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Abstract: For the calculation of steady states in continuous culture and the application to optimization, 
numerical methods for solving the related nonlinear system of equations are usually employed. Such a system 
may have more than one solution but numerical algorithms find - at best - one solution per computational run 
depending on the starting point. There is no proof that all the solutions are actually found. To overcome these 
problems algebraic methods can be employed. Many biotechnological models can be transformed into a 
polynomial form. In contrast to nonlinear systems in general, polynomial systems are well investigated and 
all solutions can be calculated with given accuracy for example by using the Gr6bner Bases representation. 
This allows even for sensitivity studies which are difficult to handle with numerical methods. The process of 
transforming and solving the system of equations is automated with the computer algebra system REDUCE. 
In this contribution the approach is presented and examples are shown. 

Keywords: Computer algebra system, Gr6bner Bases, continuous culture, plant optimization, biotechnology 

1. I N T R O D U C T I O N  

Computer algebra systems are now well- 
established tools to make many calculation 
problems in science and engineering easier, eg. 
(Atkinson et al., 1982). For  numerical 
optimization problems for example, derivatives o f  
the system equations are needed which can be 
calculated comfortably, employing such tools. 

In biotechnology the calculation o f  steady states 
in continuous culture is one problem that in many 
cases cannot be solved satisfactorily. Since many 
bioprocesses show a remarkable variance in the 
biological parameters, the dependencies o f  
operating points from these parameters are also 
o f  interest. The numerical situation gets even 
worse if such sensitivity or optimization studies 
are required. In this contribution an approach is 
presented to overcome such problems by 
employing algebraic methods. 

2. STATEMENT OF THE PROBLEM 

In biology, mathematical modelling has become a 
useful tool for analyzing and understanding 
intracellular metabolism and regulation. In 
biotechnology, adequate process descriptions are 
needed as a basis for plant optimization, filter 

and controller design. 

2.1 Bioteehnological Models 

One of  the most famous models is the observation 
o f  Monod (1942) that the specific growth rate # o f  
a bacterial culture depends on the substrate 
concentration S in form of  the saturation curve 

/x = g m x "  S / (kin+S) (la) 

with k m called the "Monod constant". Pirt (1965) 
introduced the concept of  maintenance to biological 
modelling, resulting in equations like 

r s = rs,ma x • S / (ks+S)  and (lb) 
# = Yx,s'rs " ge, ( lc) 

where the specific substrate uptake rate r s is 
assumed to be properly described by an enzymatic 
Michaelis-Menten type step for substrate uptake. 
Several product or substrate inhibition terms have 
been mentioned, most o f  them being motivated by 
enzymatic kinetics. In structured models similar 
terms are employed. A collection o f  such 
mechanistic models is given in (Bellgardt, 1992) 
and (Nielsen, Villadsen, 1992). Beside kinetics for 
the description o f  rate l imiting steps, 
biotechnological models often consist o f  a set o f  
linear balance equations to describe intracellular 
mass, energy and redox flows as well as 
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stoichiometry (Noorman et al., 1991). These sets 
of  linear balance equations have to be solved, 
e.g. for numerical simulation, which is 
convenient by using computer algebra systems. 

2.2 Example Model 

For the following examinations the simplified 
model equations 

r s = rs,max'S / (ks+S+ki,s 'S 2) - ki,p'P, (2a) 

for ethanol and substrate inhibited substrate 
uptake 

# = Yx,s'rs - #e, (2b) 

for energy-dependent growth and 

= YP ,S '~  ( ~ )  

for product formation of an ethanol fermentation 
with Zymomonas mobilis (Posten, 1989) is used. 

The complete process description contains the 
physiological model as well as the reactor model 

/ x .X  - D . X  = 0 ,  ( 3 a )  
D.S 0 - rs.X - D.S = 0 and (3b) 
rv.X - D.P = 0 (3c) 

in the form of  balance equations that are valid at 
stationary working conditions during continuous 
culture. The meanings and nominal values of  the 
parameters are listed in Table 1. 

Table 1. Physiological model parameters 

rs,max 
ks 
ki,s 
Iq, p 
Yx,s 
YP.s 
~c 

maximum specific substrate uptake rate 10 [g/(gh)] 
substrate limitation constant 0.2 [g/L] 
substrate inlu'bilion constant O. O01, O. 01, O. 05 L/g 
product inhibition constant 0.1 [L/(gh)] 
biomass yield from substrate 0.05 [g/g] 
product yield from substratc 92/180 [g/g] 
maintenance part of growth 0.05 [l/h] 

2.3 Problems 

Since the biological models are nonlinear in 
nature, numerical methods are usually used for 
their calculation and their application to 
optimization and control. This results in several 
difficulties: 

The nonlinear equation system may have more 
than one solution, characterized for example by 
product- and substrate inhibition or as the trivial 
case by wash-out conditions. Numerical 
algorithms for solving the equations find - at best 
- one solution per computation run depending on 
the starting point. Unfortunately, there is no 
proof that all the solutions are actually found. On 
the other hand the algorithms may suggest 
pseudo-solutious with a very small (but defimtely 
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not zero) residuum. 

During plant optimization the calculation of 
stationary working points has to be done repeatedly 
as a function of the inputs that have to be 
optimized. Here the general problems of finding 
global minima of  cost functions in a numerical way 
compound the problems of solving the 
corresponding process equations. In addition, often 
not only one special working point is required, but 
also the course of the optimum as a function of 
some parameters. These problems give the reason 
for the demand for more stable and powerful 
algorithms (Seader et al., 1990). 

2.4 Employment of Algebraic Methods 

The use of algebraic methods is a way to avoid the 
disadvantages of numerical methods. Polynomial 
equations are especially well investigated and allow 
for the nearly exact determination of all zero 
points, derivatives and minima. Algebraic 
computer languages like REDUCE (Hearn, 1991) 
make it relatively easy to handle such algebraic 
systems. However, other computer algebra systems 
like MAPLE (Char et al., 1988), or AXIOM 
(Jenks and Sutor, 1992) allow for the handling of 
such problems with convenient user interfaces. 

All of the model equations mentioned above are 
rational functions of the system variables like the 
hyperbolic term in the Monod model. 

Now the rational functions which are themselves 
not easy to handle can be transformed into 
polynomial equations and so the set of well- known 
theorems about polynomials can be employed to 
dead with the biotechnological problems. The 
following paragraphs show a way to carry out this 
transformation, and to make use of the 
polynomials by the computer algebra system 
REDUCE. Also, some example results concerning 
the calculation and optimization of stationary 
working points are given. 

3. STATIONARY POINTS 

3.1 Deduction of  Polynomials from Model 
Equations 

In order to transform the set of rational equations 
into a set of polynomial equations, first the 
numerators are taken and set to zero. When 
solving this the solution set of the system of 
numerators may contain points where the 
denominators of one or more of the rational 
equations vanishes. In order to exclude these 
solutions the following trick is employed. Let 
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f l (x l  . . . . .  x . )  = 0 

fn(xl ... . .  xa) = 0 (4) 
be given with fi(xl .. . . .  Xn) = Zi(x 1 ... . .  x n 
Ni(x 1 .... xn), i = l  .. . . .  where Z i and N i are 
polynomials in the variables x 1 .... x n. 
Then the naive approach would be to solve 

Z l ( x  1 . . . . .  x n) = 0 
. . .  

Z . ( x  I . . . . .  x . )  = 0 .  

(5) 

In order to exclude solutions with vanishing 
denominators further variables xn+ 1 ... . .  X2n with 

In the experience of the authors the solution 
method via GrSbner Bases is the fastest and most 
easy to use method among all other methods for 
solving polynomial equations (Tibken, Posten, 
1993). 

The Grrbner Bases algorithm in the version used 
in this paper transforms a set of polynomials 

pl(xl . . . . . .  x.) 

pk(xl  . . . . . .  x . )  (7) 

into a set of  polynomials 

Nl(X 1 . . . . .  Xn)'Xn+ 1 - 1 = 0 

Nn(x I .. . . .  xn)'x2n- I = 0 
(6) 

are introduced and the system (5,6) is solved for 
X 1 . . . .  , X n , X n + l , . . . , X 2 n .  Due to the definition of 
X n +  1 . . . . .  X2n the denominators N i are finite at 
every solution point. The transformation from the 
system (4) to the polynomial system (5,6) can be 
carried out completely by REDUCE. 

4. SYSTEMS OF POLYNOMIAL 
EQUATIONS 

In the previous section the determination of the 
operating point for the biological model is 
transferred to the solution of  a set of  polynomial 
equations in more than one variable. The exact 
solution without numerical difficulties will be the 
aim of this section. 

4.1 Solution Methods 

In the mathematical literature very much has been 
published about the solution sets of polynomial 
equations. The corresponding discipline is 
algebraic geometry. The simplest algorithm for 
the solution of poylnomial systems is by so-called 
"resultants" and is in some sense the classical 
approach. The resultant approach suffers from 
some disadvantages, firstly the required number 
of  computations explodes and secondly some 
special cases have to be taken into account and 
the process of  solution is not entirely straight- 
forward. 

In recent years the so-called Grrbner Bases 
(Geddes, 1992) have been described in the 
literature. This tool is suitable for investigating 
the properties of  systems of polynomial equations 
especially for determining the number of 
solutions and actually computing them. 

ql(")(xl . . . . . .  x~) . . . . . .  q~(")(xl . . . . . .  x.), 
q1(nd)(xl . . . . . .  x n) . . . . . .  qrn_l(n-1)(Xl . . . . . .  Xn-l), 
ql(l)(Xl) . . . . . .  qrl(1)(Xl) 

(8) 

such that the zero sets of both polynomial sets 
coincide. By a simple inspection of the second set 
the validity of the solution set can be verified. 

Another remarkable feature is the fact that the 
second polynomial set has in some sense a 
triangular structure, i.e. some polynomials depend 
only on one variable, namely x 1, some 
polynomials depend on two variables, and so on. 
These dependencies lead immediately to a solution 
by solving the polynomial in one variable of least 
degree for this variable, substituting this value for 
x 1 into all other polynomials, then solving the 
polynomial of  least degree in x 2 for x 2, and so on. 
In this way all solutions of  the second set of 
polynomials can be computed and because of the 
fact that the solutions on zero sets of both 
polynomial sets coincide, all solutions to the 
original first set of  polynomials have been found. 
The process of  solution involves only the solution 
of a polynomial equation in one variable at each 
stage. This is a numerically as well as an 
algebraically well-investigated problem and can be 
done by the methods given in the literature. For 
the example given here only the numerical 
approach is used, because the numerical results 
were highly correct in the examples. In some 
complicated situations it may well be necessary to 
use algebraic methods; in that case the use of 
algorithms for algebraic numbers given in 
(Buchberger, 1970; Buchberger et al. ,  1983) is 
proposed. This was implemented in REDUCE and 
very good results were obtained with moderate 
calculation time. 

4.2 Application to Example 

Using the indentifications 

x I = X, x 2 = S, x 3 = P (9a,b,c) 
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and introducing as shown in 3.1 an auxiliary 
variable x 4 by 

x4 = S/(ks + s + ~ ,s .  s2) = 
x2/(k s + x 2 + lq,s. x2 ) (9d) 

the following equations have to be solved for the 
operating point. 

r S = rs,max'x4-kp'x 3, (lOa) 
/z = Y x , s ' r s - # r a ,  (lOb) 
rp = yp,s-rs, 2 (lOc) 
x4"(ks+x2+ki,s'X 2 )-x 2 = 0, (10d) 
my 'x l -D 'x  1 = 0, (10e) 
D'S0-rs.xl-D.x 2 = 0 and (10f) 
rp.Xl-D.x 3 = 0. (10g) 

From these equations the Gr6bner Bases are 
obtained from the REDUCE program. 

Table 2. Excerpt from the REDUCE program 

% physiological model equations 
rs :=  rsmax * s / (ks+s+kis*s**2)  - kip*p; 
mu :=  yxs * rs - mug; 
rp :=  yps * (rs - mu); 

% reactor equations 
gls :=  -rs * x + d * (s0-s); 
g l x : =  m u * x - d * x ;  
g l p : =  r p * x - d * p ;  

% numerators and denumerators 
glsn :=  num(gls)$ 
glxn :=  num(glx)$ 
glpn :=  num(glp)$ 

% z is additional variable 
glsd :=  den(gls) *z - 15 

% other denumerators are identical 

% groebner basis and extraction of  polynomials 
grob :=  groebner({glsd,glsn,glxn,glpn}, 

{z,s,x,p})S 
polp :=  part(grob,4); 
polx :=  part(grob,3); 
pols :=  part(grob,2); 

% numerical evaluation of polynomials 
ON ROUNDED; 
rsmax = 10; ... 
plist :=  SOLVE(polp,p); 

Some results are shown in Fig. 1. The substrate 
concentration is calculated as a function of the 
dilution rate for three different substrate 
inhibition constants. Beside non-physiological 
solutions (e.g. negative concentrations, not 

shown) in the three cases substrate limited growth 
occurs. This is the state that is usually pursued in 
bioprocesses. I f  substrate inhibition is very high a 
second stable state called substrate inhibited growth 
can be achieved. This situation may be caused by 
insufficient inocculation. In real fermentations 
experimentors try to overcome this problem by 
reducing the dilution rate, but as can be seen from 
the results this may be successful only if the 
substrate inhibition constant is not too high (0.01, 
e.g.). In all three cases of  course wash-out is one 
possible solution. 
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Fig. 1. Substrate concentration as a function of 
dilution rate for three different substrate 
inhibition constants 

5. OPTIMIZATION 

One important application of biotechnological 
models is the optimization of reactor design and 
operation parameters with respect to a given cost 
function. Although these functions are normally the 
results of  complex economic considerations, they 
often consist of  rational or polynomial equations. 
Many of them even have a quadratic or bilinear 
s t r u c t u r e .  

Sometimes not all parameters that influence the 
criterion are known exactly at the time of  optimi- 
zation. In these cases one wants to know the effect 
of  parameter changes on the optimal working 
points. The solution of the optimization and sensiti- 
vity problem is dealt with in the next section. 

5.1 Formulation of the Problem 

To solve the optimization problem, a cost function 
J(.~,X,l~) has to be minimized with the reactor 
model equations being constraints. In the case of  
stationary working conditions this means 

J*(u*,_x*,p) = minu(~,x,p_) (1 la) 
subject to 
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(1 lb) 

The constraints can be considered by using 
Lagrange-multipliers which leads to 

J*~*,x*,p.) = minuJ~,x,p_) maxxL~,x,~,p_)(12a ) 

with 

LCU.,x,_X) = J(.q,x,12) -_~T • g(_u,x,p.) (12b) 

as an unconstrained problem. 

The optimal working point is characterized by a 
saddle-point of the Lagrangian and can be found 
by solving the system of equations 

aLl&t_ = 0, #L/O_x = 0, aL/O_~ = 0. (13a,b,c) 

This task needs two different steps. Firstly, the 
formal deduction of the derivatives of the La- 
grangian has to be carried out. 

To figure out the derivatives by hand needs a 
high sacrifice of time and often leads to mista- 
kes, but it can be automated by using computer 
algebra systems. This step of solving the optimi- 
zation problem is possible for many classes of 
non-linearities in the cost function or in the 
reactor equations without any assumption about 
the values of the model parameters. The basic 
difficulties of the second step are, for example, 
during the determination of the stationary wor- 
king conditions finding all the solutions and 
being sure of the accuracy of the numerical 
results. Especially in the case of L(.u,x,_~) being 
a rational or polynomial expression the system 
(13) can be transformed into a polynomial form 
and the zeroes can be calculated as described 
a b o v e .  

5.2 Application to example 

In the example process a cost function 

J = D.P + w.P (14) 

is set up that considers volumetric productivity 
as well as product quality in terms of the wei- 
ghted product concentration. Since the reactor 
equations (eq. 10) act as constraints and the 
dilution rate D as sole input variable, the optimi- 
zation problem (eq. 13) is given in the represen- 
tation of a set of polynomial equations and can 
be solved following the procedure given in 
Section 4.1, in principle. 

Unfortunately, the size of the problem becomes 
too big to be handled on a PC by a reasonable 
amount of calculation time and storage. The 
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complete Grtbner basis of one steady state alrea- 
dy includes more than three hundred terms and 
needs about 10 min computing time on a PC. 
With increasing complexity of the problem there 
is a more than exponential increase in computing 
time and storage demand. The result file of the 
complete optimization example was about 2 
MByte and made numerical evaluation questio- 
nable. In such a case it is necessary to assign 
numerical values to most of the model parameters 
before calculating the Grtbner basis. In some 
cases another reduction of the size of the optimi- 
zation problem can be undertaken, firstly by 
calculating the Grtbner basis of the reactor equa- 
tions, and secondly by including only the necessa- 
ry equations, in the example g(U,X,p_) = q(D,P), 
as constraints into the Lagrangian. 

Figure 2 shows results of the optimization pro- 
blem, where the optimum dilution rate D* with 
respect to the cost function J (equ. 14) is given as 
a function of two formal parameters, namely the 
substrate feeding concentration S o and the quality 
index w. As expected, the optimum dilution rate 
decreases with increasing substrate feeding con- 
centration, reflecting the linear inhibition of sub- 
strate turnover by ethanol. Substrate turnover is 
nearly completely independent from the quality 
index, because a further increase of the dilution 
rate results in less product but not in a remarka- 
ble increase of productivity. For lower dilution 
rates ethanol increases slightly but with a remar- 
kable loss in productivity, because the concen- 
tration of residual substrate comes into the range 
of k s . For high feeding concentrations this struc- 
ture of optimal working points changes. Now 
substrate turnover is incomplete and the process 
operates at a point of mixed product and substrate 
inhibition. 

0 . 4  • 
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0 " 0 2 0 ~ 2 0 0  ' - -  o(~o o S~ 

O°°/'~ ,~%, ~ ~ ee 6'':'9 cooCer~ 

Fig. 2. Optimum dilution rate for the process of 
continuous production of ethanol as a 
function of two parameters, namely 
substrate feeding concentration and a 
quality index for product concentration 
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The problem of optimization becomes even more 
difficult for plants with several stages. Here 
hierarchical optimization is usually used. In an 
outer optimization loop several subproblems 
have to be solved. Each of these subproblems is 
again an optimization which requires solving a 
nonlinear system of equations iteratively. In this 
situation numerical methods need high computa- 
tion time, or even fail. 

6. STABILITY ANALYSIS 

The determined working points are not necessa- 
rily stable. To assess the stability of a given 
working point P0, the characteristic polynomial 

D, and would finally die out. In all other cases 
the wash-out state exhibits one unstable pole, 
representing the well-known (and sometimes 
unpalatable) fact that one bacterium is enough to 
make a fermenter insterile. Beside these working 
points, which can be interpreted physiologically, 
an additional unstable pole exists (Fig. 1) with 
two negative and one positive real solutions of the 
characteristic polynomial. Although such states 
can be obtained in experiments only by employing 
controllers, they may be useful for studying diffe- 
rent environmental conditions in cells at the same 
growth rate. 

7. CONCLUSIONS AND PROSPECTS 

P0~) := det ( h ' I - A )  = 0 ,  (15) 

where A is the Jacobian matrix of the the model 
equations at P0, has to be evaluated. Besides the 
evaluation of a polynomial only the formal com- 
putation of derivatives of polynomials and the 
formation of the determinant is required. All 
these steps can be completely carried out by 
computer algebra systems. 

However, it is not easy to view the stability of a 
whole branch of a set of solutions for a range of 
dilution rates (e.g. Fig. 1) or for other formal 
parameters. In the general case the unknown 
states cannot be given explicitly as a function of 
these parameters. In such cases the Jacobian 
matrix depends not only on these parameters but 
also on the unknown states. The solutions of the 
characteristic polynomial POt) have to be discus- 
sed respectively. In simple cases the Hurwitz 
criterion can be employed succesfully. Since 
only the signs of the real parts of X i are requi- 
red, methods from interval mathematics included 
in computer algebra are recommended to solve 
such problems. 

In the example the substrate limited operation 
points show three stable poles. Substrate inhibi- 
tion results in one negative real pole and a 
conjugate complex pair of poles. Corresponding 
damped oscillations have often been described in 
the literature for substrate inhibited fermenta- 
tions. The wash-out case exhibits three stable 
poles for D > Dmax(S0,ki,s) (e.g. D > 0.2 for 
S O = 100, lq, s = 0.01, see Fig. 1) as expected, 
because definitely no growth (and therefore no 
dynamics) is possible under these conditions. 
But in cases where the dilution rate allows for 
substrate limited growth but is too high for 
substrate inhibited growth (e.g. 0.03 < D < 
0.12, lq, s = 0.05, see Fig. 1) the wash-out 
case is also stable. A cell population from a 
probably small amount of inoculum would suffer 
from substrate inhibition, allowing only for # < 

It has been shown that algebraic methods can be 
employed with advantage to facilitate or even 
make possible calculations for modelling and 
simulation of continuous cultivations in biotech- 
nology. Many models consist of linear and ratio- 
nal functions. These special properties have been 
used to make model development more conve- 
nient and to find all solutions of the resulting 
nonlinear system of equations with guaranteed 
accuracy. Therefore, the rational functions are 
transformed into a system of polynomials which 
is then transformed into a triangular representa- 
tion to allow for the successive calculation of the 
state variables. So the problems of numerical 
simulation of steady states have been overcome. 
For many practical cost functions plant optimiza- 
tion is also possible using the approach proposed 
here. 

One disadvantage of the approach proposed here 
is the high demand of memory and computing 
time for calculation of the Grfbner bases. More- 
sophisticated algorithms are under development 
and will solve this problem. 

Many other problems can be solved by employing 
computer algebra systems. These include stability 
analysis with respect to sometimes observed 
oscillating cultures, or solving the inverse steady- 
state problem. Here the inputs for achieving a 
given state of the bioprocess are investigated. 
Usually, it is not enough to calculate one opti- 
mum value for a cost function with a given para- 
meter set, but it is necessary to give sensitivity 
curves with respect to inputs or design parame- 
ters. Here again, computer algebra systems may 
be employed with advantage. 
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Nomenclature 

A 
f(x) 
g 
J 
k 

L 
N(x) 
P 
o 
p(x) 
q(x) 
s 
r 

w 
x 
X 

Z(x) 

# 

/Zmax 

Jacobian matrix 
rational function 
Constraint 
Cost function 
Vector of model parameters 
Lagrangian 
Denominator polynomial 
Product concentration 
Parameter vector 
Polynomials 
Gr6bner Bases 
Substrate concentration 
Vector of specific turn over rates 
Input functions 
quality parameter 
Independent variable 
Biomass dry weight concentration 
Vector of yield coefficients 
Numerator polynomial 
Lagrange-multipliers 
Specific growth rate 
Maximum specific growth rate 


