Invariants of Binary Forms*

P. Gordan

Historical Background
by Michael Abramson

This paper is probably the full version of the result an-
nounced in P. Gordan’s earlier paper Neuer Beweis des
Hilbertschen Satzes tber homogene Funktionen [A New
Proof of Hilbert’s Theorem on Homogeneous Functions],
Nachr. der Kénigl. Ges. der Wiss. zu Gottingen 3 (1899),
240-242 (Trans. by M. Abramson, ACM SIGSAM Bul-
letin 32/2 (1998), 47-48). These two papers contain the
earliest known example of a (non-trivial) Grébner basis in
the literature. Section 2.V describes a construction and
reduction procedure similar to that of the S-polynomial,
including the idea that if the S-polynomial reduces to
zero, we have redundancy. Upon continuation of this pro-
cess, the set IV in Section 2.VI is a Grobner basis, though
no proof is given which verifies the procedure actually
terminates.

Abstract. The system of binary forms is finite. I
proved this theorem and Mr. Hilbert extended it
to forms in n variables. In this note, a theorem is
given which implies the others.

Chapter 1: Elementary Systems of
Products

I. — Systems of Products
The products of n variables

k1, ko

k
Ty Ty ...xn"

form a system S if the exponents are subject to the rela-
tions

(1) 01,0s,....

* Les invariants des formes binaires. J. de Mathématiques
Pures et Appliqués 6 (1900), 141-156. Translation by Michael
Abramson.

These relations define S.

Example 1. The formula
k,‘l =0 (mod 3)
defines the system

(5)

Example 2. The formula

3 .6 _9
L1y L1y L1y -

ki+ke+ks+ka=0 (mod 3)
defines the system
(S) o3 il vial, ...
Example 3. The formulae
ki+ks+ks+ks=0 (mod3)

kiks + ki1ks + k1ka + kaks 4+ kaks + k3ks > 0

define the system

(5)

2 4 2.3
L1T2,T1T2L4,T1TL3L4y. .. -

II. — Elementary Sets

It can be shown that the products T in S are divisible
by each other. If we omit the products T, which are
divisible by other T, we obtain a partial system 3; it is
called the elementary system defined by the relations (1).
It contains the products

(2)

which have the following properties:

P, P,...,

1. The exponents k satisfy the relations (1).
2. No P is divisible by any other.

3. Each product T of S is divisible by at least one of
the P.



Example 1. The formula

kl =0 (mod 3)

defines the elementary system
(2) 3.
Example 2. The formula

ki+ke+ks+ks=0 (m0d3)

defines the elementary system

3 2 2 2 2
L1, L1T2,T1T3,T1L4,T1T3,
2 2
2)( L1TX2X3,T1T20X4,L1T3,T1T3L4,T1T4,
) (%)

3 2 2 2
Lo, XoX3,ToX4,T2L3,T2L3T4,

2 3 2 2 3
T2, T3, L3T4,T3L4,T4

These are the terms of a quaternary cubic form in the
usual order. I view each one of them as complicated com-
pared to those which follow it and the last ones as simpler;
thus 3 is the simplest term and 2 is the most compli-
cated.

Example 3. The formulae
ki+ko+ks+ki=0 (mod 3)
kika + ki1ks + kiks + kaks + koka + kaks > 0
define the elementary system

2 2 2 2
T12T2,T123,T1T4,T1T3,

2 2
(3)(2) L1TX2X3,T1T20X4,T1T3,T1T3L4,T1T4,

2 2 2
T3, L2X4,T2L3,T2L3L4,
2 2 2
L2X 4, L3L4,T3T4.
III. — Indices of Elementary Sets

The number of products contained in the elementary sys-
tem ¥ is called the inder of . If the products are com-
posed of n variables, I represent this index by h,. If we
have several elementary systems

¥1,%32,33,...,
I represent their indices by
hoi,hoo, hng,. ...
If n = 1, we have

(4) hy < 1.

Example 1. The elementary system defined by the for-
mula

kl =0 (mod 3)

has index h; = 1.

Example 2. The elementary system defined by the for-
mula
ki +ke+ks+ks=0

has index h4 = 20.

(mod 3)

Example 3. The elementary system defined by the for-
mulae

ki+ke+ks+ka=0 (m0d3)
kiko + kiks + k1ka + koks + koka + k3ks > 0

has index h4 = 16.

IV. — Partial Systems of the Elementary
System X

If the product
Pr=a}ta)? oz

is contained in the elementary system X, we can form
partial systems

Lo Py,
ko K k

L rirsixs® -z, = 29 Q,
where g < Ai;

k1 g-\1_k k Y
L» zitey gyt =23 Q,
where A< g <AL+ Ay

k1 ko g—Ai—Xa _k k —A1—A

L 1‘111'221‘% 1 21‘44---1‘n" :mg 12,
where >\1+)\2<g§>\1+>\2+)\3;

k kp—1 g—A1—..—Apn—1 g—A1—i—Ap—1
Ly xy'eeex, o " =1n "TQ,
where A+ Ao+ o+ At < g;

Their number is
1+>\1+)\2+...+>\n=1+p.

Example 1. The elementary system defined by the for-
mula

ki=0 (mod 3)

has no partial systems.



Example 2. The elementary system defined by the for-
mula

ki+ko+ks+ks=0 (mod 3)

has partial systems
3
L1 Pl =T,
2 2 2

Ls T1T2,T1T3,T1T4,

2 2 2
L3 L1X2, L1X2L3, L1X2L4,L1L3,L1L3L4,T1L4,

L 3 2 2 2 2 3 2 2 3
4 To,T2Xx3,ToX4,T2L3,T2Lx3L4,L2L4,T3,L3L4,T3Ty,T4.

Example 3. The elementary system defined by the for-
mulae

ki+ko+ks+ki=0 (mod 3)
kiks + ki1ks + k1ka + k2k3 + kaks + k3ks > 0

has partial systems

2

Lo Py = zix>,
2 2 2
L, T1Xo, L1T2T3, T1X2L4, L1L3, T1T3T4, L1Ty
2 2 2 2 2 2
L2 LoX3,L2L4,L2L3,L2X3L4,L2L4,L3T4,T3T4,
L 2 2 2 2 2 2
3 L12T3,L1L4,TL1T3,T1X3L4,T1L4,T3L4,T3T4.

V. — Relations for the Index h,

If the product

— k1 ko
P =xi'z5” -

- ghn
is contained in ¥ and differs from
Pr=ay'ey?
it is not divisible by Pi; it has at least one exponent
ks < Ao
and is contained in the partial system Ly, where
ke =g9g—XM—X2a—...— Ap_1.

All the P in ¥ are contained in the L. If we represent the
number of products contained in Ly by I, we have

(5) hy <14+L+bL+1s+...+1,.

Example 1.

(5) h1 <1, [l;=0.

Example 2.

(5) hes =20, 1L =3, l>=6, I[3=10,
20=1+346+10.

Example 3.

(5) hy =16, L1 =6, lL=7 I[3=17,

16<1+6+6+7.

VI. — The Corresponding Systems

The products lying in the partial system L, are of the
form

Lg z;Qlyz;Q27x2Q3)"' )
and none of them is divisible by any other. The system
Eg Q17Q2aQ3)"'

corresponds to the system L,.
The @ are formed just from the n — 1 variables

L1,L2y.++. yLo—1yLo41y-:+ yLn;

none of them is divisible by any other. The exponents k
of @) are subject to the relations

(o)
derived from the relations

1) 01,0, ....

Hy, H,,...

The X, are the elementary systems defined by the rela-
tions (1a).

Example 1. As there is no Ly, there is also no corre-
sponding system X.

Example 2. The elementary systems corresponding to
the partial systems

L 2 2 2
1 T1T2,2123,T124,
2 2 2
L, T1T5, T1T2T3, T1T2L4, T1T3, T1L3L4, L1y,
L 3 2 2 2 2 3 2 2 3
3 Lo,Tox3,Tox4,T2L3,L2Lx3L4,L2L4,T3,T3L4,T3Ly,T4.
is
X T2, T3, T4,
b 2 2 2
2 T2, T2T3,T2T4,T3,T3T4, T4,
3 2 2 2 2 3 2 2 3.
X3 3, T32%3, TaT4, T2T3, T2T3T4, T2T g, T3, T3T4, T3T1, T4;

they are defined by the relations

¥ by ky+ks+ki=1 (mod 3)
3o by ko +ks+ks=2 (mod 3)
Y3 by ks +ks+ks=0 (mod 3)

Example 3. The elementary systems corresponding to
the partial systems

2 2 2
L, T1T5, T1T2T3, T1T2L4, T1T3, T1L3L4, T1T4,

2 2 2 2 2 2
L2 ToX3,L2L4yL2L3yL2X3L4,L2L4,L3L4,L3T4,

L 2 2 2 2 2 2
3 T1T3,TL1T4,T1T3,T1X3L4,T1T4,T3L4,T3T4.



is

2 2 2

P T3, T2X3,T2L4,T3,L3T4, Ty,
D 2 2 2 2 2 2
2 LT3, T4, T2L3,T2L3T4,T2T4,TL3T4,T3T4a,
2 2 2 2 2 2,
P L1Tx3,L1L4,L1L3,L1X3L4,L1L4,L3T4,TL3T4,

they are defined by the relations

31 by ko +ks+ka=2 (mod 3)
ko +ks+ki=0 (mod 3)
22 by
koks + koks 4+ k3ks > 0
5 ki+ks+ka=0 (m0d3)
: kiks + ki1ks + k3ks > 0

VII. — Relations Between the Indices of
Several Systems

The number of products P contained in Ly is equal to
that of the products @ contained in ¥4

ly=hn 1.

The formulae corresponding to the formulae (5) are

hn S 1+hn71,1 +hn71,2+---+hn71,p,
b < 1,

© Y20 = 143+6+10,
16 < 14+6+6+4+T7.

VIII. — The Indices of Elementary Systems
are of Finite Number

Proof. h1 <1 is a finite number. The numbers

hy < 14hii+hio+...4+hi,,
(7) hs < 14hoi+hoo+...4+ha,,,
are also finite numbers. O

The numbers p are defined §IV by the degrees of whatever
products are contained in the 3.

Chapter 2: Elementary Systems of
Homogeneous Functions

I. — The Order of Terms of a Homogeneous
Function

The terms of a homogeneous function f of n variables are

products

— k1 k2 kn
P=xzi'zy®- -z,

We assume them to be written in an order such that each
one of them precedes those that are simpler. The first
term P; is the most complicated. If we set

f=caP+x,

the terms of x are simpler than P;.

II. — The Order of Homogeneous Functions
We will classify the homogeneous functions

fi, fa, ...

according to their degrees, the f of lower degree precede
those of higher degree. Forms of the same degree are
arranged according to their first terms.

Those whose first terms are simple precede those whose
first terms are more complicated.

This order is inverse to the order of terms in the ho-
mogeneous function. With the forms f thus ordered, we
will view each one of them as simpler than those which
follow it.

II1I. — The System S of Homogeneous
Functions

The relations
01,0,,...

which connect the coefficients of the homogeneous func-
tions define a system S consisting of all homogeneous
functions

(S) flafza"'

whose coefficients satisfy these relations. The f of (S) are
ordered according to §2.II. The systems whose homoge-
neous functions are simple are called simple.

IV. — Derived Systems

Given a system of homogeneous functions

(S) ¢17¢27¢37"' k)
we can derive another system

m o= ¢

2 = A1+ P2
(8) ns = Az + Az + @3

I Agpipr + Asapa + Aszps + Pa

The A are whatever functions which will make the func-
tions 7 homogeneous.



V. — Reduction of Derived Systems

It can be shown that among the n of a derived system M

n,n2,M3,---,

there are two functions (§2.I)

M = Py +x»a,
e = cuPu + Xp,

such that the first term Py of 7, is divisible by the first
term P, of n,
Py = RP,.

In this case, I form the aggregate

C

J— A C)
9) Tx = — —Rn, = xa — —Rxy,
w Cu

n
and I substitute it in place of 7, in the system M.

Let M; be the system which results from this substi-
tution.

7x and M are simpler than ) and M. M is reduced
to M; by the substitution (9). If we have

(10) =0,

the system M contains one function fewer than M.
In this case, we have, according to (8),
(11) 0=Axid1+ Axada+ ...+ Ax a1+ da1 + Oa,

that is to say, ¢ is an aggregate of simpler functions ¢.

VI. — The Irreducible System IV

If we continue the process of reduction, we obtain an ir-
reducible system

(N) flaf2a~~~7

The first terms of the functions f are the products
Py, Ps,...,

none of which is divisible by any other. They form an
elementary system 3. Let h be its index. The system N
contains h functions
(N)

fisfoy oo s e

VII. — The Elementary System L

If the number h is less than the number of functions ¢,
we can reduce all but h functions ¢ to simpler functions
by formula (11). Represent by ® those functions which
remain. The system

(L) Dy, Py,...,P

is called the elementary system defined by the relations

01,0,,....

VIII. — Hilbert’s Theorem

All of the ¢, except the ®, are aggregates of the simpler
functions ¢. Continuing this reduction, we obtain the
formula

(12) p=c1P1 +c2P2+ ...+ cn Py

Chapter 3: Application to Invariants
I. — Transformation of Binary Forms

The binary form

f =aoxy + (?) am{“%z + (Z) m{“%% +...

is transformed by the substitution

(13) {131 =&y + 1y

z1 = &291 + 22

into the form
n n n— n n—
f=Aoyr + (1>A1y1 1y2 + (2>A2y1 2y§ +....

The determinant of the substitution is

_ & om
A= ISR

and the coefficients A are the polars of f with respect to
the variables &, 7.



IL. — Series Expansion

Each homogeneous function F(z,y) of two series of cogra-
dient variables

T1,%2 and Y1, Y2
can be expanded as a series whose terms are power prod-
ucts of

r1 Y1

(zy) = .

and polars of elementary covariants of F'. In the symbolic
setting, if x and y have the same degree in F,

F(z,y) = 'ty

(£)
) (73 (ay)".

- <2m—k+1

we have the series

(14 F=

k

ITI. — Elementary Systems of Invariants

The invariants ¢ of f are homogeneous integral functions
¢ with coefficients

a0, a1,a2,... 0.
The coefficients of ¢ satisfy the relations

01,0,,...,
which are derived from partial differential equations of in-

variants. Suppose the elementary system L of ¢ is formed
from the invariants

(L) I, L,... I

By Hilbert’s theorem, each invariant ¢ has the form
(15) i=cl(a)ll+62(a)12+...+ch(a)lh.

The functions c¢(a) are functions of a which make the ex-
pression homogeneous.

IV. — Transformation of the Formula (15)

The invariants 4 of f are obtained by the substitution (13)

of powers of A into factors. If the invariants
i I, Io, Is, ..., I

have weights

v,Vi,V2,V3,... ,Vn;

they obtain the factors
AYJAYY AT AR AR,
Formula (15) is transformed by the substitution (13) into

(16) Auizcl(A)Aylfl +...+C}L(A)Auhfh.

V. — Simplification of the Formula (16)

The ¢4 (A) are functions of polars A and they are covari-
ants of f. In the symbolic setting,

cg(A)

—(Tgasg)y_yg =
9

l/—l/g l/—l/g
T Sam >

(17) B,,

v—v,
formula (16) becomes
(18)

AVi = rig"ls'l'z"l AL+ ..+ r}':,_g"h sz,_n"hA"" Ip.
By substituting their series (14) in place of

l/—l/g l/—l/g
Tge Sam >

we obtain an identical equation in A of degree v.
comparing coefficients of A”, we obtain

By

(19) AY = Bii1 + Bais + ... + Bpip.

VI. — The Invariants ¢ are Integral Functions

of I

Proof. By arranging the invariants ¢ according to their
degrees, invariants of lower degree precede and invariants
of higher degree succeed.

By wanting to represent i as an integral function of the
I, the invariants By are already expressed

By = Fy(I).
If we substitute their values into (18), we obtain

i =F (DI + Fo(D)I + ... + F,(I)I, = F(I).



