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1. The task for which elimination theory was conceived is to find the complete
solution of a system of algebraic equations:

f1(x1, . . . , xn) = 0, f2(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0. (1)

The left-hand side of these equations are any given polynomials in the
variables x1, . . . , xn with coefficients in a number field K. The task is
clearly simpler the fewer variables are present. In a single variable, we
may assume the solution is completely known. Hence, the fundamental
idea of elimination theory is to reduce the system of equations (1) step-
by-step to an equivalent system of equations in fewer variables. So first
to ”eliminate” the variable xn, say, we derive a system of equations

g1(x1, . . . , xn−1) = 0, g2(x1, . . . , xn−1) = 0, . . . , gt(x1, . . . , xn−1) = 0 (2)

from (1) which has the following properties:

(a) Every solution xi = ξi (i = 1, . . . , n) of (1) is also a solution of (2);
here the ξ values come from K or an extension of K.

(b) Every solution xi = ξi (i = 1, . . . , n−1) of (2) can be made a solution
of (1) in at least one way by determining an appropriate xn = ξn.

The most well-known method1 for deriving such a system of equations (2)
from (1) is Kronecker’s method. It is probably the most convenient and
transparent, but by no means the only one possible2, indeed this cannot
be, since by properties (a) and (b), the system (2) is far from unique. This
is clearly a deficiency in the fundamental principles to which the usual form
of elimination theory adheres, and which must be noted at some point. Of
course as long as we ask only about the solutions in general, everything is

∗Über die Eliminationstheorie, Monatshefte für Mathematik 5 (1950), 71-78. Translation
by Michael Abramson.

1See [4, p. 12] and [11, p. 1]
2Compare for example Henzel’s elimination method in [4, p. 14],
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fine, but subtle differences pertaining to the multiplicity of the solutions
are disregarded3.

2. However, the means for constructing elimination theory free from this
deficiency are provided by ideal theory. The polynomials f(x) of the
system (1) generate an ideal

A = (f1, f2, . . . , fs) (3)

in the polynomial ring K[x1, . . . , xn] whose zero manifold or ”correspond-
ing algebraic variety”4 is to be determined. We want to adopt here the
method outlined by elimination theory and ignore for now other possibil-
ities offered by ideal theory. By Hilbert’s Nullstellensatz, it follows from
property (a) that the polynomials g of the system (2) must themselves, or
a fixed power of them, be contained in the ideal A: gρ

i ≡ 0 (A). For the
polynomials g obtained by Kronecker’s method, it is known that ρ = 1.

It is therefore reasonable to introduce the following definition: All of the
polynomials of the ideal A which do not contain the variable xn form an
ideal B in the polynomial ring K[x1, . . . , xn−1], whose basis polynomials
set equal to zero produce the system of equations (2). The ideal B can be
written as the intersection

B = A ∩K[x1, . . . , xn−1]
3This has actually been shown in a detailed discussion of an example given by Vahlen

[10] on a famous theorem of Kronecker, in which every system of algebraic equations in n
variables would be equivalent to a system of at most n + 1 equations (so that both systems
have the same solutions, see [3, p. 234]), or an algebraic variety in a linear n-dimensional space
could be represented by at most n + 1 equations (see [1, p. 232]). Since a precise, generally
applicable definition of multiplicity had not been found at that time, and is still controversial
today even though the construction of algebraic geometry is impossible without it, problems
amalgamated with this were frequently treated and solved only intuitively, so that the results
could not survive strong criticism. See [5-9].

Added in proof: This discussion and oral conversations during the mathematics congress
in Innsbruck (29 Aug. to 2 Sept. 1949) have made clear that on the side of modern algebra
no generally applicable notion of multiplicity exists presently (see [12, p. 211]: ”But now
the multiplicity of a non-isolated intersection point of 3 surfaces, to my knowledge, has never
been defined.”). On the other hand, it must be recognized that in the Italian school of
algebraic geometry, Severi had long since developed a general notion of multiplicity, whose
precise motivation and definition are undertaken in the work cited. It is also clear that all
discussion on Kronecker’s theorem and similar far-reaching theorems in algebraic geometry
must be futile, as long as no accepted definition of multiplicity exists for both sides.

My previous work outlines the ideal theoretic notion of multiplicity which I developed in my
book [11]. It is very simple and generally applicable, but does not agree exactly with Severi’s
notion which uses continuity considerations and passage to limits. In my opinion, the ideal
theoretic definition may be preferable for the first construction of algebraic geometry because
of its simplicity and generality. On the other hand, the treatment of Severi’s equivalent
systems brings to light the necessity of adding a notion of ”virtual” multiplicity which agrees
essentially with Severi’s notion of multiplicity.

4The term ”corresponding algebraic variety” is understood each time in the stricter sense
of including multiplicity. See [2, p. 82]
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and is called the ”first elimination ideal”5. With this definition, all ran-
domness in the choice and determination of the system (2) is eliminated,
and it may be reasonably expected that the question of the multiplicity
of the individual solutions can always be answered in a clear and easily
understandable manner. Finally, to satisfy property (b), we need only as-
sume, as in Kronecker’s method, that the polynomials f(x) be sufficiently
generic, i.e. be regular6 relative to the variable xn.

3. The geometric meaning of the elimination of xn is clear; namely, the al-
gebraic variety corresponding to the ideal B is precisely the variety which
is obtained by projecting the algebraic variety of A onto the coordinate
hyperplane xn = 0, if the center of projection is taken to be the point at
infinity on the xn-axis. The deficiency of Kronecker’s method can now be
expressed in that it sometimes produces this variety with too big a mul-
tiplicity, whereas, by the above definition, the multiplicity corresponds
precisely to the theory and to intuition. This is illustrated by the follow-
ing simple examples:

(a) Example: A = (x2
1, x1 − x2), B = (x2

1). The algebraic variety corre-
sponding to A consists of the point x1 = x2 = 0 and the neighboring7

point lying in the direction x1 − x2 = 0, so the solution x1 = x2 = 0
has multiplicity 2. The elimination ideal B has the zero x1 = 0 also
with multiplicity 2, corresponding to the geometric idea that the
two neighboring points on the x1-axis are precisely the projection of
the two neighboring points corresponding to A. Kronecker’s method
would produce the same result here.

(b) Example: A = (x1, x1 − x2
2), B = (x1). The zero x1 = x2 = 0 of A

has multiplicity 2 again, and consists geometrically of this point and
the neighboring point lying just off the x2-axis. Under the projection,
these two points collapse to a single point x1 = 0, which is the simple
zero of B. Hence, the multiplicity of the corresponding zero in the
elimination ideal has become smaller. We see immediately, however,
that the one from A has multiplicity 2 because, in the complement,
the quadratic equation x2

2 = 0 must be solved, which has root x2 = 0
with multiplicity 2. Kronecker’s method would produce the result
x2

1 = 0 here, which would by chance lead to the correct result if we
ignore the quadratic equation still to be solved.

5The most general and comprehensive resultant system (2) would be obtained by also allow-
ing ρ > 1. We must then say: All of the polynomials of the polynomial ring K[x1, . . . , xn−1]
for which a fixed power is contained in the ideal A form the elimination ideal B and whose
basis is the resultant system (2). However, it is easy to see that this would suppress all of the
existing multiplicities.

6See the detailed exposition on this in my book [2, p. 39].
7For the definition of ”neighboring”, see my book [2, p. 86].
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(c) Example (from Perron8): A = (x2
1, x

2
2, x

2
3) with the successive elimi-

nation ideals B = (x2
1, x

2
2) and C = (x2

1). Clearly the last ideal C has
zero x1 = 0 with multiplicity 2. However, since we must solve the
two quadratic equations x2

2 = 0 and x2
3 = 0 in the course of comple-

menting, it eventually follows that the solution x1 = x2 = x3 = 0 for
A has multiplicity 2 · 2 · 2 = 8, agreeing with the expected outcome,
either out of geometric considerations or by using Bezout’s theorem.
Yet as Perron explains, Kronecker’s method leads eventually to the
resulting system

x4
1 = 0, x2

1x
2
2 = 0, x4

2 = 0

and finally to x16
1 = 0. Thus the original system of equations would

have multiplicity 16, and if we take into consideration the two re-
maining quadratic equations, the multiplicity would be 64, which is
clearly absurd. As Perron shows, an arbitrary bilinear transformation
does not change this result.

4. The resource of modern ideal theory allows us to adopt other completely
different ways to solve our problems which both open new insights for the-
oretical work, as well as develop new computational methods for practical
implementation. I would now like to exhibit explicitly such an ideal theo-
retic method in the case of a zero-dimensional ideal A, that is, in the case
where the system of equations (1) has only a finite number of solutions.
The general case can always be reduced to this in a well-known way.

If A is zero-dimensional, then the residue class ring O = K[x1, . . . , xn]/A
is a commutative algebra (hypercomplex system) over the field K, i.e.
there are only finitely many residue classes which are linearly independent
over K.9 Now everything depends on this algebra, and in particular on
determining its multiplication table explicitly.

For this purpose we proceed in the following manner: we consider the
power products of the variables x1, . . . , xn ordered in a suitable, mostly
lexicographic way10; for the sake of clarity, polynomials would also be
written in this order. Now we denote the residue classes of the variables
x1, . . . , xn by the sequence u1, . . . , un; if linearity occurs among the poly-
nomials f(x), this causes a linear dependency of the residue classes u in
the residue class ring, and we can express the corresponding one or more
of these u linearly in terms of the remaining ones and then delete it. In
any case, the remaining u with their power products generate the entire
residue class ring O; but we must still take into account the relations ex-
pressed by the polynomials f(x). Thus we will form the power products of

8See the work of Perron [7, p. 656]
9See my book [2, p. 96].

10A power product xi1
1 xi2

2 · · ·xin
n precedes the power product xj1

1 xj2
2 · · ·xjn

n if the degree
i1 + i2 + . . . + in < j1 + j2 + . . . + jn, or for equal degrees if i1 > j1, or if i1 = j1, i2 > j2, etc.
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u in the chosen order, and these will be denoted by the successively num-
bered symbols ui, as long as they are shown not to be linearly dependent,
due to the polynomials f(x), on the previous ones.

Since the multiplication is commutative and associative, every power prod-
uct can be decomposed into two factors in different ways. The multipli-
cation must then be carried out using the formulas already determined
and the results compared with each other. It can happen that they do
not agree with each other; then a linear dependency of the previously in-
troduced quantities u holds, which must be used to express one of these
quantities linearly in terms of the remaining ones, and to strike it out of
the scheme of linearly independent residue classes. This adjustment must
then be carried out similarly in every relation where the deleted quantities
occur, before we can consider the next power product.

Since the ideal A is zero-dimensional by assumption, only finitely many
linearly independent residue classes can occur. We can be sure that no new
linearly independent residue class can be added, as soon as for some fixed
degree m, every power product has been proved linearly dependent on the
preceding ones. We will therefore be at the end of this procedure if first,
every polynomial f(x) is taken into account, and second, the complete
multiplication table is formed from u which are known to be independent.
The commutative and associative property of the multiplication table fol-
lows directly from the applied procedure, since the properties were verified
each time during the formation of the power products of the generating
quantities u.

We have therefore found an algebra K[1, u1, . . . , um] which is isomorphic
to the residue class ring O because every polynomial f(x) in the ideal A,
and only these, reduce to zero under the projection xi 7→ ui

11.

5. We illustrate these methods in a simple example: A = (x2 + x1x2 + x2
2,

x2 − x1x2 + x2
2, x2

1 − x3
1). First we set x1 7→ u1 and x2 7→ u2. Then

x2
1 7→ u2

1 = u3 since no linear dependencies among u1, u2, and u2
1 have

appeared yet in the relations in question. x1x2 7→ u1u2 = u4 follows
similarly. For x2

2 7→ u2
2, we obtain u2

2 = −u2 + u4 = −u2 − u4 by using
both of the first two basis polynomials, so it follows that u4 = 0 and
u2

2 = −u2. Thus we must also delete u4 in the preceding row and set
u1u2 = 0.

The next power product is x3
1 7→ u3

1 = u1u
2
1 = u1u3 = u3 as a consequence

of the third basis polynomial. Further power products produce no new
11If one of the residue classes ui (i = 1, . . . , n) is shown to be linearly dependent, then under

the mapping xi 7→ ui it is of course replaced by the linear form corresponding to ui. The
higher power products of the xi will be mapped onto the analogous power products of the ui,
which are then computed using the multiplication table. The residue class 1 corresponds to
the unit element 1 of the algebra.
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independent quantities, so u2
1u2 = u1(u1u2) = u2u3 = 0 since u1u2 = 0

already holds. Similarly u1u
2
2 = 0 and u3

2 = u2u
2
2 = u2(−u2) = −u2

2 = u2.
If we form u4

1 = u1u3 = u2
3 = u3, then the multiplication table is complete

and the procedure is terminated.

The residue class ring O = K[x1, x2]/A is an algebra O = K[1, u1, u2, u3]
with multiplication table

u2
1 = u3 u1u2 = 0 u1u3 = u3

u2
2 = −u2 u2u3 = 0

u2
3 = u3

In order to find the algebraic variety corresponding to A, we must now
represent A as a reduced intersection of primary ideals by the theorem
of Lasker and E. Noether. If the number field K is sufficiently extended
algebraically, the prime ideals corresponding to A have only a single zero
at each step. These zeros form the solutions to the system of equations
corresponding toA, the length of the intersecting primary ideals specifying
the multiplicity of the solutions. By general ideal theoretic methods, the
reduced representation can be found without major difficulty using the
multiplication table. We recommend the following way:

Using our multiplication table, we form the sequence of powers of u1 until
we can determine a linear dependency between them. Since u2

1 = u3 and
u3

1 = u3, it follows that u3
1 − u2

1 = 0, an equation whose roots are 0, 1.
Similarly u2

2 + u2 = 0 holds, so u2 = 0,−1. Because u1u2 = 0, we find
three prime ideals in the ring O

P1 = (u1, u2), P2 = (u1, u2 + 1), P3 = (u1 − 1, u2).

Furthermore, we find that P2
1 = (u2, u3) = P3

1 = . . . ,P2
2 = P2,P2

3 =
P3; hence the zero ideal N of the ring O is N = [P2

1 ,P2,P3] and the
corresponding reduced representation of our ideal is

A = [(x2
1, x2), (x1, x2 + 1), (x1 − 1, x2)].

¿From here we can immediately read off the zeros of our ideal, or the
solutions of the system of equations. They are

x1 = x2 = 0 with multiplicity 2,

x1 = 0, x2 = −1 with multiplicity 1,

x1 = 1, x2 = 0 with multiplicity 1,

for a total of 4 zeros, agreeing with the fact that the residue class ring has
4 linearly independent quantities.
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6. For about 17 years, I have applied and tested these methods in the most
varied and complicated cases, and I believe I can say, on the basis of my
experiences, that they in fact represent a useful and valuable tool for the
solution of these and similar ideal theoretic tasks in every case. Because I
have often been asked how one can most easily find the reduced represen-
tation of a polynomial ideal, I have now decided to publish the essential
features of these methods, omitting the details. It is clear that in a few
simple cases, the work, which lies in the determination of the multiplica-
tion table and further calculations, can become very large; but I believe we
can be assured that this work is never bigger than that required by Kro-
necker’s method. Most importantly, these methods produce a definitive
explanation of the subtle structure and the multiplicity of the solutions.
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