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Abstract

This paper extends the theory of the Gröbner fan and Gröbner walk for ideals in polynomial rings
to the case of submodules of free modules over a polynomial ring. The Gröbner fan for a submodule
creates a correspondence between a pair consisting of a cone in the fan and a point in the support of
the cone and a pair consisting of a leading monomial submodule (or equivalently, a reduced marked
Gröbner basis) and a grading of the free module over the ring that is compatible with the choice of
leading monomials. The Gröbner walk is an algorithm based on the Gröbner fan that converts a given
Gröbner basis to a Gröbner basis with respect to a different monomial order; the point being that the
Gröbner walk can be more efficient than the standard algorithms for Gröbner basis computations
with difficult monomial orders. Algorithms for generating the Gröbner fan and for the Gröbner walk
are given.
© 2005 Published by Elsevier Ltd
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1. Introduction

Gröbner basis theory is a fundamental tool of computational commutative algebra.
The theory has been advanced by the introduction of techniques from combinatorics and
polyhedral geometry. In particular, such techniques were used to create the concept of the
Gröbner fan and Gröbner walk for an ideal of a polynomial ring.
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These advances were sparked by the rediscovery of a classification of term orders on
a polynomial ring byRobbiano(1985). He showed that term orders are in one-to-one
correspondence with a certain subset of real matrices.

On the basis of this classification,Mora and Robbiano(1988) created the Gröbner fan
of an ideal of a polynomial ring.

Based on the Gröbner fan, the Gröbner walk is an algorithm, introduced byCollart et al.
(1997), that converts one Gröbner basis of an ideal of a polynomial ring to another. This
technique is particularly useful for computing Gröbner bases with respect to elimination
term orders. Gröbner bases with respect toelimination term orders are necessary in
many applications, but are notorious for their inefficiency when used with the standard
algorithms.

This paper extends the Gröbner fan and the Gröbner walk to the case of submodules of
free modules over a polynomial ring. (Previous work byAssi et al.(2000, 2001) andSmith
(2001) has extended the Gröbner fan to the Weyl algebra andD-modules, although without
a complete consideration of all possible monomial orders. Also seeSaito et al.(2000).)

Section 1.1describes the classifications of term orders and monomial orders and states
the known result that every submodule has finitely many reduced marked Gröbner bases.
Section 1.2discusses the relevant properties of graded modules and their Gröbner bases,
and it introduces the concept of compatibility that is used to associate a monomial order
with a leading term submodule. Background on polyhedral cones is given inSection 1.3.
Sections 2and3 expand the Gröbner fan and Gröbner walk to the case of submodules of
free modules of finite rank.

1.1. Monomial orders and Gröbner bases

Consider a polynomial ringR = k[x1, . . . , xn], wherek is a field. A term is a power
productXα = xα1

1 xα2
2 · · · xαn

n ∈ R, whereα = (α1, . . . , αn). Let Z be the integers,Q
the rationals,R the reals. LetZ+, Q+, andR+ be the non-negative integers, rationals, and
reals, respectively.

A term order is a total order on the terms ofR such that 1 is the least element
and multiplication by a term does not change the relative order of the terms.Robbiano
(1985) rediscovered the classification of term orders onR as m × n matrices with
real entries. This classification was originally done byRiquier (1910), Kolchin (1973),
Trevisan(1953), and Zăıceva (1953). Robbiano classified total orders onQn that are
compatible with its properties as aZ-module. Such an ordering can be restricted to a
term order if α > (0, . . . , 0) for all α ∈ (Z+)n \ {(0, . . . , 0)}. The following is Robbiano’s
theorem.

Theorem 1. There is a one-to-one correspondence between linear orders> on Qn

compatible with its Z-module structure and k× n matrices over R with rows
(u1, u2, . . . , uk) satisfying:

(1) k ≤ n;
(2) let di be the dimension of theQ-vector space spanned by the entries of ui ; then

d1 + d2 + · · · + dk = n;
(3) |ui | = 1, for i = 1, . . . , k;
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(4) ui is in the real completion of the rational subspace orthogonal to the real space
generated by u1, . . . , ui−1, for i = 2, . . . , k.

The correspondence is given by Xα > Xβ if and only if

(α · u1, α · u2, . . . , α · uk) >lex (β · u1, β · u2, . . . , β · uk).

where>lex is the usual lexicographic order.
In addition, such an order onQn restricts to a term order on R if and only if the first

non-zero entry in each column of the matrix is positive. In particular, a term order has a
matrix in which the first row u1 has non-negative entries.

Next we generalize to monomials in a free module over a polynomial ring. Consider
Rt , the free module onR with t components. Lete1, e2, . . . , et be the usual standard
basis vectors onRt . A monomialof Rt is an elementX = Xαei = xα1

1 · · · xαn
n ei , 1 ≤

i ≤ t . After Robbiano’s result, several people worked on classifying monomial
orders for free modules over polynomial rings. After several partial classifications
(e.g. Carrà Ferro and Sit(1994), Caboara and Silvestri(1999)), Rust and Reid (1997),
Rust (1998), and independentlyHorn (1998), classified all monomial orders on free
modules.

In this paper, Rust’s and Reid’s classification of monomial orders will be used. Their
classification is as follows:

Theorem 2. Consider a set of matrices with real entries U1,U2, . . . ,Ut , where the matrix
Ui is an ni × n matrix describing a term order on R as inTheorem1, a set of vectors
γ1, γ2, . . . , γt with γi ∈ Rni for 1 ≤ i ≤ t , a t × t matrix of non-negative integers(ti j ),
and an elementσ ∈ St , the symmetricgroup on the set{1, 2, . . . , t}. Define mi j to be
the largest non-negative integer such that matrices Ui and Uj have the first mi j rows in
common. Suppose the entries of the matrix(ti j ) andσ ∈ St satisfy:

(1) 0 ≤ ti j ≤ mij for 1 ≤ i , j ≤ t ;
(2) tii = mii = ni for 1 ≤ i ≤ t ;
(3) ti j = t j i for 1 ≤ i , j ≤ t ;
(4) tik ≥ min(ti j , t jk) for 1 ≤ i , j , k ≤ t .
(5) Whenever tik > max(ti j , t jk) and σ(i ) < σ( j ) for some1 ≤ i , j , k ≤ t , then

σ(k) < σ( j ).

LetPrd(α) denote projection onto the firstd coordinates of the vectorα. Then the following
defines a monomial order> on Rt :

Xαei > Xβe j ⇔
{
Prti j (Ui α + γi ) >lex Prti j (Uj β + γ j ), or
Prti j (Ui α + γi ) = Prti j (Uj β + γ j ) andσ(i ) > σ( j ).

Conversely, any monomial order on Rt , canbe represented as above by a set of matrices
U1, . . . ,Ut , vectorsγ1, . . . , γt , a t × t matrix of non-negative integers(ti j ), andσ ∈ St

satisfying the conditions above.

Theleading monomialwith respect to monomial order> of f ∈ Rt , denoted aslm>(f),
is the monomial inf which is the largest with respect to>. The leading monomial notation
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will also be applied to sets, i.e. ifS ⊆ Rt , lm>(S) = {lm>(f)|f ∈ S}. Let M ⊆ Rt be
a submodule. A setG = {g1, g2, . . . , ga} ⊆ M is aGröbner basisfor M with respect to
monomial order> if 〈lm>(G)〉 = 〈lm>(M)〉. A reduced Gröbner basis Gfor a submodule
M ⊆ Rt , is a Gröbner basis with respect to> such that for eachg ∈ G, there are no
monomials ing that are divisible by any monomials inlm>(H ), for H = G \ {g}, and
for eachg ∈ G, the coefficient for the monomiallm>(g) is 1. A marked Gröbner basis G
for a submoduleM ⊆ Rt is a Gröbner basis with respect to some monomial order, such
that eachg ∈ G has its leading monomial identified. For more background on Gröbner
bases for submodules of free modules over polynomial rings, seeAdams and Loustaunau
(1994), Kreuzer and Robbiano(2000), Cox et al.(1998), or Eisenbud(1995).

For the existence of either a Gröbner fan or a Gröbner walk, the following theorem is
necessary.

Theorem 3. For any submodule M⊆ Rt , thereare only finitely many reduced marked
Gröbner bases.

The proof of the result is essentially the same as the proof for the case of reduced marked
Gröbner bases of an idealI ⊆ R. This proof for the ideal case can be found in the first
chapter ofSturmfels(1996) and its accompanying note.

1.2. GradedR-modules and monomial orders

We let R̂ = R ∪ {−∞}. R̂ has the usual abelian binary operation of addition with
the extraproperty−∞ + c = −∞ for all c ∈ R̂, and the order on R̂ is the usual
order with −∞ < c for all c ∈ R. Note that R̂ is an ordered abelian monoid. When
R = k[x1, x2, . . . , xn] is graded over the abelian monoidRa, Rα denotes the subspace
of homogeneous components of degreeα. For an R-module M that is anR̂a-graded
R-module, thek-subspace of homogeneous components of degreeα will be denoted as
Mα . All the gradings of R that are considered in this paper have the property that the
variablesx1, . . . , xn are homogeneous. Also, all the gradings ofRt that are considered
have the property that the standard basis vectorse1, . . . , et are homogeneous.

Suppose we have anRa-grading onR and anR̂a-grading on theR-module Rt . Let
Terms(R) be the multiplicative abelian monoid of the terms ofR. Thegrading onR can
be represented by the homomorphismτ : Terms(R) → Ra given by Xα �→ β where
Xα ∈ Rβ . Let Mon(Rt ) be the monomials ofRt . Thegrading onRt can be represented by
thehomomorphismφ : Mon(Rt ) → R̂a suchthatX �→ α if and only if X ∈ (Rt )α . The
mapφ is compatiblewith the mapτ if φ(YX) = τ (Y) + φ(X) for Y ∈ Terms(R) and
X ∈ Mon(Rt ). To eliminate ambiguity, when there is more than one grading considered on
a module, the wordφ-degree will be used to refer to the image of a monomial byφ. Also,
an element ofRt will be calledφ-homogeneous if every monomial in the element has the
same image underφ. Furthermore, thenotationdegφ(X) = φ(X) for X ∈ Mon(Rt ) will be
used in the paper.

Definition 4. Extend the lexicographic order tôRa in the obvious way. Letf =∑t
i=1 fi ei ∈ Rt , with fi = ∑

j ai j Xαi j ∈ R, i = 1, . . . , t , ai j 
= 0. Then define the
leading monomials with respect to grading φ as
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lmφ(f) =
∑

i, j s.t. φ(Xai j ei )≥φ(Xakl ek)∀k,l

ai j Xai j ei .

(The leading monomial notation will also be applied to sets, for which we mean the set of
leading monomials, one for each element of the set.)

Definition 5. A monomial order> on Rt is compatible with anR̂a-grading given by the
mapφ if , given monomialsX, Y ∈ Mon(Rt ),

X > Y ⇒ φ(X) ≥lex φ(Y).

More generally, an̂Ra-grading ofRt given by the mapφ is compatible on a marked set
S ⊆ Rt if, given anf ∈ Swith marked leading monomialX, thenφ(X) ≥lex φ(Y) for all
monomialsY in f, or equivalently lm>

(
lmφ(f)

) = lm>(f).

In this paper, we will frequently be considering the case of a monomial order> on Rt

with reduced marked Gröbner basisG for a submoduleM ⊆ Rt that is compatible with an
R̂a-grading onG.

The standard results regarding Gröbner bases and the property of homogeneity apply.
Specifically, aφ-homogeneous submodule has aφ-homogeneous Gröbner basis. Also, if
G is a reduced marked Gröbner basis with respect to monomial order> that is compatible
with aφ-grading onG, thenlmφ(G) is a reduced Gröbner basis for

〈
lmφ(G)

〉
with respect

to >.
The following theorem is the main tool for the Gröbner walk for modules. The proof is

essentially the same as in the ideal case. SeeCox et al.(2001).

Theorem 6. Let M ⊆ Rt be a submodule. Let there be anR̂a-grading on Rt defined byφ.
Let>1 and>2 be monomial orders which are compatible withφ, and let G be a Gröbner
basisfor M with respect to>2. Let H be a Gröbner basis for

〈
lmφ(M)

〉
with respect to>1.

Using thedivision algorithm with respect to>2, write eachh ∈ H as

h =
∑
g∈G

pg,hlmφ(g),

with pg,h ∈ R. For eachh ∈ H definefh by

fh =
∑
g∈G

pg,hg.

Then the set F= {fh|h ∈ H } forms aGröbner basis for M with respect to>1.

1.3. Polyhedral geometry

This section is background for the polyhedral geometry that is used in the paper. See
Sturmfels(1996) for more details. Let R be the real numbers. LetR+ be the non-negative
real numbers.

A polyhedronin Rt is a finite intersection of closed half-spaces inRt . Thus a polyhedron
can be written asP = {ω ∈ Rt |A · ω ≤ γ }, whereA is a matrix witht columns and
γ ∈ Rn. If each of thesupportinghyperplanes of the polyhedron intersects the origin, or,
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equivalently,P = {ω ∈ Rt |A · ω ≤ (0, 0, . . . , 0)}, then the polyhedron is a(polyhedral)
cone. For anypolyhedral coneP there exist vectorsω1, ω2, . . . , ωm ∈ Rt suchthat

P = {a1ω1 + · · · + amωm|a1, . . . , am ∈ R+}.
A faceof a polyhedronP ⊆ Rt is a subset ofP which maximizes some linear functional,
i.e. for everyω ∈ Rt ,

faceω(P) = {u ∈ P|ω · u ≥ ω · v for all v ∈ P}
is a face ofP. The dimension zero faces are calledvertices, and the codimension one faces
are calledfacets. Note that the property of being a face is transitive, i.e. ifF is a face of
P andP is a face ofQ, thenF is a face ofQ. Theproof of this fact is straightforward. A
(polyhedral) complex∆ is a finite collection of polyhedra inRt such that if P ∈ ∆ andF
is a face ofP, thenF ∈ ∆, and if P1, P2 ∈ ∆ andP1 ∩ P2 
= ∅, thenP1 ∩ P2 is a face of
P1 and P2. Thesupportof a complex∆ is |∆| = ∪P∈∆P. A complex which consists of
cones is called afan.

Example 7. The Gröbner fan for an ideal is an example of a fan. SeeCox et al.(2001),
Mora and Robbiano(1988), or Sturmfels(1996) for moredetails. A main result of this
paper is a generalization of the fan for submodules ofRt .

The following construction will be used to create fans.

Definition 8. Let Pi ⊆ Rti be a polyhedron for 1≤ i ≤ m. Then theproduct polyhedron
of the set{P1, P2, . . . , Pm} is

m∏
i=1

Pi := {(α1, α2, . . . , αm)|αi ∈ Pi for 1 ≤ i ≤ m} ⊆ Rt1+···+tm.

Moreover, let∆i be a complex inRti , for 1 ≤ i ≤ m. Then theproduct complex∏m
i=1 ∆i is a complex in

∏m
i=1 Rti whereQ ∈ ∏m

i=1 ∆i if and only if Q = ∏m
i=1 Pi for

some choice ofPi ∈ ∆i with 1 ≤ i ≤ m.

2. The Gröbner fan for submodules of Rt

The aim of this section is to generalize the concept of a Gröbner fan to include
submodules of free modules of finite rank. We generalize the notion of the position over
term type monomial order to be any monomial order for which there exists 1≤ i 
= j ≤ t
suchthat Xei > Ye j for all X, Y ∈ Terms(R). This notion corresponds to the case of
ti j = 0 in the classification of monomial orders inTheorem 2.

Proposition 9. Given a representation of the monomial order as inTheorem2, let ∼ be a
relation on the set{1, . . . , t} defined by

i ∼ j if and only if ti j 
= 0, 1 ≤ i , j ≤ t .

The relation∼ is an equivalence relation. Furthermore,∼ is a well-defined property of
the monomial order, i.e. the equivalence relation∼ is independent of its representation
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in Theorem2. Moreover, the monomial order gives a natural, well-defined ordering of the
equivalence classes: for i
∼ j , the equivalence class of i is greater than the equivalence
class of j , ifei > e j .

Proof. It is straightforward to check that∼ is an equivalence relation.
Suppose a monomial order> has the following two sets of descriptors:

(1) Let one set of descriptors for> be the matricesUi , vectorsγi , integersti j for
1 ≤ i , j ≤ t , andσ ∈ St .

(2) Let the second set of descriptors for> be the matricesVi , vectorsδi , integersvi j for
1 ≤ i , j ≤ t , andτ ∈ St .

Suppose there exist 1≤ i , j ≤ t such that ti j = 0 and vi j 
= 0. Without loss of
generality, assumeσ(i ) > σ( j ). Hence, the first set of descriptors says thatXαei > Xβe j

for all α, β ∈ (Z+)n. However, using the second set of descriptors, because non-trivial
linear functions are unbounded, there existsα1, α2 ∈ (Z+)n suchthat Xα1ei < Xα2e j ,
contradicting the first set of descriptors. So there cannot beti j = 0 in one set of descriptors
andvi j 
= 0 in theother set. Therefore,∼ is a well-defined property of a monomial order.

It suffices to show that fori , j ∈ {1, . . . , t} representatives of distinct equivalence
classes for a monomial order> suchthat ei > e j , if i ′, j ′ ∈ {1, . . . , t} suchthat i ′ ∼ i
and j ′ ∼ j , thenei ′ > e j ′ . Suppose not. Sincei ∼ i ′, thereexists α, α′ ∈ (Z+)n such
that Xα′

ei ′ > Xαei , and similarly, there existsβ, β ′ ∈ (Z+)n suchthat Xβe j > Xβ ′
e j ′ .

Therefore,

Xα′+βe j > Xα′+β ′
e j ′ > Xα′+β ′

ei ′ > Xα+β ′
ei .

However, sincei and j are in distinct equivalence classes with respect to> andei > e j ,
any set of matricesUa, vectorsγa, integerstab for 1 ≤ a, b ≤ t , andσ ∈ St representing>,
as in Theorem 2, has the property thatti, j = 0 and σ(i ) > σ( j ). However, such
descriptors require thatXα+β ′

ei > Xα′+βe j , contradicting the inequality above. Thus
the∼-equivalence classes with respect to> have a natural, well-defined order with respect
to >. �

The following definition is used to classify the monomial orders based on the equivalence
relation ∼.

Definition 10. Suppose a monomial order> hasq equivalence classes with respect to∼,
andh1, h2, . . . , hq ∈ {1, . . . , t} are representatives for each∼ equivalence class. Let[h j ]
denote the equivalence class thath j represents. Then we say the monomial order> is of
type

([h1], [h2], . . . , [hq]), if

[h1] > [h2] > · · · > [hq].
Notethat for monomial orders for whichi ∼ j for all i , j ∈ {1, . . . , t}, instead of referring
to them as type([i ]), the morecompact notation[i ] will be used.

There will be separate Gröbner fans for each configuration of equivalence classes.
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2.1. The Gröbner fans

The fans are based on the following set of gradings ofR andRt .

Definition 11. Let (W, r ) ∈ Matq×n(R+) × Rt , whereMatq×n(R+) denotes the set of
q × n matrices with non-negative real entries andr = (r1, . . . , rt ). The matrix W with
rows(ω1, . . . , ωq) defines anRq-grading onR given by the map

Xα �→ (α · ω1, α · ω2, . . . , α · ωq).

Call this grading ofR theW-grading.
Note thatR̂ is an ordered abelian monoid. LetP = ([h1], [h2], . . . , [hq]) bea partition

of {1, 2, . . . , t}, 1 ≤ q ≤ t . Furthermore,(W, r, P) defines an̂Rq-grading onRt given by
the mapXαeb �→ (i1, . . . , i q), where

i j =
{

α · ω j + rb if b ∈ [h j ],
−∞ otherwise.

Call this grading ofRt the(W, r, P)-grading.

The definition above also establishes the identification of a(W, r, P)-grading with a
point (W, r ) ∈ Matq×n(R+) × Rt .

Similarly, the proposition below establishes the identification of a monomial order of
type P = ([h1], [h2], . . . , [hq]) and a grading by a point inMatq×n(R+) × Rt .

Proposition 12. Let > be a type P= ([h1], [h2], . . . , [hq]) monomial order on Rt . As
in Theorem2, let matrices Ui , vectorsγi , integers ti j (1 ≤ i , j ≤ t), and σ ∈ St

define the monomial order>. Then> is compatible with the(W, r, P)-grading, where
the vector r= (r1, r2, . . . , rt ) with r j the first component of the vectorγ j and the matrix
W = (ω1, . . . , ωq) with ωa the common first row of Uj for j ∈ [ha]. In particular,
lm>

(
lm(W,r,P)(f)

) = lm>(f) for eachf ∈ Rt .

Proof. SupposeXαec > Xβed with c ∈ [hc∗
]
, d ∈ [hd∗

]
, Xαec ∈ Rt

a, andXβed ∈ Rt
b.

If c∗ 
= d∗, then the result follows by looking at which components ofa andb are
not−∞.

If c∗ = d∗, the j th component ofa andb is −∞ for j 
= c∗. The values(ωc∗ · α) + rc

and(ωc∗ · β) + rd are thec∗th components ofa andb, respectively. Sincec ∼ d, we have
tcd ≥ 1. Since

Prtcd(Ucα + γc) >lex Prtcd(Udβ + γd),

by looking at the first coordinates of each, we geta ≥lex b. �

Next, we define the cones for the fan, a construction that is essentially induced by the
identifications above.
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Definition 13. Each reduced marked Gröbner basisG for a submoduleM ⊆ Rt with
respect to a monomial order> of type P = ([h1], [h2], . . . , [hq]) is associated with a
subsetCG ⊆ Matq×n(R+) × Rt , called aG-cone, defined by

CG =
{
(W, r ) ∈ Matq×n(R+) × Rt

∣∣∣∣ > is compatible onG
with a (W, r, P)-grading

}
.

The definition of the cones also shows how to identify leading monomial submodules
with cones in the fan. Specifically, for a leading monomial submodule, take its associated
reduced marked Gröbner basisG, and identify it with the coneCG.

Next, it is shown thatthe setsCG truly arecones.

Proposition 14. For any reduced marked Gröbner basis G of a submodule M⊆ Rt with
respect to a monomial order of type P= ([h1], [h2], . . . , [hq]), CG ⊆ Matq×n(R+) × Rt

is a polyhedral cone.

Proof. SupposeXαei is the identified leading monomial of someg ∈ G. Then by the
equivalent definition of compatibility,(W, r ) ∈ CG if and only if Xαei is a monomial in
lm(W,r,P)(g). Let g =∑t

y=1 fi ei .
Let matrixW = (ω1, ω2, . . . , ωq), and vectorr = (r1, r2, . . . , rt ). The monomialXαei

is in lm(W,r,P)(g) if and only if every termXβ in f j with i ∈ [ha] and j ∈ [hb] satisfies
either

(1) a < b or
(2) a = b andα · ωa + r i ≥ β · ωa + r j .

The collection of these linear inequalities in (2) forms a polyhedral cone.
For a(W, r ) ∈ ((R+)n

)q × Rt to be inCG, it has to be in the polyhedral cone for each
g ∈ G. Hence(W, r ) is in the intersection of a collection of polyhedral cones, which itself
is apolyhedral cone. �
Below, the necessary intersection property of the fan is shown.

Proposition 15. Let G and H be distinct reduced marked Gröbner bases of a submodule
M ⊆ Rt with respect to monomial orders>G and >H , respectively, of type P=([h1], [h2], . . . , [hq]). Then CG ∩ CH is both a face of CG and a face of CH .

Proof. It suffices to show thatCG ∩ CH is a face ofCG.
Let F be the smallest face ofCG which containsCG ∩ CH . It suffices to show that

F ⊆ CH . Suppose not.
Let

F ′ = F

∖
 ⋃

E s.t. E is a proper face ofF

E


 ,

i.e. F ′ is the relative interior ofF . Using topological considerations and the convexity of
polyhedral cones, it can be shown thatF ′ ∩ CH 
= ∅ and F ′ 
⊆ CH . Also, just as in the
ideal case, for any two points(U, p), (V, s) ∈ F ′,

lm(U,p,P)(G) = lm(V,s,P)(G).
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Now we are ready to obtain the contradiction to our assumption thatF 
⊆ CH . By the
above, we can choose(W, r ) ∈ CH ∩ F ′ and(V, s) ∈ F ′ \ CH . Sincelm(W,r,P)(G) =
lm(V,s,P)(G), we have〈

lm(W,r,P)(M)
〉 = 〈lm(W,r,P)(G)

〉 = 〈lm(V,s,P)(G)
〉 = 〈lm(V,s,P)(M)

〉
.

Also we know that lm(W,r,P)(H ) is a Gröbner basis with respect to>H for the
submodule

〈
lm(W,r,P)(M)

〉
. Therefore, it must be that for eachg ∈ H , the monomial

lm>H

(
lm(V,s,P)(g)

)
is divisible by an element of

lm>H

(
lm(W,r,P)(H )

) = lm>H (H ).

However, sinceH is a reduced Gröbner basis, the only possible divisor islm>H (g).
Therefore, it must be thatlm>H (g) is a monomial inlm(V,s,P)(g). Hence, we have that
(V, s) ∈ CH , contradicting our assumption.

Therefore, it must be thatF ⊆ (CG ∩ CH ). So we have thatCG ∩ CH is exactlyF . �

The next proposition shows how to construct a monomial order onRt of type P =([h1], [h2], . . . , [hq]) from the set of monomial orders onRζi of type [hi ], whereζi =
|[hi ]|, for 1 ≤ i ≤ q.

Proposition 16. Let P = ([h1], [h2], . . . , [hq]) bea partition of {1, 2, . . . , t}, where the
hi ’s are representatives of each subset in the partition. Let matrices Uc, vectorsγc, integers
tcd for c, d ∈ [h j ], andσ ( j ) ∈ S[h j ], where S[h j ] is the symmetric group on the set[h j ],
define the monomial order>( j ) with one∼ equivalence class on Rζ j as in Theorem2,
whereζ j = ∣∣[h j ]

∣∣. Define ti j = 0, for i ∈ [ha], j ∈ [hb], a 
= b. Define σ ∈ St as

σ( j ) = ζa+1 + · · · + ζq + s(a)
j , where s(a)

j = |{i ∈ [ha] : σ (a)(i ) ≤ σ (a)( j )}| for j ∈ [ha].
Then the matrices U1, . . . ,Ut , vectorsγ1, . . . , γt , integers ti j for 1 ≤ i , j ≤ t , and

σ ∈ St define a monomial order> of type P, as inTheorem2.

Proof. It is straightforward to check thatti j , 1 ≤ i , j ≤ t , satisfy conditions(1)–(4) of
Theorem 2.

It remains to show thatσ satisfies condition (5) ofTheorem 2:

tik > max(ti j , t jk) andσ(i ) < σ( j ) ⇒ σ(k) < σ( j ).

If tik = 0, the condition is trivially satisfied. So we may assumetik 
= 0. Hencei ∼ k. Let
i , k ∈ [ha] and j ∈ [hb]. Assumeσ(i ) < σ( j ). Therefore

ζa+1 + · · · + ζq + s(a)
i < ζb+1 + · · · + ζq + s(b)

j .

Since 0< s(b)
j ≤ ζb, we haveb ≤ a. Thecaseb < a follows from s(a)

k ≤ ζa. Thecase

a = b follows becauseσ (a)(k) < σ (a)( j ) implies thats(a)
k < s(a)

j . �

The result below shows the support of the fan for the case of monomial orders with one
∼ equivalence class.

Proposition 17. A grading by(ω, r, {1, 2, . . . , t}), with ω ∈ Mat1×n(R+) and r ∈ Rt , is
compatible with some monomial order> that has only one∼ equivalence class.
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Proof. By Proposition 12and Theorem 2, any set of matrices U1, . . . ,Ut , vectors
γ1, . . . , γt ∈ Rn, non-negative integers

{
ti j
}

1≤i, j ≤t , andσ ∈ St where the first row of

Ui is ω
|ω| and the first coordinate ofγi is ri|ω| and which satisfyTheorem 2shows the

existence of the monomial order. SetUi = ω
|ω| , 1 ≤ i ≤ t , the 1× n matrices, and set

γi =
(

ri|ω|
)
, 1 ≤ i ≤ t , the vector of length one. Setti j = 1 for 1 ≤ i , j ≤ t . Choose any

σ ∈ St . Then this collection of matrices, vectors, integers, andσ form a monomial order
by Theorem 2. �

The next proposition shows the support of the fans for the case of general monomial
orders.

Proposition 18. Let M ⊆ Rt be a submodule. Let P= ([h1], [h2], . . . , [hq]) be an
ordered partition of {1, 2, . . . , t}. Every(W, r ) ∈ Matq×n(R+) × Rt defines a(W, r, P)-
grading of Rt that is compatible with some monomial order> of type P.

Proof. Such a monomial order can be constructed in the following way. Let vector
r = (r1, r2, . . . , rt ) and matrixW = (ω1, ω2, . . . , ωq). For each 1≤ j ≤ q, consider
the ρ j = (ω j , r ( j ), {z1, z2, . . . , zζ j })-grading onRζ j , wherer ( j ) = (rz1, rz2, . . . , rzζ j

)

with [h j ] = {z1 < z2 < · · · < zζ j }. By Proposition 17, there exists a monomial order>( j )

on Rζ j that hasone∼ equivalence class and is compatible with theρ j -grading.
Then combine the monomial orders>(1), . . . , >(q) as in Proposition 16to define a

monomial order> of type P. By construction, this> is compatible with a(W, r, P)-
grading. �

Finally this leads to the main result:

Theorem 19. For any submodule M⊆ Rt , the set{
CG

∣∣∣∣G is areduced marked Gröbner basis for M with respect
to a monomial order > of type

([h1], [h2], . . . , [hq])
}

is a fan in the space
(
(R+)n

)q × Rt = Matq×n(R+) × Rt . Call the fan the([h1], [h2], . . . , [hq]) Gröbner fan for M.
Furthermore, the support of the fan isMatq×n(R+) × Rt .

One unexpected difference between the submodule case and the ideal case is that the
G-cones may not have interior points. The example below illustrates this property.

Example 20. Let R = Q[x, y, z]. Let M ⊆ R2 be the submodule generated by

G =
{

g1 = (x2 + z2)e1 + ye2, g2 = ye1 + (x2 + z2)e2,

g3 = (y2z − yz2)e2, g4 = (y2z2 − y3z)e1

}
.

Consider the monomial order> given by the matrices

U1 =



1 0 0

0
√

2
2

√
2

2

0 −
√

2
2

√
2

2


 U2 =




1 0 0

0
√

2
2

√
2

2

0
√

2
2 −

√
2

2


 ,
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the integer matrix
(

3 2
2 3

)
, the vectorsγ1 = (0, 0, 0) andγ2 = (−2, 1, 0), andσ = (1 2) ∈

S2. We computelm>(g1) = x2e1, lm>(g2) = x2e2, lm>(g3) = y2ze2, lm>(g4) = y2z2e1.
Furthermore, it can be checked thatG is a reduced Gröbner basis with respect to>.

The bounds forCG from the vectorg1 are(2, 0,−2) ·ω ≥ 0 and(2,−1, 0) ·ω − r ≥ 0.
The bounds from the vectorg2 are(2, 0,−2) ·ω ≥ 0 and(−2, 1, 0) ·ω−r ≤ 0. The bound
from the vectorg3 is (0, 1,−1) ·ω ≥ 0. The bound from the vectorg4 is (0,−1, 1) ·ω ≥ 0.

From the bounds forCG from g1 andg2 we get for ω = (ω1, ω2, ω3) the inequalities
ω1 ≥ ω3 and−2ω1 + ω2 ≤ r ≤ 2ω1 − ω2. From the bounds fromg3 andg4 we get
ω2 = ω3. This last restrictionω2 = ω3 shows thatCG does not have interior points.

Without loss of generality, in the remainder of this section, we define the integers
1 ≤ v1 < v2 < · · · < vq = t suchthat

[h1] = {1, 2, . . . , v1}
[h2] = {v1 + 1, . . . , v2}

...[
hq
] = {vq−1 + 1, . . . , vq},

which is justified by relabelling the vectorse1, . . . , et . Thus, |[h1]| = v1, and |[hi ]| =
vi − vi−1, for each 2≤ i ≤ q.

Also, in the remainder of this section, the definition of a product of polyhedra (or cones)
(seeDefinition 8) is slightly altered. ForCi , a cone inthe[hi ] Gröbner fan, 1≤ i ≤ q, we
define the cone

q∏
i=1

Ci :=

(W, r )

∣∣∣∣∣∣
W is a matrix with rowsω1, ω2, . . . , ωq,

andr is the concatenation ofr1, r2, . . . , rq,

suchthat(ωi , r i ) ∈ Ci , 1 ≤ i ≤ q


 .

Another way to view these Gröbner fans is as product fans (seeDefinition 8 of the
product complex) of one∼ equivalence class Gröbner fans.

Theorem 21. Let F be the P = ([h1], [h2], . . . , [hq]) Gröbner fan for a submodule
M ⊆ Rt . Let Fi be the[hi ] Gröbner fan for the submodule

Ni =


g =

∑
j ∈[hi ]

f j e j

∣∣∣∣∣∣∣∣
there existsh =


 ∑

vi +1≤c≤vq

fcec




where each fc ∈ R, andg + h ∈ M


 ⊆ R|[hi ]|,

for 1 ≤ i ≤ q. Then F=∏q
i=1 Fi .

Proof. First, it will be shown that each cone in theP Gröbner fan for a submoduleM ⊆ Rt

is a product of cones in the[hi ] Gröbner fans,Fi , 1 ≤ i ≤ q. Let G be a reduced marked
Gröbner basis forM with respect to any monomial order> of typeP. Define a set of maps
φa : M → Na for 1 ≤ a ≤ q by

t∑
i=1

fi ei �→
{ ∑

i∈[ha]
fi ei if f j = 0 for 1 ≤ j ≤ va−1,

0 otherwise.
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Note that the mapsφa are not homomorphisms fora > 1. Furthermore,φa(G) is a Gröbner
basis forNa with respect to>. (See this fact by checking the equivalence of the leading
term submodules.)

The coneCG is the setof points(W, r ) ∈ Matq×n(R+) × Rt = (
(R+)n

)q × Rt , with
matrix W = (ω1, ω2, . . . , ωq) and vectorr = (r1, . . . , rt ), that satisfy all the inequalities

(α − β) · ωa + r i − r j ≥ 0,

whereXαei = lm>(g) and Xβe j is a monomial ing for someg ∈ G, with i , j ∈ [ha]
for some 1≤ a ≤ q. However, the inequalities wherea = a0 define the coneCφa0(G) in

the [ha0] Gröbner fan ofNa0. So (W, r ) ∈ CG implies that(ωa, r (a)) ∈ Cφa(G) for each
1 ≤ a ≤ q, wherer (a) = (rva−1+1, . . . , rva). HenceCG is the product of the conesCφa(G)

for each 1≤ a ≤ q.
Since the support of theP Gröbner fan forM and the support ofF is the same, we

can conclude that all codimension zeroG-cones inF areG-cones in theP Gröbner fan
for M. �

2.2. Algorithms for computing fans

The algorithm for computing a general Gröbner fan in this article computes a product
of one ∼ equivalence class Gröbner fans. Once the computation is broken up into
computations of one∼ equivalence class Gröbner fans, there are two more steps. The
next step is finding all the codimension zero cones. The final step is finding the cones of
higher codimension. Therefore, the algorithm will be given in three parts.

Below is an algorithm for finding the codimension zero cones of a one∼ equivalence
class Gröbner fan and their corresponding reduced marked Gröbner bases for a given
submoduleM ⊆ Rt . This algorithm finds all the cones in the fan, but not necessarily
all the reduced marked Gröbner bases with respect to one∼ equivalence class monomial
orders for the submodule. Specifically, if there is aG-cone of codimension greater than
zero, then most probably the cone and its corresponding Gröbner basis will not be found.
However, byProposition 15such aG-cone is a face of a codimension zeroG-cone. So the
fan itself has been found, but not all theG-cones will necessarily be identified.

Algorithm 1. ONE_CLASS_FAN_SHAPE

INPUT: Generators{f1, . . . , fs} of a submoduleM ⊆ Rt .
OUTPUT: The maximal (codimension zero)G-cones of the one∼ equivalence class

Gröbner fan ofM and the associated reduced marked Gröbner basis for each cone, along
with any G-cones of codimension greater than zero that are fortuitously found in the
process.

INITIALIZATION: GF := ∅, SPAN := ∅.
WHILE SPAN ∩ ((R+)n × Rt

) 
= (R+)n × Rt DO
Choose(ω, r ) ∈ ((R+)n × Rt

) \ SPAN.
Let U be a matrix with first rowω and refined by the degree reverse lexicographic
order and letγi := (r i ) for 1 ≤ i ≤ t .
Let > be the monomial order given byt copies of the matrixU , vectorsγi for
1 ≤ i ≤ t , integersti j = 1 for 1 ≤ i , j ≤ t , andσ = identity ∈ St .
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G := reduced marked Gröbner basis forM with respect to>.

D :=
{
(X, Y)

∣∣∣∣∃g ∈ G suchthatX = lm>(g) and
Y is anon-leading monomial ing

}
.

CG := {(ω, r )| deg(ω,r,{1,2,...,t})(X) ≥ deg(ω,r,{1,2,...,t})(Y)∀(X, Y) ∈ D}.
GF := GF ∪ {(G, CG)}.
SPAN := SPAN ∪ CG

RETURN: GF

This algorithm will stop byTheorem 3andProposition 18. Alsonote that any algorithm
for the computation of reduced marked Gröbner bases can be used in this algorithm.

Next an algorithm for finding the cones in the fan of codimension greater than zero is
given. Such an algorithm finds all the reduced marked Gröbner bases with respect to one
∼ equivalence class monomial orders and each basis’s correspondingG-cone is presented.

The algorithm uses the following construction of a new monomial order from another
monomial order and aφ-grading. This construction will be used frequently throughout the
paper.

Definition 22. The monomial order>[φ,>] on Rt , whereφ is a grading ofMon(Rt ) and>

is a monomial order onRt , is defined by

X >[φ,>] Y ⇔
{

degφ(X) > degφ(Y), or
degφ(X) = degφ(Y) andX > Y.

Note that the monomial order>[φ,>] is a monomial order that is compatible with an
φ-grading onRt .

Since there is a one-to-one correspondence between reduced Gröbner bases for a given
module and the leading monomial submodules, one approach to the computation is to
search for leading monomial submodules. Furthermore, if we want to look for a reduced
Gröbner basis that is compatible with a certainτ -grading, it suffices tolook at the leading
monomial submodules of〈lmτ (M)〉. In particular, if one is looking for a Gröbner basis that
corresponds to a certain face in the Gröbner fan, it suffices to pick aτ on the relative interior
of the face and compute the leading monomial submodules for〈lmτ (M)〉. If the monomial
order>′ gives a new leading monomial submodule of〈lmτ (M)〉, then the monomial order
>[τ,>′] will give the same leading monomial submodule forM. The leading monomial
submodules can be found by computing the Gröbner fans for〈lmτ (M)〉. However, it is
only necessary to compute the Gröbner fans for types with more than one∼ equivalence
class, because the leading monomial submodules found from a computation of the one
∼ equivalence class Gröbner fan for〈lmτ (M)〉 are the same ones as are found by a
computation of the codimension zero cones in the Gröbner fan forM.

This idea can be used together withTheorem 21to find theG-cones of codimension
greater than zero. Specifically,Theorem 21states that the Gröbner fans for monomial
orders with more than one∼ equivalence class are products of one∼ equivalence class
Gröbner fans for submodules of lesser rank. So to find all the possible leading monomial
submodules, the idea above will be used recursively on these submodules of progressively
lesser rank until the rank one case is reached. The rank one case is the ideal case,
for which all the reduced marked Gröbner bases correspond to codimension zero cones



R.L. Auerbach / Journal of Symbolic Computation 39 (2005) 127–153 141

(see Cox et al. (2001), Mora and Robbiano(1988), Sturmfels (1996)), and hence the
algorithm will stop.

Note that the faces of highest dimension must be checked first. Otherwise if a proper
face of aG-cone is checked before the trueG-cone, the algorithm will mistake the smaller
subset for theG-cone.

The following is the algorithm (note thatAlgorithm 3GENERAL_FAN is used):

Algorithm 2. ONE_CLASS_FAN

INPUT: Generators{f1, . . . , fs} of a submoduleM ⊆ Rt .

OUTPUT: The one∼ equivalence class Gröbner fan ofM, along with the reduced marked
Gröbner basis corresponding to eachG-cone inthe fan.

INITIALIZATION:

GF :=ONE_CLASS_FAN_SHAPE(f1, . . . , fs).
D := set of codimension one faces of cones ofGF.

L := list of F ∈ PowerSet(D) that satisfy

( ⋂
X∈F

X

)∖( ⋃
X∈D\F

X

)

= ∅, with the

list ordered by reverse inclusion, i.e. if

( ⋂
X∈A

X

)
⊃
( ⋂

X∈B
X

)
, thenA is before B.

FOR EACH CONSECUTIVE F ∈ L DO

Let (ω, r ) ∈
( ⋂

X∈F
X

)∖( ⋃
X∈D\F

X

)
.

Let N := 〈lm(ω,r,{1,2,...,t})(M)
〉
.

For each ordered partition([h1], [h2], . . . , [hq]) of {1, 2, . . . , t} with q > 1 do

Let A := the ([h1], [h2], . . . , [hq]) Gröbner fan of N, computed using
GENERAL_FAN.

If for some reduced marked Gröbner basisH of N with respect to the
([h1], [h2], . . . , [hq]) monomial order>, the set of marked leading monomials of
H is not a set of marked leading monomials of some reduced marked Gröbner basis
in GF, then

G := the reduced marked Gröbner basis forM with respect to>[(ω,r,{1,2,...,t}),>].

GF := GF ∪
{(

G,

( ⋂
X∈F

X

))}
.

RETURN: GF.

This algorithm ends becauseL is a finite list,Theorem 3, and because the set of ordered
partition of {1, . . . , t} is finite. Also,Algorithm 3GENERAL_FAN, which computesA, is
given below. As in the previous algorithms, any method can be used for the computation
of the reduced marked Gröbner basis.

The following is an algorithm for computing the general([h1], [h2], . . . , [hq]) Gröbner
fan. It isbased onTheorem 21.
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Algorithm 3. GENERAL_FAN

INPUT: Generators{f1, . . . , fs} of a submoduleM ⊆ Rt . The ordered partition
([h1], [h2], . . . , [hq]) indicating the type of monomial orders in the fan.

OUTPUT: The([h1], [h2], . . . , [hq]) Gröbner fan ofM.
INITIALIZATION:

>:= the monomial order of type([h1], [h2], . . . , [hq]) with the order on the
components is degree reverse lexicographic order
G := the reduced marked Gröbner basis for〈f1, . . . , fs〉 with respect to>

FOR i := 1 TO q DO

Ji :=
{

g = ∑
r∈[hi ]

gr er ∈ Rt

∣∣∣∣∣f j − g = ∑
r∈[hi+1]∪···∪[hq]

gr er for some f j ∈ G

}

Fi := ONE_CLASS_FAN(Ji )

RETURN:
∏q

i=1 Fi

As in the previous algorithms, any method can be used for the computation of the reduced
marked Gröbner basis.

2.3. An example of a Gröbner fan computation

Let R = R[x, y, z]. Consider the following submoduleM ⊆ R4 generated by the
columns of the matrix


x y z 0

−y x 0 z
−z 0 x −y
0 −z y x


 .

We will compute the([h1], [h2], [h3]) Gröbner fan forM, with the three equivalence
classes[h1] = {1}, [h2] = {3, 4}, and[h3] = {2}.

Let > be a monomial order of type({1}, {3, 4}, {2}) with the order on each component
a degree reverse lexicographic order withx > y > z. We follow Algorithm 3 in the
computation. Then the reduced marked Gröbner basis forM with respect to> is

G =




xe1 − ye2 − ze3, ye1 + xe2 − ze4, ze1 + xe3 + ye4,

ze2 − ye3 + xe4 ,
(

x2 + y2 + z2
)

e2,
(

x2 + y2 + z2
)

e3,

−xze2 + xye3 + (y2 + z2)e4


 ,

with the marked leading monomials in boxes. So we can observe that

J1 = 〈x, y, z〉 ,

J2 = 〈(x2 + y2 + z2
)

e1, xye1 + (y2 + z2
)

e2,−ye1 + xe2
〉
,

J3 = 〈x2 + y2 + z2
〉
.

The idealJ1 has reduced marked Gröbner basis
{

x , y , z
}

for any term order. So

F1, the Gröbner fan forJ1, hasonly one cone.
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In the case of the idealJ3, the set{x2 + y2 + z2} is the only reduced Gröbner basis.
However, there are three choices for the leading term. So there will be three cones inF3,
the Gröbner fan forJ3.

For the submoduleJ2 we doa one∼ equivalence class Gröbner fan computation for
the submoduleJ2 ⊆ R2. The first step is theONE_CLASS_FAN_SHAPE computation. That
computation finds the following cones of codimension zero in a space parametrized by
ω1, ω2, ω3 ∈ R+ andr1, r2 ∈ R:

Point
Reduced marked

Gröbner basis Gröbner region

((1, 0, 0), (0, 0))

(
x2 + y2 + z2

)
e1

xye1 + (y2 + z2
)

e2

−ye1 + xe2

ω1 − ω2 − r1 + r2 ≥ 0
ω1 − ω2 + r1 − r2 ≥ 0
ω1 + ω2 − 2ω3 + r1 − r2 ≥ 0

((1, 0, 0), (0,−2))

(
x2 + z2

)
e1 + xye2(

x2 + y2 + z2
)

e2

ye1 − xe2

ω1 − ω2 − r1 + r2 ≤ 0
ω1 − ω3 ≥ 0
ω1 − ω2 ≥ 0

((2, 1, 0), (0, 2))

(
x2 + y2 + z2

)
e1

xye1 +
(

y2 + z2
)

e2

−ye1 + xe2

ω1 − ω2 + r1 − r2 ≤ 0
ω1 − ω2 ≥ 0
ω2 − ω3 ≥ 0

((2, 0, 1), (0, 2))

(
x2 + y2 + z2

)
e1

xye1 +
(

z2 + y2
)

e2

−ye1 + xe2

ω1 − ω3 ≥ 0
ω2 − ω3 ≤ 0
ω1 + ω2 − 2ω3 + r1 − r2 ≤ 0

((0, 1, 0), (0, 0))

(
x2 + z2

)
e1 + xye2(

y2 + z2 + x2
)

e2

ye1 − xe2

ω1 − ω2 − r1 + r2 ≤ 0
ω1 − ω2 + r1 − r2 ≤ 0
ω1 + ω2 − 2ω3 − r1 + r2 ≥ 0

((0, 1, 0), (0, 2))

(
y2 + x2 + z2

)
e1

xye1 +
(

y2 + z2
)

e2

−ye1 + xe2

ω1 − ω2 − r1 + r2 ≥ 0
ω1 − ω2 ≤ 0
ω2 − ω3 ≥ 0

((0.1, 1, 0), (0,−2))

(
x2 + z2

)
e1 + xye2(

y2 + x2 + z2
)

e2

ye1 − xe2

ω1 − ω2 + r1 − r2 ≥ 0
ω1 − ω2 ≤ 0
ω1 − ω3 ≥ 0
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Point
Reduced marked

Gröbner basis Gröbner region

((0, 1, 0.1), (0,−2))

(
z2 + x2

)
e1 + xye2(

y2 + x2 + z2
)

e2

ye1 − xe2

ω2 − ω3 ≥ 0
ω1 − ω3 ≤ 0
ω1 + ω2 − 2ω3 − r1 + r2 ≤ 0

((0.1, 0, 1), (0, 0))

(
z2 + x2 + y2

)
e1

xye1 +
(

z2 + y2
)

e2

−ye1 + xe2

ω1 − ω2 − r1 + r2 ≥ 0
ω2 − ω3 ≤ 0
ω1 − ω3 ≤ 0

((0, 0.1, 1), (0, 0))

(
z2 + x2

)
e1 + xye2(

z2 + x2 + y2
)

e2

ye1 − xe2

ω1 − ω2 − r1 + r2 ≤ 0
ω2 − ω3 ≤ 0
ω1 − ω3 ≤ 0

Now it remains to check forG-cones of higher codimension by checking the proper
faces of the codimension zero cones. There are 23 proper faces to check. Of the fifteen
proper faces of codimension one, two areG-cones. The proper faceω3−ω2 = 0 satisfying
ω1 − ω3 ≤ 0 andω1 − ω2 − r1 + r2 ≥ 0 is aG-cone. It is a face ofthe sixth and ninth
G-cones listed above. The following are the two reduced marked Gröbner bases that have
this proper face as aG-cone:

• −ye1 + xe2 ,
(

y2 + x2 + z2
)

e1, xye1 +
(

z2 + y2
)

e2.

• −ye1 + xe2 ,
(

z2 + x2 + y2
)

e1, xye1 +
(

y2 + z2
)

e2.

The proper faceω1 − ω3 = 0 satisfying ω2 − ω3 ≤ 0 andω1 − ω2 − r1 + r2 ≤ 0 is also a
G-cone for two distinct reduced marked Gröbner bases. It is a face of the second and tenth
G-cones listed above. The following are those reduced marked Gröbner bases:

• ye1 − xe2,
(

z2 + x2
)

e1 + xye2,
(

x2 + y2 + z2
)

e2.

• ye1 − xe2,
(

x2 + z2
)

e1 − xye2,
(

z2 + y2 + x2
)

e2.

Next, look at the proper faces of codimension two, followed by the proper faces
of codimension three. By looking at the leading monomial submodules with respect to
monomial orders of types({1}, {2}) and({2}, {1}), you can check that there are no further
reduced marked Gröbner bases found.

The final step is putting the three fansF1, F2, andF3 together as a product. Since there
are twelveG-cones inF2, threeG-cones inF3, andone G-cone in F1, there will be a
total of 36G-cones in the({1}, {3, 4}, {2}) Gröbner fan forM. However, since two of the
G-cones inF2 each correspond to two distinct reduced marked Gröbner bases, there are a
total of 42 distinct reduced marked Gröbner bases forM.
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3. Gröbner walk on submodules of free modules

This section is about the Gröbner walk on the Gröbner fan of a submoduleM of a free
module of finite rank. The discussion of the walk will be broken into subsections. First,
walking between monomial orders of the same type is discussed inSection 3.1. Section 3.2
covers walking between monomial orders of different type. A detailed example of the
algorithm is given inSection 3.3.

Again, consider a polynomial ringR = k[x1, . . . , xn], wherek is a field. LetZ be the
integers andR the reals. LetZ+ andR+ be the non-negative integers and non-negative
reals, respectively.

3.1. Walking between monomial orders of the same type

Let M ⊆ Rt be a submodule. Suppose that it is easier to compute a Gröbner basis
for M with respect to the monomial order>b, but one would like to have the Gröbner
basis forM with respect to the monomial order>e, where>b and>e are the same type
P = ([h1], [h2], . . . , [hq]). Let (W, r ) and(V, s) be the points corresponding to>b and
>e in the P Gröbner fan, respectively, as inProposition 12.

The walk uses a monomial order>[(W′,r ′,P′),>] on M, as inDefinition 22, defined with

respect to(W′, r ′) ∈ ((R+)n
)q′ × Rt , an ordered partitionP′ of {1, 2, . . . , t} into q′ non-

empty sets, and a monomial order> on M. Let Gb be the reduced marked Gröbner basis
for M with respect to>b. At the end of the walk, a Gröbner basis forM with respect to>e

will have been computed.
The idea, as in the ideal case,is to follow the linear path from(W, r ) to (V, s),

v(t) = (1 − t)(W, r ) + t (V, s), t ∈ [0, 1],
in the P Gröbner fan. Similar to the ideal case, each time the path crosses a boundary of a
cone,Theorem 6is used to find the reduced marked Gröbner basis for the adjacent cone.
Eventually, this will lead to computing the reduced marked Gröbner basis for the cone
containing the monomial order>e.

Theorem 6is the basis of the following algorithm for converting from a Gröbner
basisG with a cone in theP Gröbner fan to a Gröbner basis for the adjacent cone
along the path towards>e, where (W, a) is a point on the path common to the two
cones:

Algorithm 4. CROSSING

INPUT: The initial Gröbner basisG for a moduleM ⊆ Rt with respect to a monomial
order>b. The monomial order>e which is the ultimate final monomial order. The typeP.
A point (W, r ) in the P Gröbner fan forM on the boundary of the cone forG.

OUTPUT: The reduced marked Gröbner basis forM with respect to the monomial order
>[(W,r,P),>e] .

STEPS:
LM := lm(W,r,P)(G)

H := reduced marked Gröbner basis for〈LM〉 with respect to>[(W,r,P),>e]
LF := DivisionAlgorithm(LM, H,>b)
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G := Expand(LF, G)

G := Reduce(G,>[(W,r,P),>e])
RETURN G

In the above algorithm, the procedureDivisionAlgorithm takes eachh ∈ H , and applies
the division algorithm with respect to>b, and returns a list of pairs(pg, g) ∈ R×LM such
that

h =
∑

g∈LM

pgg.

The procedureExpand, takes each pair(pg, g) ∈ LF, and replacesg with the g′ ∈ G
satisfyinglm(W,r,P)(g′) = g. Then it returns the sum of each list:

fh =
∑

g∈LM

pgg′.

The procedureReduce interreduces the vectors with respect to the given term order, to get
a reduced marked list. As in the previous algorithms, Buchberger’s or any other Gröbner
basis algorithm can be used for the Gröbner basis computations.

The following is the algorithm for the walk:

Algorithm 5. SAME_TYPE_G-WALK

INPUT: An initial type P monomial order>b given by matricesU1, . . . ,Ut , vectors
γ1, . . . , γt , a t × t integer matrixTb, and anelementσb ∈ St as inTheorem 2. A final
typeP monomial order>e given by matricesV1, V2, . . . , Vt , vectorsδ1, δ2, . . . , δt , at×t
integer matrixTe, and anelementσe ∈ St as inTheorem 2. A reduced marked Gröbner
basisGb of M with respect to>b. Theordered partition P = ([h1], [h2], . . . , [hq]) of
{1, 2, . . . , t} which is thetype of both>b and>e.

OUTPUT: The reduced marked Gröbner basis forM with respect to>e.
INITIALIZATION:

Set> to be the monomial order>b

For i := 1 to q do
Let j ∈ [hi ]
ωi := first row ofUj
ρi := first row of Vj

For i := 1 to t do
r i := first coordinate ofγi
si := first coordinate ofδi

W := the matrix with rowsω1, ω2, . . . , ωq

r := (r1, r2, . . . , rt )

finished := false
G := Gb

If 0 ∈


ωa · (α − β) + r i − r j

∣∣∣∣∣∣∣∣
∃g ∈ G suchthat Xαei is the

identified leading monomial ofg
andXβe j is a non-leading
monomial ofg, i , j ∈ [ha]


 then



R.L. Auerbach / Journal of Symbolic Computation 39 (2005) 127–153 147

G := CROSSING(G,>,>e, W, r, P)

Set> to be the monomial order>[(W,r,P),>e]
WHILE finished = false DO

D :=




(β − α) · ωa + r j − r i(
(α − β) · (ρa − ωa)+

si − r i − sj + r j

)
∣∣∣∣∣∣∣∣∣∣

∃g ∈ G suchthat Xαei is the
identified leading monomial ofg and
Xβe j is a non-leading monomial of

g, i , j ∈ [ha], and(α − β) · (ρa − ωa)

+ si − r i − sj + r j 
= 0




If {t ∈ D|0 < t ≤ 1} = ∅ thenfinished := true
Else

d := min{t ∈ D|0 < t ≤ 1}
For i := 1 to q doωi := (1 − d)ωi + dρi
For i := 1 to t do r i := (1 − d)r i + dsi
W := the matrix with rowsω1, ω2, . . . , ωq
r := (r1, r2, . . . , rt )

G := CROSSING(G,>,>e, W, r, P)

Set> to be the monomial order>[(W,r,P),>e]
If d = 1 thenfinished := true

RETURN G

Note that the functionCROSSING is Algorithm 4. The algorithm ends byTheorem 3.

3.2. Walking between monomial orders of different type

It is also possible to do a Gröbner walk between a monomial order>b of type
Pb = ([h1], [h2], . . . , [hqb]) and a monomial order>e of a different type Pe =
([h′

1], [h′
2], . . . , [h′

qe
]). The ideais to create the list of types

(Pb, {1, 2, . . . , t}, ([h′
1], [h′

2] ∪ · · · ∪ [h′
qe

]), ([h′
1], [h′

2], [h′
3] ∪ · · · ∪ [h′

qe
]),

. . . , ([h′
1], [h′

2], . . . , [h′
qe−2], [h′

qe−1] ∪ [h′
qe

]), Pe).

For each successive typeP in the list, walk within theP Gröbner fan from a known reduced
marked Gröbner basis to a reduced marked Gröbner basis with respect to both a monomial
order of typeP and a monomial order of the next type in the list. The starting point of the
Gröbner walk in the next Gröbner fan is this reduced marked Gröbner basis.

Suppose>b is given by matricesU1,U2, . . . ,Ut , vectorsγ1, γ2, . . . , γt , a t × t integer
matrix Tb, and anelementσb ∈ St as inTheorem 2. Denote by∼b the equivalence relation
on {1, 2, . . . , t} given by >b. Suppose we would like to compute the reduced marked
Gröbner basis of a submoduleM ⊆ Rt with respect to>e.

The first step is to do a Gröbner walk in thePb Gröbner fan from>b to a reduced marked
Gröbner basis that is also a reduced marked Gröbner basis with respect to a monomial
order with one∼ equivalence class. Monomial orders with one∼ equivalence class have
the property that the matrices describing the term orders as inTheorem 2all have the
same first row. So for convenience, we pick aj0 ∈ {1, 2, . . . , t} and walk to the reduced
marked Gröbner basis with respect to a monomial order>2 where the term order on each
component is given by the matrix for thej0 component,Uj0. Let l be the number of rows
of Uj0. Specifically, the monomial order>2 is described as inTheorem 2by t copies of
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the matrixUj0, t zero-vectors of lengthl , a t × t integer matrix with thei j th entry equal to
zero if thei j th entry ofTb is zero,otherwise the entry is one, andσb ∈ St .

The reduced marked Gröbner basisG2 for M with respect to>2 is also a reduced
marked Gröbner basis with respect to a one∼ equivalence class monomial order>3. The
monomial order>3 can be described as inTheorem 2by t copies of the matrixUj0, a t × t
matrix T2 of all ones,σb ∈ St , and a set of vectorsζ1, . . . , ζt of length l which will be
computed below. SinceT2 is a matrix of all ones,only the first coordinates of the vectors
ζi are important, so we may assign the remaining coordinates to zero. Letω1 be the first
row of thematrix Uj0. The firstcoordinates of the vectorsζ1, . . . , ζt mustsatisfy:

(1) If i ∼b j then the first coordinates ofζi andζ j are the same.
(2) For eachg ∈ G2 with marked leading termXαei , givenany other termXβe j in g with

i 
∼b j , the first coordinate ofζi must be greater than the first coordinate ofζ j plus
ω1 · (β − α).

To find a set of values to satisfy these conditions, first, for eachi ∈ [h1], set the first
coordinate ofζi equal to zero. For eachj ∈ {2, 3, 4, . . . , qb}, compute the maximummj

of the set{
ω1 · (β − α)

∣∣∣∣Xαec is the leading monomial for someg ∈ G with
c ∈ [h j −1] andXβed a term ing with d 
∈ [h j −1]

}
.

For eachi ∈ [h j ], 2 ≤ j ≤ q, set the first coordinate ofζi equal to− j −∑ j
v=2 mv.

For each subsequenti := 1, 2, 3, . . . , qe−1, we perform the following steps to get from
a type([h′

1], . . . , [h′
i−1], [h′

i ] ∪ · · · ∪ [h′
qe

]) Gröbner fan to a type([h′
1], . . . , [h′

i ], [h′
i+1] ∪

· · · ∪ [h′
qe

]) Gröbner fan. Letρ(m) be a vector of lengtht , where thej th component ism
if j ∈ [h′

i ], andzero otherwise. We letW be ani × n matrix where each row isω1. We
do a Gröbner walk in the([h′

1], . . . , [h′
i−1], [h′

i ] ∪ · · · ∪ [h′
qe

]) Gröbner fan along the ray
(W, ζ + ρ(m)), m ≥ 0, until we reach anm0 such that the ray(W, ζ + ρ(m)), m ≥ m0, is
contained in a single cone. The reduced marked Gröbner basis for this cone is a Gröbner
basis with respect to some monomial order of type([h′

1], . . . , [h′
i ], [h′

i+1] ∪ · · · ∪ [h′
qe

]).
Finally, the walk ends in thePe Gröbner fan, where we followAlgorithm 5

SAME_TYPE_G-WALK to get to the reduced marked Gröbner basis for>e.
Here is the algorithm for this walk:

Algorithm 6. TYPE_CHANGE_G-WALK

INPUT: An initial monomial order>b given by matricesU1, . . . ,Ut , vectorsγ1, . . . , γt ,
a t × t integer matrixTb, and anelementσb ∈ St as in Theorem 2, with Pb =
([h1], [h2], . . . , [hqb]) as its type. A final monomial order>e given by matrices
V1, . . . , Vt , vectorsδ1, . . . , δt , a t × t integer matrixTe, and anelementσe ∈ St as in
Theorem 2, with Pe = ([h′

1], [h′
2], . . . , [h′

qe
]) as its type. The reduced marked Gröbner

basisGb of M with respect to>b.
OUTPUT: The reduced marked Gröbner basisGe of M with respect to>e.
INITIALIZATION:

G := Gb

Let j0 ∈ [h1]
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ω1 := the first row ofUj0
l := thenumber of rows ofUj0
ζ := zero-vector of lengthl
A := t × t matrix with the i j th entry equal to zero if thei j th entry ofTb is zero,
otherwise thei j th entry is 1

G := SAME_TYPE_G-WALK

(
(U1, . . . ,Ut , γ1, . . . , γt , Tb, σb), G,

(Uj0, . . . ,Uj0, ζ, . . . , ζ, A, σb), Pb

)
>:= the monomial order defined byt copies of the matrixUj0, t copies of the vector
ζ , the matrix A, andσb ∈ St as inTheorem 2
a1 := 0
For each j ∈ [h1] do

ζ j := ζ

bj := 0
For i := 2 toqb do

ai := −1 + ai−1 − max


ω1 · (β − α)

∣∣∣∣∣∣∣∣
∃g ∈ G with Xαec, the

identified leading term ofg
with c ∈ [hi−1], andXβed,

a term ing with d 
∈ [hi−1]




For each j ∈ [hi ] do
ζ j := (ai , 0, . . . , 0) such that the vector has lengthl
bj := ai

FOR i := 2 TO qe DO

D :=

ω1 · (α − β) + bc − bd

∣∣∣∣∣∣
∃g ∈ G with Xαec the identified leading
term ofg with c ∈ [h′

p] for somep > i
andXβed a term ing with d ∈ [h′

i ]




P := ([h′
1], [h′

2], . . . , [h′
i−1], [h′

i ] ∪ [h′
i+1] ∪ · · · ∪ [h′

qe
])

W := ani × n matrix where each row isω1
If 0 ∈ D then

a := (b1, . . . , bt )

G := CROSSING(G,>,>e, W, a, P)

Set> to be the monomial order>[(W,a,P),>e]

D :=


ω1 · (α − β) + bc − bd

∣∣∣∣∣∣∣∣
∃g ∈ G with Xαec the identified

leading term ofg with c ∈ [h′
p] for

somep > i andXβed

a term ing with d ∈ [h′
i ]




While {x|x ∈ D, x > 0} 
= ∅ do
d := min{x|x ∈ D, x ≥ 0}
For j ∈ [h′

i ] dobj := bj + d
a := (b1, . . . , bt )

G := CROSSING(G,>,>e, W, a, P)

Set> to be the monomial order>[(W,a,P),>e]

D :=


ω1 · (α − β) + bc − bd

∣∣∣∣∣∣∣∣
∃g ∈ G with Xαec the identified

leading term ofg with c ∈ [h′
p] for

somep > i andXβed

a term ing with d ∈ [h′
i ]



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For each j ∈ [h′
1] ∪ · · · ∪ [h′

i ] do ζ j := (bj , 0, 0, . . . , 0) whereζ j has lengthl

A := t × t matrix with the i j th entry equal to zero if thei j th entry of Te is zero,
otherwise thei j th entry is 1

RETURN SAME_TYPE_G-WALK

(
(Uj0, . . . ,Uj0, ζ1, . . . , ζt , A, σe), G,

(V1, . . . , Vt , δ1, . . . , δt , Te, σe), Pe

)

Note that the functionCROSSING is Algorithm 4. Also, the algorithm ends byTheorem 3.

3.3. An example of a Gröbner walk

Let R = R[x, y, z]. Consider the submoduleM ⊆ R3, from the example inSection 2.3,
generated by the columns of the following matrix:


x y z 0

−y x 0 z
−z 0 x −y
0 −z y x


 .

The set of marked vectors

G =




xe1 − ye2 − ze3, ye1 + xe2 − ze4, ze1 + xe3 + ye4,

ze2 − ye3 + xe4 ,
(

x2 + y2 + z2
)

e2,
(

x2 + y2 + z2
)

e3,

−xze2 + xye3 + (y2 + z2)e4




is a reduced marked Gröbner basis forM with respect to a monomial order>b of type
({1}, {3, 4}, {2}) that is defined by the matrices

U1 = U2 = U3 = U4 =

1 0 0

0 1 0
0 0 1


 ,

the vectorsζ1 = ζ2 = ζ3 = ζ4 = (0, 0, 0), the matrix

Tb =




3 0 0 0
0 3 0 0
0 0 3 3
0 0 3 3


 ,

and the element(1 4 3 2) ∈ S4, as inTheorem 2.
Suppose we want to compute the reduced marked Gröbner basis forM with respect to

the monomial order>e of type({1, 3}, {2, 4}) defined by the matrices

V1 = V3 =

1 0 0

0 1 0
0 0 1


 andV2 = V4 =


0 1 0

0 0 1
1 0 0


 ,
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the vectorsδ1 = δ2 = δ3 = δ4 = (0, 0, 0), the matrix

Te =




3 0 3 0
0 3 0 3
3 0 3 0
0 3 0 3


 ,

and the element(1 4 2) ∈ S4, as inTheorem 2. Algorithm 6 will be used to do the
computation.

First, notice that sinceU1 = U2 = U3 = U4, it is not necessary to use the algorithm
SAME_TYPE_G-WALK because the initial monomial order>b corresponds to a point in the
fan for which there is a monomial order of type{1, 2, . . . , t} with the same reduced marked
Gröbner basis forM. We want to find a monomial order of type{1, 2, . . . , t} that has the
reduced marked Gröbner basisG for M. Weknow that the matrices will be four copies of
U1, the integer matrix will be a matrix of all ones, the element ofSt will be (1 4 3 2).
We determine the vectorsζ1 = (0, 0, 0), ζ3 = ζ4 = (−2, 0, 0), andζ2 = (−3, 0, 0). So
now we have the monomial order of type{1, 2, . . . , t} that was needed.

Next we walk within the{1, 2, . . . , t} Gröbner fan from the point

((1, 0, 0), (0,−3,−2,−2)) ,

which corresponds to the monomial order above, to a point in a fan for a reduced marked
Gröbner basis that is also a reduced marked Gröbner basis with respect to a monomial order
of type({1, 3}, {2, 4}). The walkis in the direction of the vector((0, 0, 0), (1, 0, 1, 0)). The
first cone boundary that is crossed by the path is at the point

(W, a) := ((1, 0, 0), (1,−3,−1,−2)) .

So we compute

LM = lm(W,a,P)(G) =
{

xe1, ye1, ze1,−ye3 + xe4, x2e2, x2e3, xye3

}
.

The reduced marked Gröbner basis for〈LM〉 with respect to>e is

H =
{

xe1 , ye1 , ze1 , ye3 − xe4, x2e2 , x2e3 , x2e4

}
.

Next, the division algorithm is used to determine how the vectors inH can be written as a
combination of the vectors inLM. ThenExpand is used to replace the vectors inLM with
the original vectors inG in the combinations. This new set of vectors replaces the setG.
ThenReduce interreduces the vectors inG to get a reduced marked Gröbner basis. The
result is the following reduced marked Gröbner basis forM:

G =




xe1 − ye2 − ze3, ye1 + xe2 − ze4, ze1 + xe3 + ye4,

−ze2 + ye3 − xe4,
(

x2 + y2 + z2
)

e2,
(

x2 + y2 + z2
)

e3,(
x2 + y2 + z2

)
e4


 .
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Continuing along the path we determine that the remainder of the path is contained in
a single cone in the Gröbner fan. Thus,G is a reduced marked Gröbner basis for some
monomial order of type({1, 3}, {2, 4}).

The monomial order of type({1, 3}, {2, 4}) that hasG as a reduced marked Gröbner
basis is defined by four copies ofU1, the vectorsζ1 := (1, 0, 0), ζ2, ζ3 := (−1, 0, 0), ζ4,
the element(1 4 3 2) ∈ St , and the integermatrix 1

3Te, as inTheorem 2.
The final stage of the algorithm is theSAME_TYPE_G-WALK to the point corresponding

to >e. The walk is from the point
((

1 0 0
1 0 0

)
, (1,−3,−1,−2)

)
to the point((

1 0 0
0 1 0

)
, (0, 0, 0, 0)

)
. The first cone boundary along the straight line path is at the point

(W, r ) :=
((

1 0 0
0.5 0.5 0

)
, (0.5,−1.5,−0.5,−1)

)
. Using the same procedures as above, we

compute the reduced marked Gröbner basis forM with respect to a>[(W,r,({1,3},{2,4})),>e]
monomial order

G =



xe1 − ye2 − ze3, ye1 + xe2 − ze4, ze1 + xe3 + ye4,

−ze2 + ye3 − xe4,
(

y2 + x2 + z2
)

e2,
(

y2 + x2 + z2
)

e4


 .

So this step of theSAME_TYPE_G-WALK is complete.

Finally we determine that the points
((

1 0 0
0.5 0.5 0

)
, (0.5,−1.5,−0.5,−1)

)
and((

1 0 0
0 1 0

)
, (0, 0, 0, 0)

)
are in the same cone. So the algorithm is complete andG is the

reduced marked Gröbner basis forM with respect to>e.
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