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Abstract

This paper extends the theory of the Grébner fan and Grobner walk for ideals in polynomial rings
to the case of submodules of free modules over a polynomial ring. The Grébner fan for a submodule
creates a correspondence between a pair consisting of a cone in the fan and a point in the support of
the cone and a pair consisting of a leading monomial submodule (or equivalently, a reduced marked
Grobner basis) and a grading of the free module over the ring that is compatible with the choice of
leading monomials. The Grobner walk is an algorithm based on the Grébner fan that converts a given
Grobner basis to a Grébner basis with respect to a different monomial order; the point being that the
Grobner walk can be more efficient than the standard algorithms for Grébner basis computations
with difficult monomial orders. Algorithms for generating the Grébner fan and for the Grébner walk
are given.
© 2005 Published by Elsevier Ltd
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1. Introduction

Grobner basis theory is a fundamental tool of computational commutative algebra.
The theory has been advanced by the introduction of techniques from combinatorics and
polyhedral geometry. In particular, such techniques were used to create the concept of the
Grobner fan and Grébner walk for an ideal of a polynomial ring.
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These advances were sparked by the rediscovery of a classification of term orders on
a polynomial ring byRobbiano(1985. He showed that term orders are in one-to-one
correspondence with a certain subset of real matrices.

On the basis of this classificatiolora and Robbian¢1988 created the Grobner fan
of an ideal of a polynomial ring.

Basal on the Grobner fan, the Grobner walk is an algorithm, introduce@dlart et al.

(1997, that converts one Grdbner basis of an ideal of a polynomial ring to another. This
technique is particularly useful for computing Grébner bases with respect to elimination
term orders. Grobner bases with respectetonination term ordrs are necessary in
many applications, but are notorious for their inefficiency when used with the standard
algorithms.

This paper extends the Grdbner fan and the Grobner walk to the case of submodules of
free modules over a polynomial ring. (Previous workAssi et al.(200Q 2001 andSmith
(2007 has extended the Grdbner fan to the Weyl algebrafamdodules, although without
a ommplete consideration of all possible monomial orders. AlsdSs8® et al(2000.)

Section 1.1describes the classifications of term orders and monomial orders and states
the known result that every submodule has finitely many reduced marked Grobner bases.
Section 1.Xiscusses the relevant properties of graded modules and their Grébner bases,
and it introduces the concept compatibility that is used tossaiate a monomial order
with a leading term submodule. Background on polyhedral cones is givBadtion 1.3
Sectbns 2and3 expand the Grdbner fan and Grébner walk to the case of submodules of
free modules of finite rank.

1.1. Monomial orders and Grobner bases

Consider a polynomial rindR = K[X4, ..., Xn], wherek is a field. Atermis a power
productX® = x{'x%---xn" € R, wherea = (a1, ...,an). Let Z be the integersQ
the rationalsR the reals. LeZ*, QT, andR™ be the non-negative integers, rationals, and
reals, respectively.

A term oder is a totalorder on the terms oR such that 1 is the least element
and multiplication by a term does not change the relative order of the té&uatkhiano
(1989 redisovered the classification of term orders &as m x n matices with
real entries. This classification was originally done Riguier (1910, Kolchin (1973,
Trevisan (1953, and Zaiceva (1953. Robbiano classified total orders @' that are
compatible with its properties asZmodule. Such an ordering can be restricted to a
term oderifa > (0,...,0) foralla € (ZT)"\ {(0, ..., 0)}. The following is Robbiano’s
theorem.

Theorem 1. There is a one-to-one correspondence between linear orderen Q"
compatible with itsZ-module structure and k< n matrices over R with rows
(uz, Uy, ..., Ug) satisfying:

D k=n

(2) let d be the dimension of th@-vector space spanned by the entries ¢of then
di+dp 4+ dk=n;

3) Juj| =1, fori =1,...,k;
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(4) u; is in the real completion of the rational subspace orthogonal to the real space
generated by y ..., uj_1,fori =2,..., k.

The correspondence is given by* X# if and only if

(a'ulsa'u27"'7a'uk) >lex (ﬁ'ulvﬁ'u27"'1ﬁ'uk)'

where> 1.4 is the wsual lexicographic order.

In addition, such an order o" resticts to a term orar on R if and only if the first
non-zero entry in each column of the matrix is positive. In particular, a term order has a
matrix in which the first row w has non-negative entries.

Next we generalize to monomials in a free module over a polynomial ring. Consider
R!, the free module orR with t components. Leé;, ey, . .., & be the usual standard
basis vectors ofRl. A monomialof R! is an elemenX = X%g = xi‘l - Xp'g, 1<
i < t. After Robbiano’s result, several people worked on classifying monomial
orders for free modules over polynomial rings. After several partial classifications
(e.g. Cara Ferro and Sit(1994, Caboara and Silvestr1999), Rust amd Reid (1997,

Rust (1998, and independentijHorn (1999, classified all monomial orders on free
modules.

In this paper, Rust's and Reid’s classification of monomial orders will be used. Their
classification is as follows:

Theorem 2. Consider a set of matrices with real entrieg,Wo, . . ., U;, where tle matrix
U; is an n x n matrix desribing a term order on R as iTheoreml, a sd of vectors
YL y2,...,n Withy, € R for 1 <i <t, atx t matrix of non-negative integerg;j ),
and an element € §, the synmetricgroup on the sefl, 2, ..., t}. Define m; to be
the largest non-negative integer such that matricgsadd U; have the first i rows in
common. Suppose the entries of the matyjy ando € § satisfy:

(1) 0<tj <mjforl<i,j<t;

(2 ti =mj =niforl<i <t;

) tij =tjiforl<i,j<t;

(4) tik = min(tjj, tjx) for 1 <i, j,k <t.

(5) Wheneverjt > maxij,tjk) ando(i) < o(j) for somel < i, j,k < t, then
ok) <a(j).

LetPrq(«) denote projection onto the §ird coordinates of the vecter. Then he fdlowing
defines a monomial order on R:

prtij Vi + Vi) >lex Prtij (Ujﬁ + J/j)v or

o Ba.
X'a > X'e < {Prtij(Uia—l—m)=Prtij(Ujﬁ+yj)andG(i) > a(j).

Conversely, any monomial order on' Reanbe represented as above by a set of matrices
Uy, ..., U, vectorsys, ..., », at x t matrix of non-negative integerdjj ), ando € §
satisfying the onditions above.

Theleading monomialith respect to monomial order of f € R, denoted asim.. (f),
is the monomial inf which is the largest with respect to. The leading monomial notation
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will also be applied to sets, i.e. B € R', Im-(S) = {Im. (f)|f € S}. LetM < R! be
a sibmodule. A seG = {01,092, ...,0da} S M is aGrobner basidor M with respect to
monomial ordet if (1m- (G)) = (Im- (M)). A reduced Grdbner basis ®&r a submodule
M C R, is aGrobner basis with respect te such that for eacly € G, there are no
monomials ing that are divisible by any monomials im.. (H), for H = G\ {g}, and
for eachg € G, the coefficient for the monomiah.. (g) is 1. A marked Grobner basis G
for a submodulevl € R! is a Grébner basis with respect to some monomial order, such
that eachg € G has its leading monomial identified. For more background on Grdbner
bases for submodules of free modules over polynomial ringsidaes and bustaunau
(1999, Kreuzer and Robbian@000, Cox et al.(1998, or Eisenbud1995.

For the existence of either a Grobner fan or a Grobner walk, the following theorem is
necessary.

Theorem 3. For any submodule Mc R!, thereare only finitely many reduced marked
Grébner bases.

The proof of the result is essentially the same as the proof for the case of reduced marked
Grobner bases of an idedl € R. This proof for the ideal case can be found in the first
chapter ofSturmfels(1996 and its accompanying note.

1.2. GradedR-modules and monomial orders

We letR = R U {—oo}. R has the usud abelian binary operation of addition with
the extraproperty —oo + ¢ = —oo for all ¢ € R, and the oder onR is the usual
order with —oo < c for all ¢ € R. Note hatR is an ordered abelian monoid. When
R = K[x1, X2, ..., Xn] is graded over the abelian mondikf, R, denotes the subspace
of homogeneous components of degeeeFor an R-module M that is anRa-graded
R-module, thek-subspace of homogeneous components of dagredl be denoted as
M. All the gralings of R that are considered in this par have the property that the
variablesx, . .., x, are homogeneous. Also, all the gradingsRéfthat are considered
have the property that the standard basis ve@&grs ., & are homogeneous.

Suppose we have aR?-grading onR and anI@a-grading on theR-module R!. Let
Terms(R) be the multiplicative abelian monoid of the termsRfThegrading onR can
be represented by the homomorphism Terms(R) — R?2 given by X% — B where
X® € Rg. LetMon(R') be the monomials oR!. Thegrading onR! can be represented by
the homomorphisn® : Mon(R') — RR2 suchthatX — « if andonly if X € (R!),. The
map ¢ is compatiblewith the mapz if ¢(YX) = t(Y) + ¢(X) for Y € Terms(R) and
X € Mon(RY). To diminate ambiguity, when there is more than one grading considered on
a module, the wordp-degree will be used to refer to the image of a monomiakhAlso,
an element oR! will be calledg-homogeneousif every monomial in the element has the
sane image undep. Furthermorethenotationdeg¢(X) = ¢(X) for X e Mon(RY) will be
used in the paper.

Definition 4. Extend the lexicographic order t®2 in the obvious way. Letf =
St fie € R, with fj = Y@ X% e Ri =1,....t & # 0. Then define the
leading monomialswith respect to grading ¢ as
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1my (F) = Z aj X% g,
iLj st ¢(X% e)=¢ (X g)Vk,|

(The leading monomial notation will also be applied to sets, for which we mean the set of
leading monomials, one for each element of the set.)

Definition 5. A monomial order> on R! is compatible with anf&a—grading given by the
map¢ if, given monomialX, Y € Mon(R!),

X>Y = ¢(X) >1ex ¢(Y).

More generally, aﬁf@a-grading ofR! given by the mag is compatible on a marked set
S c RUif, given anf € Swith marked leading monomia, theng (X) >1¢x ¢ (Y) for all
monomialsY in f, or equivalently 1m. (1mg(f)) = 1m. (f).

In this paper, we will frequently be considering the case of a monomial orden R
with reduced marked Grobner bagior a submodulé/ C R! that is compatible with an
R2-grading onG.

The standard results regarding Grébnerdsaznd the property of homogeneity apply.
Specifically, ap-homogeneous submodule hag-domogeneous Grébner basis. Also, if
G is a reduced marked Grobner basis with respect to monomial erdkat is compatible
with a¢-grading onG, thenlmy(G) is a reduced Grobner basis fbrm(,)(G)) with respect
to >.

The following theorem is the main tool for the Grobner walk for modules. The proof is
essentially the same as in the ideal case.Gwgeet al.(2001).

Theorem 6. Let M C R! be a submodule. Let there be ﬁﬁ-grading on R defined byp.
Let>1 and>> be monomial orders which are compatible withand let G be a Grébner
basisfor M with respect to>». Let H be a Grobner basis fofnmd,(M)) with respect to>1.
Using thedivision algorithm with respect te-», write eachh € H as

h=>" pgnlms(Q),
geG

with pgh € R. For eacth € H définefy, by

fh=_ Pghg.

geG

Then the set = {fh|h € H} forms aGrébner basis for M with respect t;.
1.3. Polyhedral geometry

This section is background for the polyhedral geometry that is used in the paper. See
Sturmfels(1996 for more detdls. LetR be the real numbers. L& be the non-negative
real numbers.
A polyhedrorin R! is a finite intersectionfaclosed half-spaces iR. Thus a polyhedron
can be written aP = {w € R'/A-w < y}, whereA is a matrix witht columns and
y € R". If each of thesupportinghyperplanes of the polyhedron intersects the origin, or,
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equivalently,P = {w € R'|A-» < (0,0,...,0)}, then he polyhedron is golyhedral)
cone For anypolyhedral coné® there exist vectorss, wy, . . ., wm € Rt suchthat

P={aiw1+ -+ amomlat, ..., am € RT}.

A faceof a polyhedrorP € R! is a sibset ofP which maximizes some linear functional,
i.e. for everyw e Rt,

face,(P)={ue Plwo-u>w-vforallv e P}

is a face ofP. The dimension zero faces are calletices and the codimension one faces
are calledfacets Note hat the property of being a face is transitive, i.eFifs a face of
P andP is a face ofQ, thenF is a face ofQ. Theproof of this fact is straightforward. A
(polyhedral) complexi is a finite collection of polyhedra iRt such that if P € A andF

is a face ofP, thenF € A, and if P, P, € A andPy N Py #£ @, thenPy N Py is a face of
P1 and P,. Thesupportof a complexA is |A] = Upca P. A complex whch consists of
cones is called &n.

Example 7. The Grébner fan for an ideal is an example of a fan. Geg et al.(2007),
Mora and Robbiang1988, or Sturmfels(1996 for more detals. A main result of this
paper is a generalization of the fan for submoduleR'of

The following construction will be used to create fans.
Definition 8. Let P, € RY be a polyhedron for X i < m. Then theproduct polyhedron
of the set{P1, P>, ..., Py} is

m
[]P =11 02....0mlei € P for1 <i <mj c R+,
i=1

Moreover, let A; be a complex irRY, for 1 < i < m. Then the product complex
[T, 4i is a conplex in [T, RY whereQ e [, 4; if andonly if Q = [[[_, P for
some boice of B € A; with1 <i <m.

2. The Grobner fan for submodules of R?

The aim of this section is to generalize the concept of a Grobner fan to include
submodules of free modules of finite rank. We generalize the notion of the position over
term type monomial order to be any monomial order for which there existd &£ j <t
suchthat X > Yej for all X,Y e Terms(R). This notion corresponds to the case of
tij = 0in the classification of monomial ordersTineorem 2

Proposition 9. Given a representation of the monomial order ag hreoren?, let ~ be a
relation on the sef1, ..., t} defined by

i ~jifandonlyifty #0,1<i,j <t.

The relation~ is an equivalence relation. Furthermorey is a well-defind property of
the monomial order, i.e. the equivalence relation is independent of its representation
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in Theoren?. Moreover, the monomial order gives a natural, well-defined ordering of the
equivalence classes: for# j, the equivalence class of i is greater than the equivalence
class of |, ifg > e;.

Proof. Itis straightforward to check that is an equivalace relation.
Suppose a monomial order has the following two sts of descriptors:

(1) Let one set of descriptors for be the matricedJ;, vectorsy, integerstjj for
1<i,j<t,ando € §.

(2) Let the second set of descriptors ferbe the matrice¥/, vectorssj, integersujj for
1<i,j<t,andr € §.

Suppose there exist k< i, ] < t suchthattj = 0 andvj # 0. Without loss of
generdlity, assumer (i) > o (j). Herce, the first set of descriptors says thdte, > XPe;
for all o, B € (Z™)". Howevwer, using the second set of descriptors, because non-trivial
linear functions are unbounded, there exigtsay; € (Z1)" suchthat X*g < X*2gj,
contradicting the first set of descriptors. So there canngt be 0 in one set of dscriptors
andvjj # 0 in theother set. Thereforey is a well-defined property of a monomial order.

It suffices to show that for, j € {1,...,t} representatives ofistinct equivalence
classes for a monomial order suchthate > ej, if i/, j € {1,...,t} suchthati’ ~ i
andj’ ~ j, thene’ > ej.. Suppose not. Since ~ i’, thereexigts o, o’ € (Z*)" such
thatX*'es > X%e, and sinilarly, there exists3, 8 € (Z*)" suchthat Xfe; > X#'ej.
Therefore,

XA Hhe > X+ g, > X¥HF g, > X9 g,

However, since andj are in distinct equivalence classes with respect tandg > €j,
any set of matriceld,, vectorsy,, integerdapforl < a,b < t,ando € S representing-,

as in Theorem 2 has the poperty thattj; = 0 ando(i) > o(j). However, such
descriptors require thax**#'g > X""*ﬂej, contradicting the inequality above. Thus
the~-equivalence clsses with respect to have a natural, well-defined order with respect
to>. O

The following definition is used to classifyeéhmonomial orders based on the equivalence
relaion ~.

Definition 10. Suppose a monomial order hasq equivalence classes with respectip
andhy, hy, ..., hq € {1, ..., t} are representatives for eachequivalence class. Léhj]
denote the equivalence class thatrepresents. Then we say the monomial orglés of

type ([hal, [hal, ..., [hql), if
[h1] > [h2] > --- > [hq].

Note that for monomial orders for which~ j foralli, j € {1, ...,t}, instead of referring
to them as typé[i ]), the morecompact notatiofi ] will be used.
There will be separate Grébner fans for each configuration of equivalence classes.
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2.1. The Grobner fans

The fans are based on the following set of gradingRahd R'.

Definition 11. Let (W,r) € Matgun(R") x RY, whereMatqxn(RT) denotes the set of
g x n matrices with non-negative real entries ane-= (ri, ..., rt). The marix W with
rows(wi, .. ., wq) defines arR9-grading onR given by the map

X (0 w10 w2, ...,0- 0q).

Call this grading ofR the W-grading.

Note thatR is an ordered abelian monoid. LBt= ([h1], [h2], ..., [hg]) bea partition
of {1, 2,...,t}, 1 < q < t. Furthermore(W, r, P) defines arﬁq-grading onR! given by
the mapX“ey — (i1, ...,iq), where

i _[a-a)j +rp if bel[hj],
Il - otherwise.

Call this grading ofR! the (W, r, P)-grading.

The definition above also establishes the identification 6lar, P)-grading with a
point (W, ) € Matgxn(RT) x R

Similarly, the proposition below estalfliss the identification of a monomial order of
type P = ([h1], [h2], ..., [hg]) and a grading by a point iMlathn(RJf) x RL.

Proposition 12. Let > be a type P= ([h1], [h2], ..., [hq]) monomial order on R As
in Theoren?, let matices U, vectorsy, integers § (1 < i,j < t),ando € §

define the monomial order. Then> is compatible with th&W, r, P)-grading, where
the vector r= (ry, ra, ..., ry) with rj the first component of the vectgy and the matrix
W = (wi1,...,0q) With wa the common st row of Uj for j e [hy]. In particular,

1m. (Imw,r,py(f)) = 1m. (f) for eachf € R

Proof. SupposeX®e; > XPeq with c € [hc, ], d € [hg, ], X*e: € R}, andXPeqy € RY.

If ¢, # dy, then the result follows by looking at which componentsacindb are
not —oo.

If ¢, = dy, the jth component of andb is —oo for j # c,. The valueSwe, - @) + r¢
and(we, - B) + rq are thec,th components o& andb, resgectively. Sincec ~ d, we have
tcg = 1. Since

Prtcd (UCa + VC) >lex Prtcd (Ud:B + )’d),

by looking at the first coordinates of each, we get1.x b. O

Next, we defne the cones for the fan, a construction that is essentially induced by the
identifications above.
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Definition 13. Each reduced marked Grobner baSisfor a submoduleM < R! with
respect to a monomial order of type P = ([hl], [ho], ..., [hq]) is associated with a
subsetCg C Mathn(RJr) x R, called aG-cone, defined by

Ce = {(W, r) € Matgen(R") x R > is compatible orG } .

with a (W, r, P)-grading

The definition of the cones also showsihto identify leading monomial submodules
with cones in the fan. Specifically, for a leading monomial submodule, take its associated
reduced marked Grobner bas§ls and idettify it with the coneCg.

Next, it is srown thatthe setLg truly arecones.

Proposition 14. For any reduced marked Grébner basis G of a submodule MR with
respect to a monomial order of type 2 ([h], [h2]. ..., [hg]), Ce € Matgxn(RT) x R!
is a polyhedal cone.

Proof. SupposeX*g is the identified leading monomial of songe € G. Then ly the
equivalent definition of compatibilityW, r) € Cg if and only if X*g is a monomial in
Ingw,p)(9). Letg = Y0, fier.

Let matrixW = (w1, wo, . .., wg), and \ectorr = (ry,ro, ..., ry). The monomialX“g
is in Imw r,p)(g) if and only if every termX? in fj withi € [ha] and j € [hy] satisfies
either

()a<bor
(2)a=banda - wa+ri > B -wa+rj.

The collection of these linear inequalities in (2) forms a polyhedral cone.

Fora(W,r) e ((Rﬂ“)q x R' to be inCg, it has to be in the polyhedral cone for each
g € G. Herce(W, r) is in the intersection of a collection of polyhedral cones, which itself
is apolyhedral cone. [J

Below, the necessary intersection property of the fan is shown.

Proposition 15. Let G and H be distinct reduced marked Grobner bases of a submodule
M C R with respect to monomial orders-g and >, resgectively, of type P=
(Ih1l, [h2], ..., [hql). Then G N C is both a fae of G and a face of G.

Proof. It suffices to show thaEg N Cy is a face ofCg.

Let F be the mdlest face ofCg which containsCg N CH. It suffices to show that
F € Cq. Suppose not.

Let

F' = F\ U E|.
E st. E is a proper face of

i.e. F’ is the relative interior of. Using topological considerations and the convexity of
polyhedral cones, it can be shown tH&tN Cy # @ andF’ € Cy. Also, just as in the
ideal case, for any two point§J, p), (V,s) € F/,

Imw,p,p)(G) = Imy 5, p)(G).



136 R.L. Auerbach / Journal of Symbolic Computation 39 (2005) 127-153

Now we are ready to obtaithe ontradiction to our assumption thet Z Cy. By the
above, we can choos®V,r) € Cy N F" and(V,s) € F'\ CH. Sincelmw,, p)(G) =
1m s py(G), we have

(1mew,r,py(M)) = (1mew.r,p) (G)) = (Im(v,s,p)(G)) = (Im(v s, p)(M)).

Also we knav that 1mww, py(H) is a Gébner basis with respect to-y for the
submodule(lm(W,n p)(M)). Therefore, it must be that for each € H, the monomial
1m.,, (1mev s p)(9)) is divisible by an element of

1n.y, (Imew,r,py(H)) = 1m., (H).

However, sinceH is a reduced Grobner basis, the only possible divisolus,, (g).
Therefore, it must be thatm. , (9) is a monomial inlmy s p)(g). Herce, we have that
(V,s) € Cy, contradicting our assumption.

Therefore, it must be that € (Cg NCh). So we have thaEg N Cy is exactlyF. O

The next proposition shows how to construct a monomial ordeRoof type P =
(thal, [h2], ..., [hql) from the set of monomial orders dR¢i of type [h;], whereg; =
[[hill, f0r1<| <q.

Proposition 16. Let P = ([ha], [h2], ..., [hq]) bea partition of {1, 2, ..., t}, where the
hi’s are representatives of each subset in the partition. Let matriggsettorsy,, integers
teqg for ¢, d € [hj], ando) e Shj1, Where §;; is the symmetric group on the ét; ],
define the monomial order ) with one~ equivalence class on‘Ras in Theoren®,
wherezj = |[hj]|. Define tj = 0, fori € [hal, j € [hpl.a # b. Definec € § as
0()) =tar1+--+ g+, where §¥ = [{i € [ha] : 6@ (i) < a@(j)}| for | € [hal.

Then the matrices {..., Ui, vectorsys, ..., p, integers § for1 <i,j < t, and
o € § define a monomial ordeis of type P, as inrTheoren?.

Proof. It is straightforward to check thaf, 1 < i, j < t, sdisfy conditions(1)—(4) of
Theorem 2
It remains to show that satisfies condition (5) ofheorem 2

tik > maxtij, tjk) ando (i) < o (j) = o(k) < o ()).
If tix = 0, the condition is trivially satisfied. So we may assutpe# 0. Hence ~ k. Let
i,k € [ha] andj € [hp]. Assumer(i) < o(j). Therdore

Casrt+ g+ S <losrt o +ig s

Since 0< S(b) < ¢p, we haveb < a. Thecaseb < a follows from qﬂa) < ¢a. Thecase

a= bfoIIows because @ (k) < o @ (j) implies thats.> < s}a). O

The result below shows the support of the fan for the case of monomial orders with one
~ equivalence class.

Proposition 17. A grading by(w, 1, {1,2, ...,t}), with € Maty,,n(RT) andr € R!, is
compatible with some monomial orderthat has only one- equivalence class.
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Proof. By Proposition 12and Theorem 2 any set & matices Ug, ..., U, vectors
Y1y enns yt € R", non-negative integer‘F‘[ij }1<| i<t ando € S where the first row of
Ui is & and the first coordinate of; is ‘i‘ and which satisfyTheorem 2shows the

e><|stence of the monomial order. S&; = | L 1 <i <t, the 1x n matices, and set

Vi = (|w|), 1 <i <t, theector of length one. Séff = 1for 1 <i, j <t. Choose any

o € §. Then his collection of matrices, vectors, integers, antbrm a monomial order
by Theorem 2 [O

The next proposition shows the support of the fans for the case of general monomial
orders.

Proposition 18. Let M € R' be a submodule. Let P= ([h1], [h2], ..., [hq]) be an
ordered partition of {1, 2, ..., t}. Every (W, r) € Matqxn(R") x R! defines aW,r, P)-
grading of R that is compatible with some monomial orderof type P.

Proof. Suich a monomial order can be constructed in the following way. Let vector
r = (ry,rz, ..., ry) and matrixW = (w1, w2, ..., wq). For each 1< j < q, consider
the pj = (wj.rV {z1,22. ..., 2;})-grading onRQ wherer ) = (ry,r4,, ... Tz
with [hj] = {z1 < zo < -+ < 7;;}. By Proposition 17there exists a monomial order))
on R¢i that ha one~ equivalence class and is compatible with thegrading.

Then combine the monomial ordets?V, ..., >@ as in Proposition 16to define a
monomial order> of type P. By construction, this> is compatible with aW, r, P)-
grading. O

Finally this leads to the main result:

Theorem 19. For any submodule Mt R!, the set

fee

is a fan in the space((Rﬂ”)q x R = Matgxn(RT) x R'. Call the fan the
(Th1], [h2], ..., [hq]) Grobner fan for M.
Furthermore, the support of the fanNatqxn(R™) x R'.

G is areduced marked Grobner basis for M with respgct
to a monomial order > of type ([hl], [hao], ..., [hq])

One unexpected difference between the submodule case and the ideal case is that the
G-cones may not have interior points. The example below illustrates this property.

Example 20. Let R = Q[x, v, z]. Let M € R? be the submodule generated by

G— {gl = (x*+ 22)e1 + Y&, g2 = yer + (x* + ey, }
B =(z-yPe.u= 72 -y2a |

Consider the monomial order given by the marices

1 0 O 10 O
U1=O§§ U2=O§£,
0 _¥2 2 0 ¥2 _2
2 2 2 2
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the integer matri>(g g) the vectorsy; = (0,0,0) andy2 = (—2,1,0),ando = (1 2) €

S. We conputeln. (g1) = x2e1, 1m..(g2) = X2z, 1n. (g3) = y?zez, 1m..(gs) = y?Z%ey.
Furthermore, it can be checked ti@ais a reduced Grébner basis with respectto

The bounds fo€g from the vectoig; are(2,0, —2) - > 0and(2, —1,0)-w—r > 0.
The bounds from the vectgp are(2, 0, —2) - > 0and(—2,1,0)-w—r < 0. The bound
from the vectogz is (0, 1, —1) - > 0. The bound from the vectgy is (0, —1,1)-w > 0.

From the bounds fo€g from g; andg, we gd for w = (w1, w2, w3) the inequalities
w1 > wzand—2w1 + w2 < r < 2w; — wp. From the bounds frongs andgs we get
w2 = w3. This last estrictionw; = w3 shows thaCg does not have interior points.

Without loss of generality, in the remairdef this section, we define the integers
l1<wv <wv2 <--- <vq=tsuchthat

[h1] = {1,2,...,v1}
[h2] = {vi+1,...,v2}

[hq] = {Uq_l + 1, ey Uq},

which is justified by relabelling the vectoss, ..., &. Thus,|[h1]| = v1, and|[hj]| =
vi —vj_1,foreach2<i <q.

Also, in the remainder of this section, thefihition of a product of polyhedra (or cones)
(seeDefinition 8) is slightly altered. FoIC;, a ®mne inthe[h;] Grobner fan, 1<i < g, we
define the cone

q W is a matrix with rowswy, w, . . ., wq,
l—[ Ci := 1 (W, r) |andr is the concatenation of, r», ..., rq,
i=1 suchthat(wi, ri) €e Ci,1<i <q

Another way to view these Grobner fans is as product fans Dedimition 8 of the
product complex) of one- equivalence class Grobner fans.

Theorem 21. Let F be the P= ([h1], [h2], ..., [hq]) Grobner fan for a submodule
M C Rt Let | be the[h;] Grébner fan for the submodule

N | there exist$ = feee ithil]
Ni=19= > fie (viﬂfchvq ) c RN,

where eachde R, andg+h e M
fordi<i <q.Then F=[], F.

Proof. First, it will be shown that each cone in tReGrébner fan for a submodul € R

is a product of cones in théh; ] Grobner fansfF;, 1 <i < q. Let G be a reduced marked
Grobner basis foM with respect to any monomial orderof type P. Define a st of maps
¢a: M — Naforl<a=<qhby

t > fie if fj=0for 1< <wvay,
> fie = 14
i=1 0 otherwise.
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Note that the mapg, are not homomorphisms far> 1. Furthermorep,(G) isa Grébner
basis forN; with respect to>. (See this dct by checking the equivalence of the leading
term submodules.)

The coneCg is the sebf points(W, r) € Matqxn(RT) x Rl = ((RT)") x RY, with
matix W = (w1, w2, ..., wq) and vector = (ry, ..., ry), tha satisfy all the inequalities

(@ —pB) -wa+ri—rj =0,

whereX*g = 1m. (Q) and Xﬂej is a monomial ing for someg € G, with i, j € [ha]
for some 1< a < . Howewer, the inequalities whera = ag define the cone%((;) in
the [ha,] Grobner fan ofNg,. So (W, r) € Cg implies that(wa, r@y e Csa(c) for each
1<a<q,wherer® = (Toa 141, - - -+ Fvy). HerceCg is the product of the cone€y, G)
foreachl<a<q.

Since the support of th® Grébner fan forM and the support oF is the same, we
can conclude that all codimension zéeacones inF are G-cones in theP Grobner fan
forM. O

2.2. Algorithms for computing fans

The algorithm for computing a general Grébner fan in this article computes a product
of one ~ equivalence class Grobner fans. Once the computation is broken up into
computations of one- equivalence class Grébner fans, there are two more steps. The
next step is finding all the codimension zero cones. The final step is finding the cones of
higher codimension. Therefore, the algorithm will be given in three parts.

Below is an algorithmdr finding the codimension zero cones of a enequivalence
class Grobner fan and their corresponding reduced marked Grobner bases for a given
submoduleM < R!. This agorithm finds all the cones in the fan, but not necessarily
all the reduced marked Grébner bases with respect to~oequivalence class monomial
orders for the submodule. Specifically, if there i§&acone of codimension greater than
zero, then most probably the cone and its corresponding Grébner basis will not be found.
However, byProposition 15uch aG-cone is a face of a codimension z&econe. So the
fan itself has been found, but not all tl&-cones will necessdy be identified.

Algorithm 1. ONE_CLASS_FAN_SHAPE

INPUT: Generatorsfy, ..., fs} of a submodulev C R..

OUTPUT: The maximal (codimension zer@}-cones of the one- equivalence class
Grobner fan ofM and the associated reduced marked Grobner basis for each cone, along
with any G-cones of codimension greater than zero that are fortuitously found in the
process.

INITIALIZATION: GF := @, SPAN := .

WHILE SPAN N (RN x RY) # (RT)" x R' DO

Choose(w, ) € ((RT)" x R') \ SPAN.

Let U be a matrix with first romw and refined by the degree reverse lexicographic
orderandlet; ;= (rj)forl <i <t.

Let > be the monomial order given by copies of the matriXxJ, vectorsy; for
1<i <t,integerdjj =1forl<i, j <t,ando = identity € §.
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G :=reduced marked Grdbner basis fdrwith respect to-.
D= X,V Elg_e G suchthaFX = 1m>(g_) a_nd .
Y is anon-leading monomial ig
CG = {(a), I’)I degw’r’{l’z’._.’t})(x) > deq(o,r,{l,z,...,t})(Y)V(X1 Y) € D}
GF := GF U {(G, Cg)}.
SPAN := SPAN U Cg
RETURN: GF

This algorithm will stop byTheorem 3andProposition 18Also note that any algorithm
for the computation of reduced marked Grébner bases can be used in this algorithm.

Next an afjorithm for finding the cones in the fan of codimension greater than zero is
given. Such an algorithm finds all the reduced marked Grébner bases with respect to one
~ equivalence class monomial orders and each basis’s corresp@sidioge is presented.

The algorithm uses the following construction of a new monomial order from another
monomial order and @-grading. This construction will be used frequently throughout the

paper.

Definition 22. The monomial ordet [ -] on R!, whereg is a graling of Mon(R') and>
is a monomial order orR!, is defined by

deg,(X) > deg(Y), or

X>p>1Y & {degp(x) = deg,(Y) andX > Y.

Note that the monomial order[4 -] is a monomial order that is compatible with an
¢-grading onR!.

Since there is a one-to-one correspondence between reduced Grobner bases for a given
module and the leading monomial submodules, one approach to the computation is to
search for leading monomial submodules. Furthermore, if we want to look for a reduced
Grobner basis that is compatible with a certaigrading, it suffices téook at the leading
monomial submodules dim, (M)). In particular, if one is looking for a Grébner basis that
corresponds to a certain face in the Grobner fan, it suffices to pidoahe relative interior
of the face and compute the leading monomial submodulegfq(M)). If the monomial
order>’ gives a new leading monomial submoduldtfi, (M)), then the monomial order
>[7,>] Will give the same leading monomial submodule fbr The leading monomial
submodules can be found by computing the Grobner fangifey(M)). However, it is
only necessary to compute the Grébner fans for types with more thar @glivalence
class, because the leading monomial sabdaies found from a computation of the one
~ equivalence class Grébner fan fam,(M)) are the same ones as are found by a
computation of the codimension zero cones in the Grobner fakifor

This idea can be used together witheorem 21to find theG-cones of codimension
greater than zero. Specificallfjheorem 21states that the Grobner fans for monomial
orders with more than one equivalence class are products of erequivalence class
Grobner fans for submodules of lesser rank. So to find all the possible leading monomial
submodules, the idea above will be used recursively on these submodules of progressively
lesser rank until the rank one case is reached. The rank one case is the ideal case,
for which all the reduced marked Grobner bases correspond to codimension zero cones
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(see Cox et al. (2001, Mora and Robbiand1988, Sturmfels (1996), and hence the
algorithm will stop.

Note that the faces of highest dimension moes checked first. Otherwise if a proper
face of aG-cone is checked before the trGecone, the algorithm will mistake the smaller
subset for theG-cone.

The following is the algorithm (note th&t gorithm 3GENERAL_FAN is used):

Algorithm 2. ONE_CLASS FAN

INPUT: Generator$fy, ..., fs} of a submodulevl C R.

OUTPUT: The one~ equivalence class Groébner fanif along with the reduced marked
Grdbner basis corresponding to edgfcone inthe fan.

INITIALIZATION:

GF :=ONE_CLASS_FAN_SHAPH(, ..., fs).
D := sd of codimension one faces of cones@F.

L :=list of F € PowerSetD) that satisfy( N X) \( U X) # ), with the
XeF

XeD\F
list ordered by reverse inclusion, i.e.Gfﬂ X) D ( N X), thenAis before B.
XeA XeB
FOR EACH CONSECUTIVE F € L DO

st () \ (Y, %)

LetN := <1m(w,r,{1,2,...,t})(M)>-

For each ordered partitio(ih1], [h2], ..., [hg]) of {1,2,...,t} withq > 1 do
Let A := the ([hy], [h2],...,[hgq]) Grobner fan of N, conputed using
GENERAL _FAN.
If for some reduced marked Grobner badis of N with respect to the
([ha], [h2], ..., [hg]) monomial order>, the set of marked leading monomials of

H is not a set of marked leading monomials of some reduced marked Grébner basis

in GF, then
G :=the reduced marked Grobner basis Mwith respect to> [, r,11,2,....t}),>]-

oo |(e )}
RETURN: GF.

This algorithm ends becauseis a finite list, Theorem 3and because the set of ordered
partition of {1, ..., t} is finite. Also,Algorithm 3GENERAL_FAN, which computes, is

given below. As in the previous algorithms, any method can be used for the computation

of the reduced marked Grébner basis.
The following is an algorithm for computing the genefidd, ], [h2], .. ., [hq]) Grobner
fan. It isbased ormrheorem 21
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Algorithm 3. GENERAL_FAN

INPUT: Generators{fy, ...,fs} of a submoduleM < R!. The ordered partition
([ha], [h2], ..., [hq]) indicating the type of monomial orders in the fan.

OUTPUT: The([h1], [h2], ..., [hq]) Grobner fan ofM.

INITIALIZATION:

>:= the monomial order of type([hi], [h2],...,[hq]) with the order on the
components is degree reverse lexicographic order
G :=the reduced marked Grébner basis tér, . . ., fs) with respect to-

FORi :=1TOqDO
J = {g: > e eR
refhi]
Fi := ONE_CLASS_FAN(J)
RETURN: [T, F

fi—g= > ore for somef; € G
refhi41]U---Ulhq]

As in the prevbus algorithms, any method can be used for the computation of the reduced
marked Grébner basis.

2.3. An example of a Grébner fan computation

Let R = R[X,Y, z]. Consider the following submodul™ < R4 generated by the
columns of the matrix
x y z 0
-y x 0 z
-z 0 x -y
0 —zvy X
We will compute the([h1], [h2], [h3]) Grobner fan forM, with the three equivalence
classeghi] = {1}, [h2] = {3, 4}, and[h3] = {2}.
Let > be a monomial order of typg1}, {3, 4}, {2}) with the order on each component
a degree reverse leagraphic order witbk > y > z. We fdlow Algorithm 3in the
computation. Then the reduced marked Grébner basisifaith respect to> is

[Xew] — yer — zes,[yer |+ xep — zes, [Z€1 ] + X3 + Yeu,
G = |zer — yes +[x&] (+y2+zz>ez, (+y2+zz)e3, :
—x7€ + [Xy&s]+ (V2 + s

with the marked leading monomials in boxes. So we can observe that

Jl - (Xa yv Z) k]
Jo = (X2 + y2 + 22) e1, xyer + (Y2 + 2%) €2, —ye1 + Xey)
b= (x2+y%+ 7).
The idealJ; has reduced marked Grébner b, , } for any term order. So
F1, the Grobner fan fod;, hasonly one cone.
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In the case of the ideals, the set{x? + y? + 7%} is the only reduced Grébner basis.
However, there are three choices for the leading term. So there will be three cdags in
the Grébner fan forJs.

For the submodulel; we doa one~ equivalence class Grébner fan computation for
the sibmoduled; € R?. The first step is th@NE_CLASS_FAN_SHAPE computation. That
computation finds the following cones of codimension zero in a space parametrized by
w1, W2, W3 € Rt andrl, r, e R:

Redwed marked
Point Grobner basis Grobner region

<+y2+22>e1 w1 —wr—T1+r2>0
((1,0,0), (0,0)) +(y2+22)e2 w1 —w2+r1—ra2>0

_yel_|_ w1+ w2 —2w3+r1—r2>0
<+22>e1+xye2 wl—w2—r1+r2<0
(1,0,0), 0. -2)) (+y2+zz>e2 w1 —w3>0

w1 —w2 >0

yer— xe:

2,1,0), (0,2 (+y2;rzz)26>1 wl_wZH()l_rzSO

.1.0). (0, w1 — w2 =

((2,1,0),(0,2) ix;e;ﬁ“ﬁ 2920
(+y2+zz>e1 w1 —w3>0

((2,0,1), (0, 2)) i);eell':_+ y2> 2 Zi -T— 32 f (2)w3 +r1—ro<0

2., 2
(x +z)e1+ wp—w2—T1+r2<0

(010,00 (Y]+2+¥)e  er-w+n-r=0
—Xez 0)1+0)2—20)3_r1+r220

2 2 2
<+X +Z>el w1 —w2—r1+r,>0

((Os 17 O)v (07 2)) X 2 2 w1 — w2 < 0
ver+ (y3+2)e o220
—yer +[xe]

<+Zz>el+xye2 w1 —w2+r1—r2>0
((0.1,1,0), (0, -2)) (+ X2 +7°) & w1 — w2 <0

w1 —w3>0

v - xe:
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Redwed marked
Point Grobner basis Grobner region

(+X2>el+xye2 w2 — w3 >0

( ) w1 +wy —2w3—r1+r2<0
el - x:

2l | 2 2
(+X +y>e1 w1 —w2—r1+r12>0
((0.1,0,1),(0,0)  xye; + (E—i-yZ)ez w2 —w3 <0

w1 —w3 <0

—Yyer +[xey

(+X2>el+xyez w1 —w2—r1+r2<0
((0,0.1, 1), (0, 0)) (+ X2 & y2> & wp—w3 <0

w1 —w3<0

yer] - xe

Now it remains to check fo6s-cones of higher codimension by checking the proper
faces of the codimension zero cones. There are 23 proper faces to check. Of the fifteen
proper faces of codimension one, two &eones. The proper faess — w, = 0 sdisfying
w1 — w3 < 0andw; —wz2 —r1 +r2 > 0is aG-cone. Itis a face othe sixth and ninth
G-cones listed above. The following are the two reduced marked Grébner bases that have
this proper face as &-cone:

o —ver +[xe), (2] + 32+ 2) e xyer + (2] + y?) &2
o —vet+[x&) 2]+ +y?) enxye + (2] + 2) e

The proper face; — w3 = 0 sdisfyingwz, — w3 < 0andw; — w2 —r1 +r2 < 0isalso a
G-cone for two distinct reduced marked Groébner bases. It is a face of the second and tenth
G-cones listed above. The following are those reduced marked Grébner bases:

.—xe2,+x2)e1+xyez,+y2+zz)ez.
o [yer]—xe, +22)e1—xye2, +y2+x2)e2.

Next, look at the proper faces of codimension two, followed by the proper faces
of codimension three. By looking at the leading monomial submodules with respect to
monomial orders of typeq1}, {2}) and ({2}, {1}), you can check that there are no further
reduced marked Grébner bases found.

The final step is putting the three faRs, F,, andF3 together as a product. Since there
are twelveG-cones inF», three G-cones inF3, andone G-cone inFq, there will be a
total of 36 G-cones in tha{1}, {3, 4}, {2}) Grébner fan forM. However, sige two of the
G-cones inF; each correspond to two distinct reduced marked Grdbner bases, there are a
total of 42 distinct reduced marked Grébner basesbr




RL. Auerbach / Journal of Symbolic Computation 39 (2005) 127-153 145

3. Grobner walk on submodules of free modules

This section is about the Grobner walk on the Grébner fan of a submdtiatea free
module of finite rank. The discussion of the walk will be broken into subsections. First,
walking between monomial orders of the same type is discuss8ddtion 3.1Section 3.2
covers walking between monomial orders of different type. A detailed example of the
algorithm is given irSection 3.3

Again, consider a polynomial ring = K[x4, ..., Xn], wherek is a field. LetZ be the
integers andR the reals. LeZ™ andR™ be the non-negative integers and non-negative
reals, respectively.

3.1. Walking between monomial orders of the same type

Let M € R' be a submodule. Suppose that it is easier to compute a Grébner basis
for M with respect to the monomial order,, but one would like to have the Grébner
basis forM with respect to the monomial ordere, where>p and>¢ are the same type
P = ([h1], [hz], ..., [hql). Let (W,r) and(V, s) be the points corresponding t&, and
>e in the P Grobner fan, respectively, as Rroposition 12

The walk uses a monomial ordgr[(w/,r,, py.~] ON M, as inDefinition 22 definal with

respect taW’,r’) e ((Rﬂ“)q, x RY, an ordered partitionP’ of {1, 2, ..., t} into g’ non-
empty sets, and a monomial orderon M. Let Gy, be the reduced marked Grdbner basis
for M with respect to-p. At the end of the walk, a Grobner basis fdrwith respect to-¢
will have been computed.

The idea, as in the ideal casg}o follow the linear path frondW, r) to (V, s),

v(t) = A -t)W,r)+t(V,s),t €[0,1],

in the P Grobner fan. Similar to the ideal case, each time the path crosses a boundary of a
cone,Theorem Gs used to find the reduced marked Grébner basis for the adjacent cone.
Eventually, this will lead to computing the reduced marked Grdbner basis for the cone
containing the monomial ordefe.

Theorem 6is the basis of the following algorithm for converting from a Grdbner
basisG with a cone in theP Grdbner fan to a Grobner basis for the adjacent cone
along the path towardse, where (W, @) is a point on the path common to the two
cones:

Algorithm 4. CROSSING

INPUT: The initial Grébner basi§& for a moduleM < R' with respect to a monomial
order>p. The monomial ordet ¢ which is the ultimate final monomial order. The type
A point (W, r) in the P Grébner fan forM on the boundary of the cone f@.

OUTPUT: The reduced marked Grébner basis kbwith respect to the monomial order
Z[(W,r,P),>¢]-

STEPS:

LM := 1mw,r,py(G)
H :=reduced marked Grobner basis {aM) with respect ta>[(w.r, p), >
LF :=DivisionAlgorithm(LM, H, >p)
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G := Expand(LF, G)
G := Reduce(G, >[(Wr, P).>c])
RETURN G

In the alwve algoritim, the procedurBivisionAlgorithmtakes each € H, and gplies
the division algorithm with respect tep, and retuns a list of pairg pg, 9) € Rx LM such
that

h=>" pgg.

geLM

The procedur&xpand, takes each paifpg, 9) € LF, and replacegy with theg' € G
satisfyinglmow,r,p)(d') = 0. Then it returns the sum of each list:

fo= ) pod.
geLM

The procedura@educe interreduces the vectors with respect to the given term order, to get
a reduced marked list. As in the previous algorithms, Buchberger’s or any other Grébner
basis algorithm can be used for the Grobner basis computations.

The following is the algorithm for the walk:

Algorithm 5. SAME_TYPE_G-WALK

INPUT: An initial type P monomial order>y given by matricedJ, ..., U;, vectors
v1, ..., Vi, at x t integer matrixTp, and anelementop, € S as inTheorem 2 A final
type P monomial ordet-¢ given by matrice®/1, Vo, ..., Vi, vectorssy, 8z, ..., &, at xt

integer matrixTe, and anelementoe € § as inTheorem 2 A reduced marked Grdbner
basisGy, of M with respect to>p. The ordered partition P = ([hy], [h2], ..., [hq]) of
{1, 2,...,t} which is thetype of both>p and>¢.
OUTPUT: The reduced marked Grobner basis fbmwith respect ta-e.
INITIALIZATION:
Set> to be the monomial ordetp,
Fori := 1toqdo
Letj e [hi]
wj := first row of U
pi = first row of V;
Fori :=1tot do
ri := first coordinate ofy;
5 := first coordinate of;

W := the matrix with rowsw, wy, ..., wq
ro=(ry,ra,....n

finished := false

G =Gp

3g € G suchthat X“g is the
identified leading monomial af
andX”ej is anon-leading
monomial ofg, i, j € [ha]

IfOe Jwa-(@—pB)+ri—rj then
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G := CROSSING(G, >, >¢, W, 1, P)
Set> to be the monomial ordes [(w.r,p), >

WHILE finished = false DO _
3g € G suchthat X“g is the

_ , identified leading monomial aj and
D:= (p—e) @atl) —T XPej is anon-leading monomial of
((“ — ) (pa - wa)*) G.i. ] € [hal. and(@— B) - (pa — wa)
A +8 —ri—Sj+1j £0
If {t e D0 <t <1} =¢@thenfinished := true
Else
d:=min{te D0 <t <1}
Fori :=1toqdow; := (1 — d)w; + dp;j
Fori :=1totdorj := (1 —d)rj +ds
W := the matrix with rowswy, w, ..., wq
r.=(ro,...,rn)
G := CROSSING(G, >, >¢, W, 1, P)
Set> to be the monomial ordes [(w.r,p). >
If d =1thenfinished := true
RETURN G

Note that the functio@ROSSING is Algorithm 4 The aforithm ends byrheorem 3
3.2. Walking between monomial orders of different type

It is also possible to do a Grébner walk between a monomial osderof type
Po = ([h1],[h2],...,[hg,]) and a monomial order-¢ of a different typePe =
([hil. [h5], ..., [h&e]). The ideas to create the list of types

. ([hél_]a [hlz]a M) [h&e_z]a [hae_l] U [h::‘e])a Pe)

For each successive tyfein the list, walk within theP Grébner fan from a known reduced
marked Grébner basis to a reduced marked Grdbner basis with respect to both a monomial
order of typeP and a monomial order of the next type in the list. The starting point of the
Grobner walk in the next Grébner fan is this reduced marked Grobner basis.

Suppose>y, is given by matricet)q, Uy, ..., Ut, vectorsys, yo, ..., 1, at x t integer
mattix Tp, and arelementy, € § as inTheorem 2Denote by~y, the equivalence relation
on{l,2,...,t} given by >,. Suppose we would like to compute the reduced marked
Grobner basis of a submodul C R! with respect to>.

The first step is to do a Grobner walk in tRg Grébner fan from>y, to a reduced marked
Grobner basis that is also a reduced marked Grébner basis with respect to a monomial
order with one~ equivalence class. Monomial orders with onequivalence class have
the pioperty that the matrices describing the term orders aBhi@orem 2all have the
same first row. So foranvenience, we pick §o € {1, 2, ..., t} and walk to the reduced
marked Grdbner basis with respect to a monomial osdewhere the term order on each
component is given by the matrix for thjg componentlj,. Let| be the number of rows
of Uj,. Specifically, the monomial ordes; is described as inTheorem 2by t copies of
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the matrixUj,, t zero-vectors of length at x t integer matrix with thej th entry equal to
zero if theij th entry of Ty is zero,otherwise the entry is one, ang € §.

The reduced marked Grébner bad§ls for M with respect to>» is also a reduced
marked Grdbner basis with respect to a enequivalence class monomial ordeg. The
monomial order=3 can be described as iheorem 2yt copies of the matrikJj,, at x t
matiix T, of all ones,op € S, and a st of vectorsty, ..., & of lengthl which will be
computed below. Sinc& is a matrix of all onespnly the first coordinates of the vectors
i are important, so we may assign the remaining coordinates to zera; Ll the first
row of thematiix Uj,. The firstcoordinates of the vectots, ..., ¢t mustsatisfy:

(1) i ~p j then the first oordinates ot; and¢j are the same.

(2) For eachy € G2 with marked leading ternrX“g, givenany other termxﬂej in g with
i 7b |, the first ®ordinate of;; must be greater than the first coordinate;pfplus
w1 (B —a).

To find a set of values to satisfy these conditions, first, for daeh [h;], set the first
coordinate ot equal to zero. For eache {2, 3,4, ..., 0p}, compute the maximunm;
of the set

{wl'(ﬁ—a)

X%e. is the leading monomial for somg e G with
celhj_1] andXfey atermingwith d ¢ [hj_1] }
Foreachi € [hj], 2 < ] < q, set the first oordinate of; equal to—j — IJ;=2 my.

For each subsequent=1, 2,3, ..., de—1, we perform the following steps to get from
atype([hil,....[h{_;],[h]1U---U [h&e]) Grobner fan to a typelh’], ..., [h{], [hi’H] U
| [h&e]) Grobner fan. Leto(m) be a vector of length, where thejth component ign
if j e [h{], andzero otherwise. We |étV be ani x n matrix where each row i&1. We
do a Groébner walk in the{h’], ..., [hi_;],[hiJU--- U [h&e]) Grobner fan along the ray
(W, ¢ + p(m)), m > 0, until we reach amg such ttat the ray(W, ¢ + p(m)), m > mg, is
contained in a single cone. The reduced marked Grobner basis for this cone is a Grobner
basis with respect to some monomial order of tyffg 1, . . ., [h{], [hi’+1] u..-u [hée])-

Finally, the walk ends in theP. Grobner fan, where we followAlgorithm 5
SAME_TYPE_G-WALK to get to the reduced marked Grébner basisfer

Here is the algorithm for this walk:

Algorithm 6. TYPE_CHANGE_G-WALK

INPUT: An initial monomial order>y, given by matriced)s, ..., Uy, vectorsys, ..., n,
at x t integer matrixTp, and anelementoy, € § as in Theorem 2 with B, =
([hal, [h2l, ..., [hg,]) as its type. A final monomial ordere given by matrices
Vi,..., W, vectorssy, ..., &, at x t integer matrixTe, and anelementse € § as in
Theorem 2with Pe = ([h{],[N5], ..., [h&e]) as its type. The reduced marked Grébner
basisGy, of M with respect ta>p,.
OUTPUT: The reduced marked Grébner baGisof M with respect to>e.
INITIALIZATION:
G:=Gp
Let jo € [h1]
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w1 = the first row ofUj,
| :== thenumber of rows olJj,
¢ := zero-vector of length
A :=t x t matix with the ijth entry equal to zero if thej th entry of Ty is zero,
otherwise thej th entry is 1
Ug,...,Ut, v1,...» 1, Th, 0b), G,
WUjg» - > Ujos &, ..., 8, A op), Py
>:= the monomial order defined biycopies of the matriXJ;,, t copies of the vector
¢, the marix A, andop € S asinTheorem 2
a:=0
For eachj € [h1] do
§j=¢
bj =0
Fori :=2toqp do

G := SAME_TYPE_G-WALK

3g € G with X“g, the
identified leading term of
with ¢ € [hj_1], andXey,
atermingwith d ¢ [hj_1]

a:=—-1+a_1—maxjo1-(f—a)

For eachj € [hj] do
¢j == (&, 0,...,0) such that the vector has length
bj =g
FORi :=2TO g DO
D:={w1-(x— B)+b:— by |termofgwith c e [h’p] for somep > i
andXfey atermingwith d e [h/]
P = ([hi], [h5], ..., [h_4], AU [N JU---U [h&e])
W := ani x n matrix where each row is1
If 0 € D then
a:=(bg,...,b)
G := CROSSING(G, >, >, W, @, P)
Set> to be the monomial ordes [(w,a, p), ]
3g € G with X%e; the identified
leading term ofy with ¢ € [h;] for
somep > i andXPey
atermingwith d € [hi]

Jg € G with X%g; the identified Ieadin}

D:=1{w1-(a—pB)+bc—by

While{x|x € D,x > 0} # # do
d := min{x|x € D, x > 0}
Forj e [h{]1dobj :=bj +d
a:=(bg,...,b)
G := CROSSING(G, >, >¢, W, a, P)
Set> to be the monomial ordes [(w.a, p).>]
3g € G with X%e; the identified
leading term ofywith c € [h/p] for
somep > i andXPey
atermingwith d € [hi]

D:=1{w1-(a—pB)+bc—by
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Foreachj e [hjJU---U[h{]do¢j := (b}, 0,0,...,0) wheresj has length
A =t x t matix with theijth entry equal to zero if thg th entry of T is zero,
otherwise thejth entry is 1

(Ujov cee Ujov {11 cve {tv Av Ue): Gs)

RETURN SAME_TYPE_G-WALK
B B <(Vlv"'svts(sls"'16t1Teiae)1 Pe

Note that the functio@ROSSING is Algorithm 4 Also, the algoithm ends byTheorem 3

3.3. An example of a Grébner walk

Let R = R[x, y, z]. Consider the submodul < RS2, from the example irection 2.3
generated by the columnséthe falowing matrix:

Xx y z O
-y x 0 z
-z 0 x —y
0 —-zy x

The set of marked vectors

[Xe1] — yer — zes,[yer |+ xep — zes, [Z€1 ] + X3 + Yeu,
G = |ze2 — yes +[xes] (+y2+22>e2, (+y2+22)e3,
—x28 +[Xy&3]+ (Y2 + ZD)es

is a reduced marked Grébner basis fdr with respect to a monomial order, of type
({1}, {3, 4}, {2}) that is defined by the matrices

100
U=Ux=Uz3=Us=|0 1 0},
001

the vectorg1 = ¢2 = ¢3 = ¢4 = (0, 0, 0), the marix

{2

0
n-[02
0

QOO w
wwoo
w w o

and the elementl 4 3 2) € &, asinTheorem 2
Suppose we want to compute the reduced marked Grébner badis ¥ath respect to

the monomial orders¢ of type ({1, 3}, {2, 4}) defined by the matrices

100 010
Vi=V3=[010 andV2=V4= 001],
001 100
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the vectors$, = 82 = 83 = 84 = (0, 0, 0), the marix

Tez

O WwWow
wowo
O WwWow
W o w

and the elementl 4 2 € &, as inTheorem 2 Algorithm 6will be used to do the
computation.

First, notice that sinctl; = Uz = Uz = Uy, it is not necessary to use the algorithm
SAME_TYPE_G-WALK because the initial monomial ordef, corresponds to a point in the
fan for which there is a monomial order of typg 2, . . ., t} with the same reduced marked
Grobner basis foM. We want to find a monomial order of typd, 2, ..., t} that ha the
reduced marked Grobner basisfor M. We know that the matrices will be four copies of
U1, the irteger matrix will be a matrix of all ones, the element$iwillbe (1 4 3 2.
We deternne the \ectorszy; = (0,0,0), 3 = &4 = (—2,0,0), andz2 = (—3,0,0). So
now we have the monomial order of typk 2, . .., t} that was needed.

Next we walk within the{1, 2, . .., t} Grébner fan from the point

((4,0,0), (0, -3, -2, -2)),

which corresponds to the monomial order above, to a point in a fan for a reduced marked
Grobner basis that is also a reduced marked Grobner basis with respect to a monomial order
oftype({1, 3}, {2, 4}). The walkis in the direction of the vectdx0, 0, 0), (1, 0, 1, 0)). The
firstcone boundary that is crossed by the path is at the point

(W, a) := ((1,0,0), (1, -3, -1, —2)).
So we conpute
LM = 1mw.a p)(G) = [xel, ye1, zer, —yes + xey, x2ep, x2es, xyes} :

The reduced marked Grdbner basis fioM) with respect to>¢ is

, [ zer ), x%e; |,| x%e3 |,

H = [ Ko}

ye1

yes | — Xey,

Next, the division algorithm is used to determine how the vectord ioan be written as a
combination of the vectors ibM. ThenExpand is used to replace the vectorsliv with

the orighal vectors inG in the combinations. This new set of vectors replaces th&set
ThenReduce interreduces the vectors @@ to get a reduced marked Grébner basis. The
result is the following reduced marked Grébner basisMor

[xe1] - yer — zes, [ yer |+ xez — zes, [ Ze1 | + X€3 + Yeu,
G= —ze2+—xe4,+y2+22)e2,+y2+22)e3,

(] +y? +22) ey
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Continuing along the path we determine that the remainder of the path is contained in
a dngle cone in the Grdbner fan. Thus,is a reduced marked Grébner basis for some
monomial order of typ&{1, 3}, {2, 4}).

The monomial order of typ€{1, 3}, {2, 4}) that hasG as a reduced marked Grébner
basis is defined by four copies 0f;, the vectorsey := (1,0, 0), ¢2, ¢3 := (—1,0, 0), &4,
the elementl 4 3 2 € §, and themtegematiix %Te, as inTheorem 2

The final stage of the algorithm is tis&ME_TYPE_G-WALK to the point corresponding

to >e. The walk is from the point ((i 8 8),(1, -3, -1, —2)) to the point

(((l) 2 g), (0,0,0, O)). The first cone boundary along the straight line path is at the point

W,r) = ((0_15 095 g), (0.5, -1.5, —-0.5, —1)). Using the same poedures as above, we
compute the reduced marked Grébner basidMowith respect to & i r,((1.3}.(2.4})), >l
monomial order

[Xer]— e — zes,[yer |+ xex — zes, zer + [ Xes |+ ye,
~zez +[yeg) - xeu, (|2 |+ X2 + ) e, (+x2+zz)e4
So this step of thé AME_TYPE_G-WALK is complete.
0 O

Finally we determie that he points ((0_15 05 0),(0.5,—1.5, —0.5,—1)) and

N

(((l) 2 g), (0,0,0, O)) are in the same cone. So the algorithm is completeGurisl the
reduced marked Grobner basis fdrwith respect to>e.
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