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Abstract

A new method for the computation of two-sided Grdbner bases of ideals and bimodules shifting
the problem to the enveloping algebra is proposed. This alternative method appears to be more
efficient than the one in [Kandri-Rody, A., Weispfenning, V., 1990. Non-commutative Grébner bases
in algebras of solvable type. J. Symbolic Comput. 9, 1-26] since it calls the left Buchberger algorithm
once. We introduce the notion, arising from the ideas that this method involves, of two-sided syzygy,
which is revealed to be useful in the computation of, e.g., the intersection of bimodules. Further
applications are left for a later work.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Though first developed in the ring of polynomials, the methods based on Grébner bases
also work in some non-commutative rings, e.g. the Weyl algebras or, more generally,
the o-called Poincaré—-Birkhoff-Witt rings (PBW, for short), including some classical
quantum groups. After first results were obtained in the Weyl algé&batigo, 1982 and in
ten®r algebras of finite-dimensional Lie algebrapél and Lassnerl 985, Kandri-Rody
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and Weispfenning were the first to introduce Grdbner bases in the more general class of
algebras having a PBW basis where the degree of a skew-commpiaternx; xj — Cij X Xj

is bounded by the degree of the product of generaxpxg, for 1 < i < j < n (see
Kandri-Rody and Weispfennindl990. These algebras, so-called solvable polynomial
algebras, may also be found under the names of PBW algebraBysse et a|.2003 and
G-algebras (sekevandovskyy and Schénemar2003. The theory has been surveyed

in Kredel (1993 and, recently, inBueso et al.(1998 andLi (2002. Algorithms for
computing the Gelfand—Kirillov dimensioripr checking whethea two-sided ideal is

prime or not and for computing the projective dimension of a module have also been
developed (seBueso et a].1996 Lobillo, 1998 Bueso et a].1999 Gago-Vargas2003.

In these generalizations, the authors evenainly nterested in one-sided ideals and
modules, whereas methods for the two-sided counterparts are adaptations constructed in
order to cope with the two-sided input data ésch1998 Bueso et al.2003.

In this note we show that those “mends” are not necessary, due to the very well known
fact that two-sided ideals and bimodules may be seen as left modules on the enveloping
algebra. First, we show that the enveloping algebra of a PBW algebra is another PBW
algebra. Second, we find a method for shifting the data back and forth through the
morphism

m®: (R*™® — R (fi®g)’_; —> (fig)i_;

in order to carry out the computations on the enveloping algebra using one-sided
techniques.

This philosophy allows us, for example, to compute Grébner bases for bimodules with
only one call to the left Buchberger algorithm, instead of the a priori unknown number of
calls typical of the aforementioned methods @arcia Roman and Garcia Roman0J).

The techniques that we use have led us to study the syzygy bimodule, which is the two-
sided counterpart of the left syzygy module. We show that, amongst its applications, it can
be used in the computation of intersections of bimodules when one starts, as usual, from
two-sided input data.

Throughout this paper we will use the following notation. We will denotespyhe

element(o, .. ., I1 ...,0) € N". The synbolx* will denote the monomiad;* - - - xp" in
thefree algebr&(xy, ..., Xn) or in any of its epimorphic images, whekés a field. R will

be a PBWk-algebra,R°P its opposite algebra anB®™ its enveloping algebraR @k RC°P.
Furthemore, for any subsét of the free leftR-moduleRS, we will denote byr(F) (resp.
r{F)R) the left R-module (resp. thd&k-bimodule) generated b. If {x* /« € N"}isa
k-basisof thek-algebraR, then br any(a, i) € N»©® = N" x {1, ..., s}, we will denote

1
asx @9 the elementO, .. ., x%, ..., 0) of the freeR-bimoduleRS. Findly, if f € RS\ {0}
is such thatf = 3" c(,.j)x %), then exp(f) (or expgs(f), if we want to ¢ress thatf is
in R®) will denote(a, i) = maxX(y, j); Cq.j) # O} relaive to a given order ilN™®). In
that caseij, will be called the level off .

The computations of the examples shown in this paper were done using a library of
procedures built by the authors using the package of symbolic computation Maple 6. Also
the dd two-sided Grébner bases algorithm (as it appeakamdri-Rody and Weispfenning
(1990 or in Bueso et al(2003) was coded in this library in order to compare the outputs
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and the computation times. The computation times correspond to a Pentium 11l 700 MHz
personal computer with 192 MB RAM.

2. Theenveloping algebra of a PBW algebra

A subsetQ = {Xjxi —gjixiXj — pji; 1 <i < j < n}ofthe free algebr&(xy, ..., Xn)
is a ®t of quantum relations bounded by the admissible orgérdn N" if gj; € k* and
p;i is a finitek-linear combination of standard monomiafs= x;* - - - xp" (« € N") such
that exp(pji) < € +¢j, foralli < j, where exg f) denotes the exponent of the leading
term of the finitek-linear combination of standard monomidlsFdlowing Kandri-Rody
and Weispfenning1990 or Bueso et al(1998, a Poincaré—Brkhoff-Witt algebra(PBW
algebra, for short) is k-algebraR such that the set of standard monomigt§; o € N"}
is ak-basis and there exists a set of quantum relat@rimunded by an admissible order
“ <" satisfying

This algebra is usually denoted kX, ..., Xn; Q, <} (cf. Kredel 1993.

As proved in Levandovskyy(2003, given a set of bounded quantum relatid@s=
{Xjxi —qgjixiXj — pji; 1 <i < j < n}, the set of standard monomials is a PBW basis of
Ras above if and only if, forall ki < j < k < n, the eement

Oki Okj Pji Xk — Xk Pji + OkjXj Pki — dji PkiXj + PkjXi — dji ki Xi Pkj

is reduced to 0 byQ in K(xi, ..., Xn). This poperty, known as theéon-degeneracy
condition may be checked by a computer. It corresponds to the overlap ambiguities of
Bergman forbeing resolvable (seBergman 1978 or the (nogherian) rewriting system
arising fromQ for being complete (sel€obayashi2004).

Amongst the examples of PBW algebras, we find the commutative polynomial ring
K[x1, ..., Xn], somdterated Ore extensions such as the Weyl algéhi&), the envéoping
algebra of any finite dimensional Lie algebra, a fairly large class of quantum groups just
like the multiparameten-dimensional quantum spac, (A") or the bialgebra of quantum
maticesMq(2), etc.

The tensor product of PBW algebras is a new PBW algebra:

Proposition 1. If R = k{x1, ..., Xm; Qr, <r}and S=k{y1, ..., y¥n; Qs, <s} are PBW
algebras with quantum relations

Qr = {XjXi — QjiXiXj — Pji; 1<i < <m},
Qs={yj¥i —qjiyiyj — pji; L<i < j<n},
then Rk S is thePBW algebra denoted by

kix1®1,...,Xn®11®VY1,...,1Q®VYn; Q, <}, where



1042 M.G. Roman, S.G. Roman / Journal of Symbolic Computation 40 (2005) 1039-1052

XD ®D —0jix DX ®1) — pji ®1L; l<i<j<m
Q= 1Ry ®D - xieD(1ey): l<i<m, 1<j<n
Aoypdey) —d;deydey)-1ep;; 1l<i<j=n

and “<” i sone amongst the elimination orders (&@ams and Loustaunali994 page
69 for the definition) arising from Xr” and “<g".

Note thatiff € R\ {0} andg € S\ {0}, thenexp(f ®g) = (exp(f), exp(g)) e N™",
where exg f ® g) is computed using one of the elimination orders as above.

As a first examfe, note thatAnm(K) is the PBW algebrad\,(k) ® Am(k) constructed
in the proposition. Another example of tlienstruction is the enveloping algeR&" of
R=k{x1,...,Xn; Q, <}. Before we describe it, let us define the composition orders. For
anya = (a1, ...,a1) € N", denote bya®P then-tuple (an, . . ., a1).

Definition 2. Let “<” be an order orN". The up-componentomposition order ifN2",
denoted <°”, is defined by

a+ Bo%P <y +8° or

C
(@ F) <" (r:0) © 14 1 goP— 4 §9P andgoP < 5°P.

Thedown-componerdomposition order X" is defined by

a+ B%P <y +8°, or

(@ B) <c (¥,0) < 1 1 gop— 3 4 5% anda < .

If “ <" is an adnissible ader onN", then both compostion orders “<® and “<;"are
admissible orders oN?".

The write oppositelymorphismis the k-automorphism-°P : k{(xi,..., X)) —>
K(X1, ..., %n) given by (X, ---xi,)°P = X, ---x, forij € {1,...,n}. Note hat the
opposite algebra®P is the PBW algebr&{xn, ..., X1; Q°P, <°P}, where the EEments
of QP are thos of Q written oppositely and %°P" is the order in N" given by
a <P B = a% < B. Indeed, the sefxp" - X;*}qenn is ak-basis of R%P, and
exp(p?ip) <%Pen it1+enjraforn>j>i>1

Proposition 3. If R = Kk{x3, ..., Xn; Q, <} is a PBW algebra with quantum relations
Q = {Xjxi — qgjixiXj — pji; L < i < j < n}, then RV is the PBW algebra
kix1®1,....%®1L1Q®Xn,...,1®x1; Q% <}, where

XeHX®l -—qixi®DX ®) —pji®L 1<i<j<n
Q" = Ax)X @D — X ®H(A®Xj); 1<i,j<n
A®x)A®Xj) — 4 1@ X)NA®xX) -1 pifs 1<i<j<n

and “<” is, either any of the elimination orders<£*” or “ <,” in N?" corresponding to
“<” and “<°"", or any of the composition orders<®” or “ <¢” on N?" corresponding
to " 5!1.

If f € R\{0}andg e ROP\ {0}, thenexp(f ® g) = (exp(f), exp(g)) € N?" not only
for theelimination orders but also if any of the composition orders is considerBih
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In what follows, we will work on the fredR-bimoduleRS, wheres is a positive integer
and R is a PBW algéera, and we will use théR-module basis{ei}isz1 consisting of

e; = (0,...,|1,...,0) e RSforalll<i <s.

The notion and some applications of left Grobner bases in PBW algebras and left
modules may be found, e.g., Bueso et al(2003. For convenience, just recall that if
M C RSis anR-bimodule, therG = {g1,..., g-} € M \ {0} is a wo-sided Grobner
basis forM if one of the followhg equivalent statements holds:

(1) M = r(G)r and Exp(M) = i (N" + exp(gx));

(2) G isaleft Grobner basis anil = r(G)r = Rr(G);

(3) G is a left Grobner basisM = r(G)r andgixi € r(G), forallk € {1,...,r} and
ie{l ...,n}.

A setG C RS is said to be @awo-sided Grobner basig G is a two-sided Grobner basis
for the R-bimoduler(G)R.

3. Computing two-sided Grdbner bases

This section is devoted to the methods for computation of two-sided Grébner bases for
R-subbimodules oR®. We denote by f ® g the elementfi®g1, ..., fs®gs) € (RE™)S,
wheref = (f1,..., fs), g =(01,...,0s) € RS.

As a monsequence of the third characterization of two-sided Grébner bases above,
sane authors have proposed an algorithm for computing them Ksedri-Rody and
Weispfenning 199Q Bueso et a].2003. Alternatively, we propose a new algorithm which
improves on that one, since it calls the left Buchberger algorithm only once, although it
uses more variables and input elements. The philosophy is to transform the problem into
computing a left Grobner basis in the free modiR&™)S. This may be done since, just as
we saw in theprevious sectionR®™ has a PBW structure.

It is known that R-bimodules are exactly lefR®*™-modules. Note that, in particular,

the free moduleRS is a left R®*™-module with the actiorir @ r’) f = (rfir’,...,rfgr’),
and(R®™)® possesses aR-bimodule structure whose multiplications are giverr by ®
o = rfi@air’,....rfs ® gst’), wherer,r’ € Rand f = (f1,...,fs), g =

(g1,...,0s) € RS, .
Likewise, the mapn® = mx --- xm : (R®*™)S — RS wherem(r ® r’) = rr’, for
r,r’ € R, is an epimgphism of leftR*™-modules. Thus there exists a bijection
(N C (R*™)S; Ker(m®) € N € R®"™"—Mod} — {M C RS; M € R—Bimod}
N — My :=m5(N),
Npm == Mm%~ I(M) « M.
Using this bijection, for eactR-bimodule M C RS, we have a leftR®™-module

Nm C (RE™)S. Moreover,from a finite generator system féd it is possibé to obtain
one forNy, just as he following results show.

Lemmad4. Let R be a k-algebra.
D IEM = Rr{f1...., fr)re R°, then Ny = gpen(f1® 1, ..., fr ® 1) + Ker(m®).
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(2) Kerm®) = penv(f ® 1-1Q® f; f € R®).
(3) f R=Kk{x1,...,xn; Q; <}isaPBW algéera, thengen (f ®1-1Q f; f € R =
revix©@ P @1 -1@x€ M, 1<j<nl<k<s).

Corollary 5. If R = k{x1, ..., Xn; Q; <x}isaPBW algeraand M= Rr{f1,..., fi)rR
C RS, then

=) =1, A=K

Given an admssible order iN", from here on we will name aBOP (term oveposition)
[resp. POT (position over term)] the ordershit® given by

a < B, or i >j, or

(1) < (B, ]) = {azﬁandi > reSp{i = j anda < B.

Lemma6. Let R=k{x1, ..., Xn; Q; <} be a PBW algebra and consider the order TOP
(or POT) on both Rand (R®™)S.

e Taking<* or <¢ on R, if h € (R®™)S is such thatexp gemys(h) = ((«, 0),1) €
N2 thenh ¢ Ker(m®) andexpgs(mS(h)) = (a, i).

e Taking <. or <c on R™, if h € (R°™)® is such thatexp gemws(h) = ((0,),i) €
N2 thenh ¢ Ker(mS) andexpgs(mS(h)) = (P, i).

Using these results we have:

Theorem 7. Let R= k{Xy, ..., Xn; Q, <} be a PBW algebra, Mc R® be an R-bimodule
and consider in R" the PBW structure given in tHeroposition3 (where the order is one
of <*, <%, =, or <).

If G is a left Grébner basis for M = (m%)~1(M) with TOP (resp. POT), then the set
mS(G) \ {0} is a two-sided Grébner basis for M with TOP (resp. POT).

The theorem provides a method of construction of two-sided Grobner bases for
bimodules. For convenience we write this explicitly under the nanfd gbrithm 1

Algorithm 1. Two-sided Groébner bases

Require: F = {f1,..., fi} € R®\ {0}.
Ensure: G ={g1,..., gy}, atwo-sided Grobner basis fot(F)r suchthatF C G.

Using the left Buchberger algorithm, compute a left Grobner b&isn the free left
R®"-module(R®*™)S for the input dateB.

If G ={g},.... g} withg] = (X5 P} @G5, ... Xjey P ® ), take
gi =iz Al X e P
G:=40.

foralli = 1tor do
if g; # Othen
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G:=GU({g}.
end if
end for

The advantage offered by this algorithm is that only one call to the left Buchberger
algorithm is made, whereas the one showKamdri-Rody and Weispfennin@ 990 and
Bueso et al(2003 makes an, a priori, unknown number of calls. The left Buchberger
algorithm can also be found iKandri-Rody and Weispfenninfl990 andBueso et al.
(2003.

Example 8. Let R be the quantum plane, i.eR = C{x,y; {yx—qxy}, <,3}, where
=<(1.3) is the (1, 3)-weighted lexicographical order witty <jex €2, andputq = i. Let

F = {(2x, X2y, xy? + y?), (xy, 0, —x2y?), (x2, 2, 0)} ¢ R® and consider the order TOP
in RS.

The old algorithm (implemented by the authors as it appearkandri-Rody and
Weispenning 1990 pagel?) calls the left Buchberger algorithm twice and takes 56.6
s to compute a (non-reduced) two-sided Grobner b&sisonsisting of 17 elements.

The Algorithm 1takes 43.0 s to compute a (non-reduced) two-sided Grobner liasis
with 12 elements.

After reducingG1 or G2, we obtain the reduced two-sided Grébner basis

{(x2,0,0), (2x,0,y?), (xy,0,0), (0,1,0)}

of r(F)Rr. The raluction of G, takes 22.7 s whereas the reductiorGftakesl13.0 s.

Now consider the algebrlslg (2) = C{x, Y, z,t; Q, <glex} Of quantum matrices where
=<glex denotes the degree lexicographical order with<giex ... <glex €4, and Q =
(yX—qxy, ty—qyt, zx—qxz tz—qzt, zy—yz tx —xt—(q~ 1 —q)yz}. Putaging =1,
and consider the order “POT” iR?. Let F = {(—xzt+ y, 2xy®2), (x?zt, y?)} C R2.

The old algorithm computes a two-sided Grébner b&sigonsisting of 28 elements in
167.6 s, calling the left Buchberger algorithm twice.

The Algorithm 1 takes 37.9 s to compute a two-sided Grdbner baGis with 17
elements. The reduction @4 takes 101.5 s whilst the reduction db, takes 9.8 s. The
reduced two-sided Groébner basisigF )R is

{(xzt—y,0), (xy,y2), 0,¥%), (0,y?%2), (yZt,0), (0, y?), (y2 0), (0, xy?)}.

The following table shows a comparison between both algorithms for these and some
other explicit examples.

Module Size of O.Id meIh_od . Al gorithm .1 .
reduced Size Time Red. time Size Time Red. time

Cqlx, y1® 4 17 566 227 12 430 130

Mq(2)2 8 28 1676 1015 17 379 9.8

D 6 3B 19075 7096 14 937 531

U(sl(2) 10 29 7352 487.1 11 1138 587

U(g2) 14 88 2417@® 125830 46 135221 37287
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The first column represents the free module where the computations are performed and the
second represents the size of the reduced two-sided Grdbner basis for the corresponding
exampe. For both algorithms, the column “Time” represents the time elapsed for com-
puting a (not necessarily reduced) two-sided Grébner basis, its number of elements being
shown in the column “Size”. We also give the time taken in addition to reduce the basis.

The first two rows gather the times arides of the examples described above.

The third row represents the computation of two-sided Grobner bases iDi#he
mond algebra® = C{x,y,zt; Q, <jex} Where=e is the lexicograhical order with
€1 <lex - - - <lex €4 andQ = {yX—XY, ZX—XZ tx—xt, zy—yz+X, ty—yt+vy, tz—zt—z}.
The input data ar€& = {4x2t + 5x2y, 82% + 9yz}. In thiscase, the old algorithm makes
three calls to the left Buchberger algorithm in order to compute a two-sided Grébner
bass.

The fourth row is concerned with the examplenFD-s12-2, (seeLevandovskyy
and Schoénemanr2003 consisting in computing a two-sided Gr@bner basis in the
enveloping algebra of tracelessx22-maticesU (sl(2)) = k{e, f, h; Q, <giex}, Where
Q={fe—ef+h,he—eh—2e hy—yh+2f}. Theinputdata ar€ = {e3, {3, (h—2)
h(h + 2)}.

The last row of the table repredsrihe results for the exampl&oGB-g2-2 described
in Levandovskyy and Schénema(®2003. It consists in computing a two-sided Grébner
basis of the ideal generated by the square of the elerarftthe dgebraU (g2), which is
generated by 14 elemerit$iere we usefte degree lexicographical ordggex ONn N14,

4. Syzygy bimodules

In this section we study the notion sfzygy bimoduleof a subset ofR®, whereR is
a PBW algéra ands € N*. This notion can be viewed as the analogue ofléiesyzygy
modulefor left modules, since it presents some similar properties.

There exists an algorithm (see ag&@neso et al.2003 which computes a generator
system of the left syzygy modul&y2(F), provided a finite set of input date c RS is
given. This algorithm is shown below and will be used withigorithm 3

Algorithm 2. Left syzygy module

Require: F ={f1,..., fi} € R°\ {0}.
Ensure: H, afinite left generator system &yz(F).
INITIALIZATION: Run the left Buchberger algorithm for the input ddtan order to
compute:
- aleft Grobner basis = {g1, ..., g} C RS for r(F),
- the ebmentsh}‘j € RsuchthatSP(g;, g/) = Y k1 hikj grforalll<i <j<r,and

- the mdrix Q € My (R) suchthat(gs, ..., g-) = (f1, ..., fi)QuL

forall1<i < j<rdo

lsee http://www.singular.uni-kl.de/plural/DEMOS/Leipzig/Applications/G2/index.html
for a definition ofU (gp) and a complete description of this example.
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if level(g;) = level(g;) then
Computerij, rjj suchthatSP(g;, g;) =rij g —Trjigj-
[ i
Let pij :=(0,...Tj ....00 = (0,...rji ....0) — (h ... ).
end if
end for
LetH :={p;;Q/1<i < j <r, andlevellexp(g;)) = level(exp(g;))}.
Definition 9. Let f1, ..., fr € R®. Thesyzygy bimoduleof the matrix

N
F=|:1¢€Mxs(R),

fi

denoted bySyaF) or Sya f1, ..., fi), is the kernebf the homomorphism of [efR®™-
modules(RE™)t — RS; (hy,...,ht) — Zit=1 hi fi.

We can compute the syzygy bimodule of a matfixusing again the techniques shown
in Section 3that is, wecan move the problem to the context of the enveloping algebra in
order to use the methods on the left side.

Proposition 10. Let M € RS be an R-bimodule and N= (m%)~1(M). Let
{h1,..., hy} C (RE™'SN pe a generator system of Syizf; ® 1)t_,, {x©0 @ 1 —

Then Sy_zfl,’..f,_ft) = R{m(hy),...,w(h))Rr, Where & is the projection
homomorphismr : (RE™)! x (REM)SN — (REM)t,

Proof. Note thatzit=1 g (f;i®1) € Ker(m®) foranyg = (g1, ..., 0t) € SYAf1,..., fr).

So, there exists an elemegt = (g7;,.... 9% ----0n1:----%ns) € (R®™)3" such
that i gi(fi ® 1) = Y0P © 1 - 1® x"). Herce, (g, —g") is in

Sy2({fi ® B, (P @ 1 — 1@ x©"P}1j_n 1k<s). From ths point, the proof
may easily be finished.

Algorithm 3. Syzygy bimodule

Require: F ={f1,..., fi} € RS\ {0}
Ensure: H, a finite generator system &y F) as anR-bimodule.

Using the left syzygy module algorithm, compute (R®™)S a gererator systenH =
{hy, ..., h,} of Sy2(B) as a leftRe"-module.

If h; = (h;’, h;"") whereh;’ € (R®*™)t andh;” € (R®™)S"for1 <i <r, take
H:={h{,..., h').

Example 11. Let R be the quantum plane with the PBW algebra strucfifee y; {yx —
axy}, <@}, with g = i, and onsiderthe order POT inR2. Let F = {(x +
1y), (xy,0)} C R2.
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Algorithm 3takes 13.4 s t@ompute theR-bimodule generator systei of SyaF)
consisting of eight elements:

= { 1®Yy-—y®L(-1+D)1® 1), ((_%+ )y®x

1 .
+ <_§+ )xy@l 19x+1® ) 0,1®y+iy®),

1 i 1
((_§+§)y®x+(—§+ >xy®1|x®1+1®1>
1 X + 1 i XYy Lix+i®1l

> 32)Y 2 y

_ _ 1 _
(-y® y+y2®1,l®y—ly®1), ((5+§>1®x2—|x®x
——+ x>®1,0 }+i— 1®xy+ —}+ ® X
Y k) 2 2 y 2 y
+ XQYy+ 1+i xy®1,0
573 y+{z+tz)xyelL .

Although elimination techniques are useful in solving several problems in module theory
(computation of intersections, quotient ideals, etc.), they appear to be computationally
inefficient, mainly because elimitian orders are unavoidably used.

On the other hand, it has been noted, first in the commutative casAdafs and
Loustaunau1994 page 171) and then using left syzy@®tmodules whereR is a non-
commutative PBW algebra (cBueso et al. 2003 page 203), that syzygies provide
a more efficént treatment, for example, in the computation of the intersection of left
R-submodules oRRS, ideal quotients, kernels of homomorphisms of IBfsubmodules,
etc.

In what follows, we will see that some applications of left syzygies can be generalized
using the new definition of syzygy bimodule that, for example, it is possible to
give an algorithm to compata firite intersection ofR-subbimodules oRS when, as is
natural, two-sided input data are given. Further applications will be studied in following
work.

The following result states a general property of the epimorphic inhhgé truncated
two-sided syzygies.

Lemmal2. Let M be an R-subbimodule ofSRsuch hat there exist pg > 1 and
H = [E—;] € Mipxq(R), where H € Msyq(R) and H; € Mpyq(R), sdisfying the
following two conditions:

(i) (mS(h) ® 1)Hy = hH1, Yh € (R®™Y)S,
(i) {h € RS 30" € (R*™)P suchthat(h ® 1, h”") € SyaH)} =M

Let us split up each elemeht ¢ (RE™)STP into h = (', k") with ' ¢ (R®™)S and
B’ e (RE)P.
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(1) If {he, ..., k) S (RR™STP is an R-bimodule generator system of 83, then
M = r(mS(h1), ..., m3(h))R.

(2) Furthemore, if {hy,..., hs} is a left Grobner basis of Syk) (as a ldt R®M-
module) for the order POT inR®™)STP and any of<*, <¢, <., <¢ in R®", then
(mS(hy), ..., m3(h/)} \ {0} is a two-sided Grobner basis of M for POT.

Proof. First, assuméhs, ..., h:} is a generator system &yzZH) as anR-bimodule,
whereh; = (h;’, ;") € (R®™)S x (R®™)P. Then,

(m°(h;") ® DH1 + hi"Hz = hi'H1+ hi"Hz = 0,
forall1 <i <t. Therdore,r(m3(h1), ..., m5(h/))r € M. Conversel, for all f € M,
there existdt” € (R®™)P suchthat(f ® 1, k") € SyaH). Herce
t
(fROLRE) =) pihi ki)
i—1

for somep; in R®™, 1 <i <t, and @plyingm*® to the firsts components,

t t
f=m(f®L=m (Z pihi’> =D pim*(hi).
i=1 i=1

In order to prove the second statement, first suppose that the ord&bis either<* or
<. Pick f € M\ {0}. Then here eistsh” ¢ (R®*™)P suchthat(f ® 1, k") € SyaH).
Moreover, asf ® 1 # 0 and the oder on(RE™)S+P is POT,

exp (renys(f ® 1) = expremys+p((f ® 1, k")) = (a1, a2) + €Xp Remys+p(h ),

forsomej € {1, ..., t} anday, a2 € N". The level of hat element ; is the level off ®1,
whichisin{1,...,s}, sok;" # 0 and eXRremysip(hj) = exp(RenV)s(h/). Therdore,

exp(rems(f ® 1) = (a1, @2) + €Xp(renys (k). 1)

Now, if exprs(f) = (B, k) € N™©), then exp gems(f ® 1) = ((8,0), k) € N°*©_ So,
if ((y1, y2), k) is the exponent ofhj’, then he Eq. () can be rewritten as

((B,0), k) = (a1, a2) + ((y1, v2), K), 2

which leads us ta; = y» = 0, and hence, ex(peenv)s(hj/) = ((y»1, 0), k). By Lemma §

this implies exprs(m3(h ;")) = (y1, k). Finally, extracting the first component of the pairs

in Eq. @),
exprs(f) = (B, K) = (@1 + y1, k) = a1 + exprs(m>(h;’)).

If the order onR®W is <, or <, the proof follows analogously.
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Theorem 13. Let {M;};_, be a family of R-subbimodules of Bnd suppose that M=
R(fi..... fl)r € R®. Then

r
(\Mi = {h € R 30" e (R*™Zi=1Y suchthat(h ® 1, h") € SyaH)},
i=1

where
lg -+ s
fll ... 0
fé ... 0
H=] . .| € Mty tyxrs(R)
0 ... fr
0 - fy

Proof. If (h® 1,h") € SyaH), then,forl<i <r,

S ti
h:lz;m ®1.e,:_kzlhg+zj<itjf,§ € M.

Conversely, ith € (\_; Mi, thenk = 3j_, hl f§ with hi, € R®™, foralli € {1,...,r}.
Therefore,

(h®1,—hi,....—hi.....—hi,....—h{) e SyzH). O

From12and13, an agorithm for computing fiite intersections oR-subbimodules of
RS may be formulated (se&l gorithm 4.

Corollary 14. Let M; and H be as inTheoreml3. If SyaH) = Rr{g1,..., g:)r With
gk = (g, gx’) € (RR™)S x (RMXi=1li forall 1 < k < t, then

r
(M = r(m*(g1), ..., m*(g))r.
i=1

If G = {g1,..., g} is in addition a left Grobner basis of S¢td) (as left F"-module)
with POT in (Re”")S+ZJ=1tJ', then{m3(g1), ..., m3(g/)} \ {0} is a two-sided Grobner
basis of )[_; Mi with POT in R.

Algorithm 4. Intersetion of R-subbimodules oR®

Require: {M;};_,, afanily of R-subbimodules oR® with Mj = R(fli, . ft’l,)R.
Ensure: M, afinte generator system ¢f{_; M; as anR-bimodule.
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INITIALIZATION:

ls - g

fll ... 0
fti ... 0

H:= : . GM(S+Z§:1tj)xrs(R)-
o

Using the syzygy bimodule algorithm compute a generator sysdem {g1, ..., g} of
SyZH) as anR-bimodule.

If gk = (gx’, g&”) Wheregy’ € (RE™S andgy” € (RR™Zi-1li forl <k <t,
takeM := {m%(g1)), ..., m%(g/)}.

Example 15. Let R be the quantum plane (as Example 1) and ®nsiderthe order
POT in R?. Let M; and M, be the R-subbimodules ofR? generated by{(2x? +
2X, —Y), (0, —8), (—3xy, 0)} and{(x + 2, 0), (1, —y)}, resgectively.

Algorithm 4takes 109.1 s to compute the-bimodule generator system of M1 N Ma,
consisting of 12 elements:

v 4X +7X 2 2, (4 Ao 40
= Y+ 3xy. 7Y . 33 3% 3% y
5, 8 , 51\ 4 19 5\ ,
<3xy+3xy, 3y>,<< 1 3>x +< 3 3)x
A y+ 2 By s (1= ) xy, 82
3033\ Y 3 )3y )
2, 2 4 400 1 2 4 2.,
<3x + 3% 3y> ( y = v =37 ) (-3¢ - 2
41,2 4 AN oo (A Y, (2,2
33T \\3T3)" YT 37 3)YI 3T3)Y )
2, , 4 i 2, 2 2\ ,
<3Xy A y)(( 3+3)X
+

2 2 2 4, 2 2
—3+3)X,O>,(—3xy+<—3+ )xy,)}.
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