0
- 0 P
0 —-P P

The commutativity of the matrices P; implies that these are syzygies, but in general we
could expect to find more relations among their rows. The following result assures that
this is not the case.

Theorem 2.3. Let Py,..., P, € R be k > 1 square matrices such that
1) PiP; = P;P; for alli,j =1...k,
2) (P1,...,Py) is a left reqular sequence,



and let M be the R-submodule of R™ generated by the rows of Pyi,..., Py. Then the first
syzygy module Syz(M) is generated by the rows of the block matriz

By 0 ... 0 =Py PL O ... 0
B _p .

- || p_|0- 0 Piy 0 P ... 0 @
By 0..0 —-P 0 0 .. P

Proof. Let us define P to be the block matrix where we put the P;’s in a column. Then
it is easy to see that we have B - P = 0 since the P;’s commute, and that means that the
rows of the matrix B are syzygies for the rows of the matrix P, i.e. they belong to the set
of generators of M. Conversely, let us consider a nonzero row vector

T = ($11,...,$1n,...,:Ekl,...,!Ekm) S SyZ(M)

This means that the product z - P is the zero vector of R¥". We will show that z belong
to the R-module generated by the rows of B. Let us consider the matrix X € Maty, x, (R)
containing n rows, all equal to z. Obviously X - P is the zero n by n matrix. Then we can
think of X as a block matrix of k£ square matrices:

X = [X1 Xy ... Xk]
and so the product X - P = 0 means
X1P+ -+ X P = 0. (3)

We now proceed by induction on k.
Case k=2
Equation (3) for k¥ = 2 is simply X1 P; + XoP, = 0 that implies XoPy = — X1 P;, which
is possible only if the matrix X is a left multiple of P;, given the fact that (P, %) is a
regular sequence. So there exists a square matrix F' € R such that Xy = F'P; and hence
we get

0=X1Pi+FPP,=XP+ FP,P, = (X1 + FP)P, (4)

which implies, P; being a left regular element, that X; = —F P, i.e. the matrix X is of
the form 5
(X1 Xo]=F-[-P, P|]=F-B; (5)

where B is the only block in the matrix B that we have in this case. In particular (5)
says that a row of X is a combination of the rows of B~1 whose coefficients are a row of F'.
Case k>2

In this case we can rewrite equation (3) as

XpPy = —-X1P — - — X4_1Pp_1. (6)

Using the hypotesis of regularity, in particular the fact that P is regular in the quotient
R/(Py,...,Px_1)R, we know that X} has to be in the left ideal (P,..., P;_1)R:

Xy =F1Pi+---+Fp,_1P;_;. (7



Plugging this equation into (6) we have
PP+ + Fy 1Py Pp=—-X1P — - — X 1Py (8)

that can be rewritten using the commutativity of the matrices as

(FiP,+ X1)Pr+ -+ (Fg1 Py + Xg—1)Pe1 =0 9)
which means that the rows of [(F1P, + X1) ... (Fr—1Px + Xk—1)] are syzygies for
[Py ... Pg_1]. The first £ — 1 matrices of P obviously commute and are still a left regular

sequence, so we can apply the inductive hypotesis and get their syzygies as combination
of the rows of the matrix

Bé 0 ... 0 -Py P, O ... 0
B By g_|0 - 0 —Py2 0 P ... 0
= i , =
B;';_g 0 ... 0 P, 0 0 ... P
where the blocks B; have the same rows and columns of the blocks B; except for the
last n rows and the last n columns. Every matrix of the type [Y; ... Yj;_1] whose rows
are syzygies for Pp,..., P,_1 is obtained by a suitable combination of the rows of B’, in

particular there exists a set of square matrices
{Fj;eRli=1...k—-1,j=i+1...k—1}

such that we have Y7 = Z?;Ql Fj1Pj, Yy = —Fn P + Zf;; Fj5Pj ... and in general

-1 k—1
Yi=-) FuPi+ Y FyPj, l=1...k—1.
i=1

j=l+1
Hence, using the coefficients Fj P, + X; from (9) as Y;’s and defining Fy; := —F; for
I =1...k —1 such that (7) becomes Xy = —Fy1 P —--- — Fyx—_1Px_1, we have the

following equalities:

-1 k
Xi=-Y FuPi+ Y FyP;, l=1...k
i=1 j=1+1

which express the matrix X as a R-combination of elements of B, namely

By
By
[(Fo ... Fr) (F2 ... Fra) ... (Froik—2 Fre—a) (Fre—1)]
Bj—9
By 1

To conclude the proof, it suffices to note that z is a row of X and so it is itself a combination
of rows of B. O



Remark 2.4. Since the matrices P; commute, and since they are a regular sequence in R,
it is obvious (and follows from general theory) that the syzygies of the ideal generated by
Py,..., P, in R are given by the matrix B. What our result proves is the much stronger
fact that B actually gives the module of syzygies for the module generated in R™ by the
rows of Pi,..., Py.

Remark 2.5. Note that our construction works also in the case in which R is any other
commutative ring, for example the ring Expy(C") of entire functions of infraexponential
type, which is the ring of the symbols of infinite order differential operators (see [9]).

As anticipated before, we can now construct the whole free resolution for the module
M using the hypotesis of regularity.

Theorem 2.6. Let Pyi,..., P, € R be k > 1 square matrices such that
1) P,P; = P;P; for alli,j =1...k,
2) (Py,...,Py) is a left reqular sequence,
and let M be the R-submodule of R" generated by the rows of Py, ..., Py. The resolution
of M s formally constructed as the classical Koszul complex:
0 rv(6) o G5 o 5 pr6) 5 () S0
If we consider the case of just two matrices P and @, which is the situation we are

generally interested in, it is possible to rewrite conditions 1) and 2) of theorem 2.3 in an
equivalent more operational way as follows:

Proposition 2.7. Let R be an integral domain and let us denote with R = Mat,(R)
as before. Let P,QQ € R be square matrices such that PQ = QP. Then the following
conditions are equivalent:

a) P and Q form a left regular sequence in R

b) Q is invertible in Mat,,(Frac(R)) and for every A € R such that AQ™'P € R, we have
AQ7 ' eR.

Proof. The fact that @ is invertible in Mat, (Frac(R)) is equivalent to the request that
Det(Q) # 0 which is the same as @ being a regular element by Proposition 2.2. The
second part of condition b) can be written as

AQ7'P=B = AQ'=C
for matrices B,C € R and so since P and Q! clearly commute, we have that
AP =B@Q = A=CQ

i.e. the regularity of the sequence (P, Q). Conversely, if (P, Q) is left regular, it follows
that for every A such that AP = BQ@Q we have A = C'Q), and so, inverting the matrix @,
the second part of statement b) is true in Mat,, (Frac(R)). O

Remark 2.8. Note that the ring R of the entries of the matrices P and @ could be any
integral domain. If P and @), as we will consider in several examples of the next section,
are the matrices of symbols of a finite order linear differential operator, we can take R as



the ring of polynomials over C, but it is also possible to consider infinite order differential
operators, so that in this case we have holomorphic functions (in fact infraexponential
entire functions) as entries. In that case condition b) of the previous proposition 2.7
becomes

AQ~'P with infraexponential entries => AQ~'with infraexponential entries.

Remark 2.9. It is worth to mention what can be done in the non commutative situation.
What follows was developed by Kawai and Takei [13] to deal with the case of several non
commuting matrices. Let us start with two matrices @)1, Q2 and let us introduce the
commutators

Ry = [Q1,Q2], Ry =[Q1, Ro], Ry = [Q2, Ro].

It can be directly proved that the system associated to (Q1, @2, Ro, R1, R2) is equivalent
to the system associated to (Q1,@Q2). Let us introduce the notation

Lij=@Qy forj=12 Lj=Rj3 forj>2

We will say that the pair (Q1,Q2) is weakly commutative if there exist polynomials c;
such that for all 5, k

[Lj,Lk] = Z Cjk:lLl- (10)

1<I<5

This notion of weak commutativity allows to construct the complex: for example, the
first step of the resolution is a 10 x 5 matrix whose entries are matrices computed using
the relation (10). Note that this approach is extremely useful, see [13], though it does
not allow to treat systems like the Cauchy—Fueter system or the Dirac system in several
variables, in fact in those cases, the procedure does not recover not even the first syzygies

of the system. Additional ideas concerning this approach can also be found in [16] and
[17].

3 Some applications

In the case in which P; and P, satisfy the hypothesis of theorem 2.3 or the equivalent
reformulation in proposition 2.7 then one immediately has that the syzygies of [Py Py]*
are given by [—P, P;]. We have the following corollaries of theorem 2.3

Corollary 3.1. Let P;, P, be two commuting matrices forming a regular sequence in
R = Mat, (R). Then the range of the operator P(D) = [Py(D) Py(D)]* is given by

{(g1,92) € C% | Po(D)g1 = P1(D)g2}-

Corollary 3.2. Let P, P, be two commuting matrices forming a regular sequence in
R = Mat,(R). Let Q = ker(P,) and let U be an open convex (or compact convez) set;
then the operator

P(D) : QU) — Q(U)

18 surjective.



More in general:

Corollary 3.3. Let Pi,..., P, be commuting matrices forming a reqular sequence in R
and let @ = {f|Po(D)f = ... = P,(D)f = 0}. Let U be an open convez (or compact
convex) set, then the operator

P (D): QU) — Q)
18 surjective.

Remark 3.4. As we pointed out in the introduction, an immediate application of Corol-
lary 3.2 is the surjectivity of a differential operator on the space of holomorphic functions
on a convex open set. Our result shows, therefore, an independent proof of this well known
theorem.

A large class of examples to which this theory applies can be found in the quater-
nionic setting. Let us consider a pair of operators (0/0q,p(0/0q)) where 0/0q is the
Cauchy-Fueter operator while p(9/9q) is a polynomial in 9/8q with complex coefficients.
Considering their Fourier transforms we obtain the pair (7,p(q)) in the ring R = Clg, q]
forming a regular sequence since § is not a factor of p(q). We wish to give an alternative
proof of this fact using the theory we have developed. Let us consider the 4 x 4 matrices @
and P representing the Fourier transforms of the operators /9 and p(0/0q) respectively.
We have the following result:

Proposition 3.5. The pair (Q,P) form a regular sequence in the ring R = Mat,(R),
R:C[.’Eo,...,.xg].

Proof. To prove the statement we will use Proposition 2.7. First of all note that P and @
commute. Let A be a matrix such that AQ~'P € R; the elements in the matrix Q' all
have denominator equal to E?:o x? = ¢qg. The matrix P represents the polynomial p(q)
that does not contain the factor §. So the only possibility to have AQ~! P with polynomial
entries is that A represents a quaternionic expression containing the factor ¢. It follows
that AQ~! € R and this concludes the proof. O

Combining the previous discussion with Proposition 3.5, we obtain that

Corollary 3.6. For any polynomial p(q) with complez coefficients, the operator p(0/0q)
18 surjective on the space of regular functions.

Remark 3.7. Note that an analogous result can be obtained for the pair of operators
(Og, p(0z)) where 05, = > 1" €;0/0z; is the Dirac operator acting on functions f defined in
R™ with values in the Clifford algebra over the m units ey, ..., ep), and p(9;) = le\;o alalg
is a polynomial in J; with complex coefficients. Note in fact that the conjugate of the

Dirac operator is 8, = —0; and moreover 0,0, = 0,0, = Ap,.

The previous approach can be also used to treat another interesting case. Let us intro-
duce the following notations: let v = {\1,..., A} be a set of integers with Ay,..., A\, €
{1,2,3} and let n; be the number of A;’s. We will denote by o, the set of triples [n1, 12, n3]
such that n; 4+ ng + ng = m. Let us consider the pair (0/9g, F (D)) where

N

FD)=>" Y p(Day, a, €H

m=0veEom



and

1 0 o . 0 0 .
nD)=h D (amfa—m%)“'(a%‘a?ﬁm)’

1<, Am <3

where the sum is taken over the W different alignments of n; elements equal to ¢,
with 4 = 1,2,3. As above, let us denote by @, F' the matrices representing the Fourier
transform of 9/0g and F(D). We have the following result:

Proposition 3.8. The pair (F,Q) forms a regular sequence in the ring R = Mat,(R),
R = (C[.Z‘(),...,.’Eg].

Proof. The two matrices () and F commute since the two operators of which they are
the Fourier transform commute. Let A be a matrix such that AQ™'F € R; the elements
in the matrix Q~! all have denomintor equal to E?:o w? = ¢q. Note that the matrix F
represents a quaternionic polynomial F'(g) that is regular (see for example [9]) so it cannot
contain g as a (left) factor. It follows that the only possibility is that A contains g as a
factor, so that AQ~! has polynomial entries. O

We know that there is another natural class of differential operators acting on regular
functions: those are operators of the form

o &
"= amemag e "2

where I is the 4x4 identity matrix. We have the following:
Corollary 3.9. Let us consider the system
{Pf =g
Q=0

where @Q is the Cauchy-Fueter system and P is as above. Then the system has a solution
on open conver sets if and only if g is reqular.

Proof. First, we show that P, satysfy the condition b) of proposistion 2.7. Let A be a
matrix such that M = AQ~'P has polynomial entries. Note that if m;j is the entry of M
at the place ij, we have

mg; = [AQ lp Zasz tQplg Zasz tQp]] pz sz tQ

where p = p11 = - -+ = pgqa. Since p involves only x; with ¢ = 1,2, 3, it cannot have factors
in common with Det@) = (m% +2 + 22 —I—x%)?. Then, in order for m;; to be polynomial it is

necessary that ), aikDie% is a polynomial for every 4, j, and that is exactly [AQ_I]Z-]-. O

We conclude with a problem involving the eigenvalue equation for the Dirac operator,
but the same can be shown for both the Cauchy-Fueter and the Moisil-Theodorescu op-
erators. Let us denote by 7 any of these three operators. Note that 7 — A factorizes the

10



Helmholtz operators A — A2, We consider the problem: determine a function f satisfying

the system
Tf=A
{p(ﬂf =g (1D

where g is a given function in C*°, A € C is an eigenvalue, p is a polynomial with complex
coefficients and 7 denotes the conjugate of 7.

Proposition 3.10. Let U be an open convex set in R™. Then the problem (11) admits a
solution if and only if g is an eigenfunction of T related to the same eigenvalue.

Proof. Once again the proof is based on proposition 2.7. We consider the Fourier transform
of the two equations in (11) and their representative matrices Q = T — A, (I the identity
matrix) and P, which obviously commute. For any matrix A such that AQ~'P has
polynomial entries, the matrix AQ~! already has polynomial entries in fact the elements
in P cannot have any factor containing the term X. Then the syzygies of [Q, P]! are
[-P,Q] and the only compatibility condition on the datum g is Qg = 0 which implies
Tg=M\g. O

References

[1] W.W. Adams, C.A. Berenstein, P. Loustaunau, I. Sabadini,D.C. Struppa, Regular
functions of several quaternionic variables and the Cauchy—Fueter complez, J. Geom.
Anal., 9 n.1 (1999), 1-15.

[2] W.W. Adams, C.A. Berenstein, P. Loustaunau, I. Sabadini,D.C. Struppa, On com-
pact singularities for reqular functions of one quaternionic variable, Compl. Var., 31
(1996),259-270.

[3] W.W. Adams, P. Loustaunau, An Introduction to Grébner Bases, American Mathe-
matical Society Graduate Studies in Mathematics, vol. 3,1994.

[4] W.W. Adams, P. Loustaunau, Analysis of the module determining the properties of
reqular funcions of several quaternionic variables, Pacific J. 196, (2001) 1-15.

[6] W.W. Adams, P. Loustaunau, V.P. Palamodov, D.C. Struppa, Hartogs’ phenomenon
for polyregular functions and projective dimension of related modules over a polyno-
mial ring, Ann. Inst. Fourier, 47 623-640 (1997).

[6] D. Bayer, M. Stillman, On the complezity of computing syzygies, in “Computational
aspects of Commutative Algebra” edited by L.Robbiano, Academic Press (1988), 1—-
13.

[7] B. Buchberger, Introduction to Grébner Bases, Grobner bases and Applications (Linz,
1998), London Math. Soc. Lecture Note Ser. 251, Cambridge Univ. Press, 1998.

[8] D.A. Buchsbaum, A generalized Koszul complez: I, Trans. Amer. Math. Soc. 111,
(1964), 183-196.

11



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

F. Colombo, I. Sabadini, F. Sommen, D. C. Struppa, Analysis of Dirac systems and
computational algebra, Birkhauser, Progress in Mathematical Physics, 2004.

A. Damiano, Applicazioni dell’ algebra computazionale allo studio di alcuni operatori
differenziali, Tesi di Laurea, Universita di Genova, 2001.

A. Damiano, I. Sabadini, On the ezactness of some Dirac complezes, in preparation.

L. Ehrenpreis, Fourier Analysis in Several ComplezVariables, Wiley Interscience, New
York, 1970.

T. Kawai, Y. Takei, Fundamental principle and 0-zerovalue, Sukenkokyuroku RIMS,
675 (1988), 79-86 (in Japanese).

H. Komatsu, Relative cohomology of sheaves of solutions of differential equations,
Springer LNM 287 (1973), 192-261.

S. Krantz, Theory of several complex variables, Wadsworth and Brooks/ Cole Ad-
vanced Books and Software, Belmont, California, 1992.

P. Loustaunau, D.C. Struppa, Applications of Commutative and Computational Al-
gebra to Partial Differential Equations, Proceedings of Advances in Scientific Com-
plexity and Modeling, 1996, 153-157.

P. Loustaunau, D.C. Struppa, Applications of commutative and computational algebra
to partial differential equations, unpublished, 1995.

H. Matsumura et al, Commutative Ring Theory Cambridge University Press, 1989

V.P. Palamodov, Linear Differential Operators with Constant Coefficients,Springer,
Berlin 1970.

I. Sabadini, F. Sommen, D.C. Struppa, The Dirac complex on abstract vector variables:
megaforms, Exp. Math. 12, 2003, 351-364.

1. Sabadini, F. Sommen, D.C. Struppa, P. Van Lancker, Complexes of Dirac operators
in Clifford algebras, Math. Zeit. 239,(2002) no. 2, 293-320.

I. Sabadini, M. Shapiro, D.C. Struppa, Algebraic analysis of the Moisil-Theodorescu
system, Compl. Var. 40 (2000), 333-357.

D.C. Struppa,Grobner bases in partial differential equations, Grobner bases and Ap-
plications (Linz, 1998), London Math. Soc. Lecture Note Ser. 251, Cambridge Univ.
Press, (1998), 235-245.

12



