
Pergamon
Mech. Mach. Theory Vol. 30, No. 6, pp. 765-776, 1995

Copyright © 1995 Elsevier Science Ltd
0094-114X(94)00069-7 Printed in Great Britain. All rights reserved

0094-114X/95 $9.50 + 0.00

COMBINATORIAL CLASSES OF PARALLEL
MANIPULATORS'~

J. C. FAUGI~RE and D. LAZARD
LITP, Institut Blaise Pascal, Case 168, 4, place Jussieu, F-75252 Paris Cedex 05, France

(Received 24 August 1994)

Abstract--The classes of parallel manipulators are listed, which are defined by the constraint that some
legs have the same fixation on the platform or on the base. For each class, the generic number of assembly
configurations is given. It appears that this number never changes if the constraint of planarity is added.

Gr6bner base computations are widely used for obtaining these results. It appears that this method is
now an efficient tool for solving polynomial systems which appear in robot kinematics.

1. INTRODUCTION

A parallel manipulator is a body (platform), the spatial position of which is commanded by fixing
the distance of 6 points of the platform to 6 fixed points of the space (the base).

There may be various practical ways to realize such a mechanism, the most usual one being to
use six linear actuators connected by spherical joints to the platform and to the base.

When one wants to compute the position of the platform from its geometry and the lengths of
the linear actuators, one is led to a system of algebraic equations which has several solutions. The
number of these solutions strongly depends on the geometry of the manipulator. It has been proved
recently that, if this number is finite, it is at most 40 [1, 2].

If the geometry of the manipulator satisfies some constraints, this maximal number may decrease.
If these constraints may be represented by polynomial equations, the maximal number of complex
solutions is reached for almost all manipulators satisfying them. There are numerous papers whose
aim is to determine this maximal number for some classes of manipulators.

It is clearly not possible to enumerate all possible constraints. Thus, we limit ourselves to two
kinds of constraints:

• The combinatorial constraints which consist in asking that some of the spherical joints are the
same for two or more of the linear actuators.

• The planarity constraints which prescribe that all the spherical joints on the platform or on
the base are in the same plane.

In this paper, we call combinatorial class of parallel manipulators the set of all manipulators
satisfying some given set of combinatorial constraints. We enumerate all these classes, and for each
of them we give the maximal number of assembly positions.

Moreover, we show that this maximal number is never changed when planarity constraints are
added.

We want to acknowledge Jean-Pierre Merlet for many helpful discussions and also in providing
a very complete bibliography on the subject [3].

2. THE COMBINATORIAL CLASSES

Usually, the parallel manipulators are classified by the number of different spherical joints on
the base and on the platform. For example the most general manipulator is the 6-6 one. This
classification is not discriminating enough for our purpose.

tWork supported by EEC projects POSSO and PROMOTION.

765

766 J.C. Faug6re and D. Lazard

Thus, we represent each combinatorial class by a graph, the edges of it being the actuators, the
upper (resp. lower) vertices being the joints on the platform (resp. on the base). If the graph has
several isomorphic components, they are represented once, with the number of their occurrences
as exponent. This abstract description becomes clear when looking at Fig. 1.

In the list which follows, we have omitted the classes which have clearly an infinite number of
assembly configurations, namely those

• which have only two joints on the platform or on the base;
• which have two actuators with both their ends in common (the position of the platform

depends on 5 conditions only, and one degree of freedom remains);
• which have 4 actuators which have one end in common (if 3 actuators have one end in

common, this fixes the position of this end relatively to the base and to the platform; thus the
fourth actuator is superfluous, and the position of the platform depends on 5 conditions only).

We may now list the combinatorial classes:

There is only one 6-6 combinatorial class: (16).
There is one 6-5 class: (A 14).
There are two 6-4 classes: (/~ 13) and (A ~ 12).
There are two 6-3 classes: (A 3) and (hAl).
There are two 5-5 classes, both invariant by exchanging the platform and the base: (NI 3)

and (A V I~).
There are five 5-4 classes: (MI~),(MIb, (AVI),(NAI) and (A~V).
There are four 5-3 classes: (/~I),(MA),(A/V) and (/IX/A).
There are five 4-4 classes which are invariant by exchanging the platform and the base:

(NV t), (~ I), (A ~/), (N 2) and (~ I~).
There are three pairs 6f 4 ~ classes which are exchanged by exchanging the platform and the

base: (/\AV), (W I) and (M V), and the ones obtained by symmetry with respect to a horizontal line.
There are seven 4-3 classes: (~ I), (MV), (Y~A), (AA~), (/NA), (M A) and (/~).
There are two 3-3 classes which are invariant by exchanging the platform and the base: (~)

and (~).
There is one pair of 3-3 classes which are exchanged by exchanging the platform and the base:

(~) and its symmetric (~) with respect to an horizontal line.
We can sum up this list in following result.

Proposition 1. If the above listed classes with infinitely many assembly configurations are excluded,
there are 60 combinatorial classes of parallel manipulators.

If we identify two classes which are deduced one from the other by exchanging the platform and
the base, the number of classes reduces to 35.

Fig. 1. Platforms of classes (/~) and (~)

Combinatorial classes of parallel manipulators 767

Remark 1. When we count the number of assembly positions, we count the number of relative
positions of the platform and the base, and this number does not change if we exchange them. This
is the motivation of the identification which appears in the second part of Proposition 1. For this
reason also, we have only listed the classes which do not have more joints on the platform than
on the base.

3. GENERICITY AND SPECI ALI ZATI ON

A configuration of a parallel manipulator is defined by fixing the parameters defining the
geometry of the manipulator. These parameters may be

• the coordinates of the spherical joints on the base,
• the coordinates of the spherical joints on the platform, relatively to a frame linked to the

platform,
• the 6 lengths of linear actuators.

A configuration is said generic for a class if the values of the parameters do not satisfy any other
algebraic relation than those which may be deduced from the definition of the class. As we are only
considering classes of configurations which are defined by polynomial equations, it follows that
almost all real choices for the parameters are generic.

However, we are not able to compute efficiently with irrational numbers, and generic configur-
ations are not of practical use. Therefore we introduce the notion of pseudo generic configurations:
a configuration is pseudo generic if the system of equations which has the assembly positions as
solutions has the same number of complex solutions as for a generic configuration. The usefulness
of these notions lies in the following result.

Proposition 2. All the generic configurations of a class have the same number of assembly positions.
If a configuration of a parallel manipulator has only a finite number of complex assembly

positions, this number is not greater than the number of assembly positions of the generic
configurations of this class.

The set of pseudo generic configurations for a class of parallel manipulators contains a dense
open subset of the set of all configurations of the class.

Proof. The first assertion is a basic classical result of algebraic geometry.
For computing the assembly positions of a manipulator a set of equations may be written, which

depends on some unknowns (variables defining the position of the platform) and of some
parameters (variables defining the geometry of the configuration and the lengths of the legs). It
appears that the number n of the equations is equal to the number of the unknowns (see [4] for
example, where n = 9). It follows that in the space of the unknowns and the parameters, these
equations define an algebraic set V of codimension at most n and of dimension at least equal to
the number of parameters.

If, for some point P in the space of the parameters, the number of solutions is finite, V cuts the
linear space defined by P in a zero dimensional set. Above inequality on the dimension of V implies
that the solutions at P remain existing in a whole neighbourhood of P.

This means that the number of solutions (assembly positions) may only increase in a
neighbourhood of P. As any open set in the space of parameters contains generic configurations,
second assertion follows.

The number of solutions may increase only if some multiple solution splits in several ones or
if some solution at infinity becomes finite. As multiple solutions and solutions at infinity may be
defined by algebraic conditions, the set of pseudo generic solutions contains the complement of
an algebraic set, i.e. is a dense open set. •

Corollary 1. Almost all configurations are pseudo generic. This means that a random choice of the
parameters has, with probability 1, a maximal number of complex assembly positions.

Definition 1. The generic number of assembly positions of a class of configurations is the number
of assembly positions of any pseudo generic configuration i n it.

A class of manipulators is a specialization of another~dne if it is obtained by adding some
constraints. A combinatorial class is maximal (resp. minimal) if it is not the specialization of a class

768 J .c . Faug6re and D. Lazard

having (resp. if no specialization of it has) the same generic number of assembly positions. This
is represented by an arrow from the less specialized class to the most specialized one.

4. THE GENERIC N U M B E R S OF ASSEMBLY C O N F I G U R A T I O N S

In this section, we list for all combinatorial classes the assembly number of configurations. When
it is easy, we give a short proof of this number. Most of these proofs are not new; nevertheless
we give them without references, because it is difficult to decide who gave them first.

In fact, we only give here an upper bound of these numbers, and we leave for the next section
the proof that these numbers are the exact values.

4.1. The 10 specializations of (/hAl)

Proposition 3. The 10 specializations of (hAl)namely (A~AI) itself, (/IXAI), (MA), (/h/V), (/IVV), (AVe), (V~),
(t~ I), (~) and (~) have generically 8 assembly configurations.

Clearly, the triple link on the platform may only have two positions. When one of them is chosen,
the double link should be at a fixed distance from the triple one and from two points of the base,
and there are two positions for it. Finally, the simple link should be at a fixed distance from the
two other links of the platform and from one point of the base; again two choices. In the whole,
we got 8 choices.

For proving that this bound is attained, it suffices to show it for the two minimal classes, namely
(~) ,and (~).

4.2. The 6 remaining specializations of (A 3)

Proposition 4. Five specializations of (A 3) have generically 16 assembly configurations, namely
(A ~) ~ (AAA)- (/W~)~ (~) and:(/~). '

The generic number of assembly configurations is 8 for (~ A), as well as for its specialization (~)
which is equivalent (by exchange of the platform and the base) to the above considered (~).

Each point of the platform has to be at a fixed distance from two points of the base and thus
lies on a circle. Let us consider the parametrization of these three circles by the tangent of the half
angle between a fixed and a variable radius. The distance between the links on the platform is fixed,
and this gives three equations which (after removing denominators) are quadratic in each of two
among the parameters and which do not depend on the third parameter. Thus, multihomogeneous
Bezout theorem [5] shows the upper bound of 16 for the generic number of assembly positions of
all these classes.

For bounding the number of assembly positions of (~ A), let us denote by M,, M2 and M3 the
three points of the platform, in the order in which they appear on the drawing representing the
class, and F,, F2 and F3 the corresponding points on the base. The lengths of the linear actuators
fixed at M3 assign it to lie on a circle; we will see that the distances from M 3 to Mj and M2 and
the lengths of the four other links assign M3 to lie also on one of two surfaces of degree 4 and
of circularity 2. Each of these surfaces has 4 intersections at infinity which above circle and 4 other
intersections, which gives a bound of 8 for the number of solutions of the problem.

The linear actuators fixed at M~ and M2 assign them to lie on two coaxial circles. If one fixes
the position of M~, the distance from it to M2 assign it to lie on the intersection of a sphere and
a circle. Let us choose one of these two intersection points. The distances from M~ and M2 to M 3
assign it to lie on a circle with M~ M2 as axis. When M~ varies, all the figure rotates around the
axis F~ F2; thus M3 lies on a surface of revolution generated by a circle. Such a surface is a kind
of torus, of degree 4 and of circularity 2, which may differ from the usual torus by the fact that
its intersection with a plane passing through the axis is an irreducible curve of degree 4 instead
of being two circles. All these facts may easily be proved by hand or by using any computer algebra
system.

As for the previous set of classes, we have to prove that these upper bounds are exact; for this,
only (~) and (?~) need to be considered, because they are minimal for this set of classes and because
(M A) has a specialization which is already known to have a generic number of assembly positions
of 8.

Combinatorial classes of parallel manipulators 769

4.3. The 7 remaining specialization of (/~ 13)

Proposition 5. Among the 7 specialization of (/~ 13) which do not appear in preceding sections

• one has an infinite number of assembly positions: (~ V),
• three have generically 16 assembly positions: (~ 13) -(Mr,) -(VlVl),
• three have generically 8 assembly positions: (~ V I) -* (/11/f) and (M V).

If one has an assembly configuration for (~ V), infinitely many of them may be obtained by
rotating the figure around the line passing through the two triple joints. Thus we need to consider
only the 6 remaining classes.

When the lengths of the linear actuators connected to the triple joint of the platform are fixed,
the latter may have 2 localizations. When one is chosen, the 3 other joints of the platform have
to be at a fixed distance from the triple joint and from one point of the base; thus we have a problem
of the class (/~) or (~), depending on the class under consideration. Among the solutions of this
problem, some of them have the triple joint in the right place, and the others have this joint in
the symmetric localization with respect to the plane defined by the 3 simple joints on the platform.
Generically, the number of acceptable solutions is equal to the number of the not acceptable ones:
replacing the platform by its mirror image exchanges the acceptable and the not acceptable
solutions, and there are clearly pseudo generic instances of the problem such that the new problem
is defined by such a replacement is also pseudo generic.

Thus the problem in consideration has the same generic number of solutions as (/~) or
as (~).

Here again, we have only proved an upper bound. But the classes considered here specialize to
(/~) (after exchanging the platform and the base) or to (/1W), which have the same generic number
of assembly positions. Thus there is no need to provide here explicit examples.

4.4. The 12 remaining classes

Fact 1. The generic number of assembly positions for the 12 remaining classes is:

• 40 for (I s) ~ (A I') - (N I ~)
• 32 for (A ~ 12) ~ (M I ~)
• 24 for (AVI ~) ~ (N A I) - (/ W I)
• 16 for (A~V) - (AAVI, (~I ~) and (N ~)

As for the preceding classes we have to prove that the given value is an upper bound for the
classes with no arrow on their left and to provide examples for the classes with no arrow on their
right [except for the last class which specializes to (/v~AI).

For (IS), the correct upper bound has been proved in [1, 2, 6]. For (A V ?), this seems to have been
done in [7], but their proof applies also for obtaining a false value of 24 for (A s I~). For (A/~) a proof
has been given in [8], but only when the platform and the base are planar; the generalization to
the non planar case asserted in [7] seems to be more difficult than claimed. For (A ' V), the number
of 16 appears in [7] also. The two other maximal classes do not seem to have been studied
successfully before us.

It follows from this short bibliographical review that, for these classes, the mathematical proofs
are difficult, not yet available for all cases and may easily contain false assertions.

We have obtained these values by computing the number of assembly positions for randomly
chosen configurations in the classes. The probability of obtaining a false value, i.e. a configuration
which is not pseudo generic would be zero, if the random choices would be taken among all real
numbers. As we only chose integers in the range [- 9 0 . . . 90] the probability of failure remains
very low, but is not exactly 0: it is the probability that a random point in a space of dimension
at least 18 lies on a specified hypersurface. For speeding up the computation, we have sometime
added another cause of failure: we have done the computation modulo 31991; thus a false result
could arise if some leading coefficient of the polynomials which appear during the computation
would have 31991 as divisor.

We have done these modular computations at least twice for the maximal classes and once for
the other classes.

770 J.C. F a u ~ and D. L a ~

###########U###U######## s p a t i a l case M13, 5-5 ########U#######
random:=rand(-90..90):
f o r i from I t o 9 do d . i : = random() '2 od:
f o r i from 4 t o 6 do e . i : = r a n d o m () ; f . i : = r a n d o m () ; g . i : = r a n d o m () od:
f o r i t o 6 do a . i : = r a n d o m () ; b . i : = r a n d o m () ; c . i : = r a n d o m () od:
al:=O: bl:=O: c i : = 0 : b2:=O: c2:=0: c3:=0:
vx::(y2-yl)*(z3-zl)-(y3-yl)*(z2-zl):
v y : = (z 2 - z l) * (x S - x l) - (z 3 - z l) * (x 2 - x l) :
v z : = (x 2 - x l) * (y 3 - y l) - (x 3 - x l) * (y 2 - y l) :
e6:=O: f6 : :O: g6::O:
a6:=a2: b6:=b2: c6:=c2:
fo r i from 4 to 6 do

x.i:: xl+e.i*(x2-xl)+f.i*(xS-xl)+g.i*vx;
y . i : : y l + e . i * (y 2 - y l) + f . i * (y 3 - y l) + g . i * v y ;
z . i : : z l + e . i * (z 2 - z l) + f . i * (z 3 - z l) + g . i * v z

od:
for i from 1 to 6 do

C.i:=(x.i-a.i)'2+(y.i-b.i)'2+(z.i-c.i)'2-d.i
od:

CT:=(x2-xl)'2+(y2-yl)'2+(z2-zl)'2-dT:
CS::(x3-xl)'2+(y3-yl)'2+(z3-zl)'2-d8:
C9::(x3-xl)*(x2-xl)+(y3-yl)*(y2-yl)+(z3-zl)*(z2-zl)-d9:
for i from 4 go 6 do

C.i:=C.i-e.i'2*CT-f.i'2*CS-g.i'2*(C7*CS-C9"2)-e.i*f.i*(2*C9):
od:

C7:=-C7+C1+C2: C8:=-C8+C1+C3: C9:=2.C9+C7+C8-2.C1:
for i from 4 go 6 do

C.i:= 2*C.i-e.i*(C7-2*Cl)-f.i*(C8-2*C1):
C.i:=C.i-2*g.i'2*d7*(C1+C3-CS)-2*g.i'2*d8*(Cl+C2-CT)

-2*g.i'2*dg*(CT-Cg+CS-2*Cl)+2*(e.i+f.i-1)*C1-CT*e.i-CS*f.i:
od:

L:=map(u->sort(expand(u)),[CI,C2,C3,CT,C8,C9,C4,CS,C6]);
1print(L);

M6:!41 ###These 2 l i n e s
A6:A2 ###speci fy the class

Fig. 2. Program for generating equations.

Moreover, we have done the computation over the integers (i.e. without the risk of failure due
to the modular computation) for all minimal classes, with planar platform and base.

For each of the 6 maximal classes for which no proof is given here, we have also computed, for
one example, the Gr rbne r base for the degree ordering.

The low probability of failure appears in the fact that all computations gave coherent values for
the number of assembly configurations (except once where we did a mistake in specifying the class!).

Thus the values that we have given are not proved in the mathematical meaning of the word,
but they are much more a certainty than if they were obtained as the result of a complicated
mathematical proof.

5. C O M P U T A T I O N S

For solving systems of algebraic equations, we use GrSbner bases. Let us recall very briefly what
it is, leaving details and precise definitions to [9, 10].

Given a set of polynomials, a Gr6bner base is another set of polynomials which has the same
common roots in a very strong sense (the multiplicities are the same, the generated ideal is the
same). A Gr6bner base may be viewed as a compiled form for a system of equations in the sense
that no information is lost and, on the opposite, many properties of the solutions, s.t. their number
or their values may easily be deduced from the Gr6bner base.

A Gr6bner base is a canonical form for a system of equations which only depends on the input

Combinatorial classes of parallel manipulators 771

equations and on a total ordering on the monomials (power products). Two ordering are especially
important, the degree-reverse-lexicographical one, which leads to rather easy computations and the
purely lexicographical one for which the Gr6bner base is more difficult to compute, but for which
the information is more accessible: for all computations that we have done for this paper, the
Gr6bner base for the lexicographical ordering has the form

f9 (x9)

x/-f /(xg) for i = 1 8

where f9 is a polynomial with integer coefficients with the number of solutions as degree, and the
f~ for i < 9 are polynomials of degree lower than the degree offg, with rational coefficients.

Fortunately an efficient algorithm is known for getting the Gr6bner base for the lexicographical
ordering from another one [11], and we have used it.

We have used Maple to generate the system of equations to be solved; our Maple program
appears in Fig. 2. The unknowns xl, yl , zl, x2, y2, z2, x3, y3, z3 are the coordinates of 3 points
of the platform. The randomly chosen parameters are the square of the lengths of the linear
actuators (all to d6), the square of the distances from the first joint of the platform to the second
and the third ones (d7 and dS), the dot product of the vectors defined by these points (dg), the
coordinates of the 3 last joints of the platform in the frame defined by the 3 first ones (e.i, f.i, 9.i)
and the coordinates of the points of the base (a.i, b.i, c.i). Some simplification of the equations
are done by choosing the origin, the axis and by replacing some of the equations by linear
combinations of them.

For the planar case, the c.i and the g.i are set to 0.
We have used the equations obtained by this Maple program in the Gr6bner base package

developed by the first author and called Ob, which seems to be the most efficient Gr6bner base
package presently available. This package may be obtained by anonymous ftp from posso.ibp.fr.
It is fully interfaced with Axiom computer algebra system and uses its syntax. The Ob program
which appears in Fig. 3 computes the Gr6bner base for the degree-reverse-lexicographical ordering
(function groebner) and then deduce from it the Gr6bner base for the lexicographical ordering
function totolex). This is done with modular coefficients; for integer coefficients, it suffices to
replace PF(31991) (which denotes the prime field with 31991 elements) by INT.

v a x s : = [x l , x2, x3, y l , y2, y3, z l , z2, z3];
HD:=HDMP(vars,PF(31991));
l :Lis t (HD):=[x l**2+yl**2+z1**2-576 , x2**2+y2**2+z2**2-94*x2-4191, _
x3**2+y3**2+z3**2-30*x3+174*y3+4985, 2 * x 1 * x 2 + 2 * y 2 * y 1 + 2 * z 2 * z l - 9 4 * x 2 _

-4667, 2*x1*x3+2*yl*y3+2*z1*z3-30*x3+174*y3+4938, 2*x2*x3+2*y2*y3+2* _
z2*z3-94*x2-30*x3+174*y3+1261, 180*x l *y2*z3-180*x l *y3*z2-180*x2*y l * _
z3+180*x2*y3*zl-180*x3*y2*zl+180*x3*yl*z2-540*xl*y2+S40*xl*y3-5400* _

X1*Z2+5400*x1*z3+540*x2*y1-S40*x2*y3+S400*x2*zl-5400*x2*z3+540*x3*y2 _

-540*x3*yl+5400*x3*z2-5400*x3*zl-8820*y2*z1+8820*y2*z3+8820*y1*z2- _

8820*y1*z3-8820*y3*z2+8820*y3*zl-13S24*x1+16128*x2+7168*x3+5040*y2 _

-8280*yl-6384*y3-504*z2+828*zl-336*z3+189188716, -16*xl*y2*z3+16*xl _

*y3*z2+16*x2*y1*z3-16*x2*y3*z1+16*x3*y2*z1-16*x3*y1*z2+320*x1*y2-320 _

*x1*y3-1168*x1*z2+1168*xl*z3-320*x2*y1+320*x2*y3+1168*x2*z1-1168*x2* _

z3-320*x3*y2+320*x3*y1+1168*x3*z2-1168*x3*z1+1392*y2*z1-1392*y2*z3- -

1392*y1*z2+1392*yl*z3+1392*y3*z2-1392*y3*zl+15312*x1+17152*x2-30600 _

*x3-9344*y2-12848*yl+48000*y3-2560*z2-3520*zl+6000*z3+8012714, _

-188.xi-I0272]

)~ime on
) axio~ on
g:=groebner(1);
t o t o l e x (g) ;

Fig. 3. Input for Oh.

772 J .C. Faug6re and D. Lazard

The output appears in Fig. 4. One can see on this figure how a G b session works. The lines which
appear between utilisation du s e r v e u r r a p i d e and the time needed for the computat ion are
messages informing the user of the state of the computation. A~er the command g ,= g roebne r (1) ;
one can see an extension of the memory with the time of this extension. Then several lines of •

d l@posso ->Gb
G r o b n e r B a s i s C o m p u t a t i o n s (C++ v e r s i o n) , V e r s i o n SCCS: 3 . ~ I ~ ~W~ ~G~(761)
W a r n i n g : t h i s i s n o t t h e d e f i n i t i v e v e r s i o n !
A u t h o r : J e a n - C h a r l e s F a u g e r e *** U n i v e r s i t e P a r i s 6 /LITP
Bug R e p o r t : j c f Q p o s s o . i b p . f r
C o n n e c t i o n e s t a b l i s h e d w i t h X .exe on p o s s o . i b p . f r
W o r k i n g d i r e c t o r y / u s e r s / d l / A r t i c l e s / S t e e a r t / C a l c u l s 2
GB>) r s p a t n N 3 I - m o d . g b
; v a r s : - [x l , x2 , x3 , y l , y2 , y3 , z l , z2 , z 3] ;
; B D : - H D M P (v a r s , P F (3 1 9 9 1)) ;
; l : L i s t (H D) : = [x l * * 2 + y l * * 2 + z 1 * * 2 - 5 7 6 , x2**2+y2**2+z2**2-94*x2-4191 , _

. . . 13 l i n e s r emoved . . .
- 1 8 8 . x 1 - I 0 2 7 2]

2 2 2 2 2 2
Ix1 + y l + z l + 31415 ,x2 + y2 + z2 + 31897x2 + 27800

. . . l i n e s removed . . .
+ 16009y3 + 2 8 4 7 1 z l + 2 9 4 3 t z 2 + 6000z3 + 1 4 9 6 4 , 3 1 8 0 3 x l + 21719]

Type : Lis t (GDMP([x1,x2,x3,yI ,y2,y3,z1,z2,z3] ,PF(31991) ,DEGBEVLEX(9)))
;) t i m e on
;) a x i o m on
; g : - g r o e b n e r (1) ;
C o n n e c t i o n e s t a b l i s h e d w i t h s e r v e u r _ D e x p _ _ G F on p o s s o . i b p . f r
U t i l i s a t i o n du s e r v e u r r a p i d e
• ** E x t e n d Memory (DMP__Dexp__GF) Tue Oct 19 1 0 : 1 7 : 0 4 1 a l l o c : 1 2 0 0 0 0 0 o c t e t s
[2]+++ix3"2113]+++++*+**[4]++++++****++++++*++*++**[5]++++++lx4"3[+ lx6"31+
+lxS"31++++++*++++++***++++++lx4"21+++*+lxS"21******************+*+*******
*

* ~ * * ~ * * * [7] * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * ~ * * * *

**

End of g b a s i s c o m p u t a t i o n !
End of m i n i m a l g b a s i s c o m p u t a t i o n !

S e r v e u r : 3 2 . 3 8 s e c E v a l : 0 . 2 8 s e e T o t a l : 3 2 . 6 7 s e c
< b a s e - [z 3 * * 5 + 1 7 7 2 2 . z 3 . . 4 + 30856*zl*z2*z3 + 25425*z2**2*z3 + 14694*x2*z3**2

. . . many l i n e s r emoved . . .
2 6 4 8 . z 2 + 2 8 0 4 8 . z 3 + 4 5 8 1 , x i + 2 9 3 2 3] , n b s o l u t i o n s - 40 ,

s e r v e u r = l S e r v e u r : s e r v e u r _ _ V e x p _ _ G F l >

; t o t o l e x (g) ;
Utilisation du serveur rapide
• ** Extend Memory (DMP__Lexp__GF) Tue Oct 19 10:17:42 1 alloc:1200000 octets

(407 [8] [73 [63 [5] [43 [3] [2] [1] [0]
S e r v e u r : 2 .00 sec E v a 1 : 0 . 0 3 sec T o t a l : 2 . 03 sec

[x l + 29323 ,x2 + 2 9 9 8 3 . z 3 . . 3 9 + 1 2 2 6 4 . z 3 . . 3 8 + 2 4 3 6 . z 3 . . 3 7 + 2 2 5 9 9 . z 3 . . 3 6 +

,x3 + 8 4 2 8 . z 3 . * 3 9 + 5 1 1 8 . z 3 . . 3 8 + 1 5 0 6 . z 3 . . 3 7 + 2 0 0 8 6 . z 3 . . 3 6 + 1 7 4 8 9 . z 3 . * 3 5
. o .

, z 3 * . 4 0 + 2 1 8 * z 3 . . 3 9 + 1 0 9 1 2 . z 3 . . 3 8 + 2 0 7 9 0 . z 3 * . 3 7 + 1 2 0 7 5 * z 3 . . 3 6 +
. . .

+ 2 3 8 6 2 . z 3 . . 2 + 2 6 5 0 8 . z 3 + 8241]
QS>) q

Total Time: Central GB: 3.68 sec + Serveurs: 34.38 sec

I 1 r e s t s 9611856 o c t e t s d i s p o n i b l e s
dlQposso->

Fig. 4. Output of Gb.

Combinatorial classes of parallel manipulators

Table 1. Times for modular computat ions (in seconds)

Time Time Time Time
Roots Groebner totolex # Roots Groebner totolex

(l') 40 60.1 2 (NAIl 24 6.7 0.6
(Al') 40 35.2 2 ~A/V II 24 5.7 0.6
(N 13) 40 32.4 2 tA ~ Vl 16 4.1 0.2
~A~I') 32 12.4 1.1 ~MV) 16 3.5 0.2
(MI~ 32 10.1 1.2 IN~ 16 3.5 0.2
'AVI~I 24 23.7 0.5 (NI ~) 16 2 0.2

773

and + appear; a • or a + means that a new polynomial has been computed which reduces to 0
(.) or not (+); numbers like [2] mean the degree in which the computation is done; the powers
of variables shows that a polynomial with a leading monomial depending only of one variable has
been found (the name of the variable is a dummy one because the variables names are not known
during the computation); finally 1401 means that enough information has been got in order to know
that the number of solutions is finite and is at most 40. This last information appears at several
places and not only in the final univariate polynomial.

As it is clearly impossible and useless to give all computational results, we only give the times
of computation in Tables 1, 2 and 3

Table 1 corresponds to modular computations for the last 12 classes of preceding section; as the
first Grrbner base computation already gives the number of solutions, the change of ordering
(function totolex) for getting the base for the lexicographical ordering is not really useful here.

Table 2 corresponds to computations over the integers, with planar base and platform; here the
change of ordering is useful in order to get a univariate polynomial, which may be used for
numerically computing the solutions or for computing the number of real solutions; we have used
it for proving that we have chosen a proper parametrization of the problem: it could be the case
that the solutions appear systematically as multiple roots of the system; as we have verified that
the univariate polynomial is always irreducible, we know that its degree is the real number of
complex solutions.

The entries of this table correspond to all minimal classes in the list. Thus, these computations
are sufficient for proving that the generic numbers of assembly configurations is never smaller than
the given values. They also prove that the constraints of planarity do not change these numbers.

We give also in this table some values called the output time and size; in fact, it is the total time
of input output operations and the size of the image of the session; for the difficult cases, they are
rather high because of the size of the integers which appear in the lexicographical Grrbner base
(result of totolex) and of the time needed to convert them from binary to decimal. For (N 13), some
of these integers have more than 4000 decimal digits; the univariate polynomial of degree 40 of
this example contains coefficients with more than 300 decimal digits.

Finally, Table 3 gives the time needed for computing the Grrbner base over the integers (for
the degree-reverse-lexicographical ordering) for the 6 maximal classes for which no mathematical
proof are given here. These computations confirm the values found by modular computations. They
show also that the non-planar cases are much more difficult than the planar ones.

For each class appearing in this Table 3, several times are given. The first one corresponds to

Table 2. Computat ion over the integers (planar case)

Time Time Output Output size
Roots Groebner totolex time (kbytes)

(N 13~ 40 32 31335 2581 603
~/w i s) 32 12 7129 826 309
uw I) 24 9 1107 227 143
~MW 16 8 228 87 75
~t~ p~l 16 4 69 30 42
~,~) 16 1.5 17.3 8.5 24
~) 16 2.5 29.13 12 28
t/W~ 8 0.3 0.5 1.3 5.2
i~l 8 0.6 1.2 2 7.3

774 J.C. Faug6re and D. Lazard

Table 3. Computation over the integers (non planar case)
Time Total time Time of Time of

Roots Groebner tgroebner computation verification

I1'1 40 > 10 dayst 1 5 h 8 '7 " 14h43'20" 24'47"
(A~I~ 32 6h1'15" 25'51" 17'43" 8'08"
(AVI~ 24 47h 3h3'5" 2h51 ~1'" 12'4"
CA~W 16 44'3" 7'52" 3'29" 4'23"
~/W~ 16 47'6" 5'32" 2'51" 2'41"
¢~ I~ 16 4'20" 1 '7" 20" 47"

tEstimation, the computation has been stopped after 110 h.

the first versions of the Gr6bner base algorithm which were used; it appears that some times were
very long and that most of them were spent in computing polynomials which reduce to 0. Thus
we implemented another strategy called "tgroebner", which will become the default of Gb. It
consists in using the trace (see [12]) of the modular computation in order to avoid to compute zero
(with the hope that no integer appearing during the computation is a multiple of 31991), and then
to verify the result and, if it is not correct, to complete it (but this never occurs in practice). Thus
we give the total time needed by this new algorithm, and we split it in the computational time and
in the verification time which may sometime be avoided (if a not proved result is acceptable, or
if it may be verified in another way, for example by computing the reverse kinematic).

We have given both old and new times in order to show that dramatic improvements are rather
likely in Gr6bner base computation.

For changing the ordering (the most critical step), one of us has found recently a new algorithm
which is dramatically faster than totolex. We hope that the fully optimized implementation (in
progress) will lead to times of computation of the same order as for computing the first base.

If it will be the case, each planar case will be solved in a time lower than a minute, and the most
difficult non-planar cases will need a few hours, or a few tens of hours for the most general
configuration.

6. W H A T IS A P R O O F ?

Some of the results in this paper are called " theorem" or "proposit ion", and one of them is called
"fact". It appears that the latter is not proved in the usual mathematical meaning, but it is much
more than a conjecture: it is more a certainty than many theorems, which have a complicated proof
of several tens, hundreds or thousands of pages which makes questionable the reliability of the
proof, and thus of the result.

For these reasons, a discussion on the kinds of proofs which arise in this subject may be useful.
Formally, a proof is a sequence of elementary deduction steps (syllogisms). Such proofs are so

long and so tedious that they are never written. In fact, this is generally not possible by hand and
it is the main objective of the most modern theorem provers. As far as we know, this has only been
done for a few of rather simple mathematical theories.

As formal proofs are not available, mathematicians usually consider as a proof a sequence of
arguments which appears to be convertible in a formal proof. As this is not practically feasible,
this convertibility is mainly a subjective matter, and a proof is viewed as correct when several
experimented mathematicians have read it and assert that it is correct. Recent comments on the
proof of Fermat last theorem enforces this sociological definition of the correctness of a proof.

In this context, computer aided proofs may make some problems: it is usually not possible to
read (and verify) all programs which are involved in a computation, like compilers, operating
systems and generals systems like Maple. Thus, one has to trust the validation process of the
software packages of general use (this validation process includes all the applications already done),
and, if possible, to do again the computation with another machine and different software. It
remains to verify the special purpose programs. It is for this reason that an example of each of
the programs which have written specially for this paper appears in the figures.

Under these conditions, a computer aided proof which uses exact computations is much more
secure than a pure hand made proof, the highest probability of failure of the former lying in the
hand made part. Nevertheless, it is a question of taste to make a choice between these two kinds

Combinatorial classes of parallel manipulators 775

of proofs. The two first proofs of the bound of 40 for the general parallel manipulator [1, 2] is a
good example of this discussion. The lower bounds for the genetic numbers of assembly positions
which appear in this paper are other examples of computer aided proofs.

On the other hand, the upper bounds which appear in "Fact 1" have not been proved in the
above meanings. They are deduced from several random choices, and it is theoretically possible
that all of them fail in giving the same false value. However, the probability of such a failure is
so low that it is much lower than the probability of the existence of a hidden bug in the proof of
any new theorem.

Thus our "Fact 1" is not proved but it is more a certainty than most "proved" theorem. We do
not know any word for such a known mathematical fact which is not proved in the usual meaning
of this word.

Such results which are not proved have already appeared in the theory of parallel manipulators,
but they usually involve floating point computation, for which roundoff errors introduce a
possibility of failure of a rather high probability, difficult to estimate. This is the case of Raghavan
paper [13] which first gave the genetic number of 40 assembly positions for the general parallel
manipulator by solving several random examples. The justification of his method is mainly our
Corollary 1. However he uses continuation method for solving systems of equations, and such a
method is difficult to manage in order to be certain to not omit some solutions.

In [14] another, more hidden, numerical evidence appears. They obtain a univariate polynomial
of degree 24 as the determinant of a matrix, but this determinant is too big to be expanded with
all parameters kept symbolic. Thus, they know that the degree is 24 by chosing randomly some
floating point values for the parameters, by evaluating the determinant and by remarking that all
coefficients of degree higher than 24 are small enough to be considered as 0 (oral answer to a
question in the Dagstuhl conference where this paper was presented; in fact, this answer was about
[15], but it seems that the answer applies to both papers). It follows that, if exact values (instead
of floating point ones) would be taken the status of their proof would be exactly the same as for
our Fact 1.

7. CONCLUSION AND OPEN PROBLEMS

We have solved the problem of determining the number of assembly positions for all
combinatorial classes of parallel manipulators, and we have shown that solving the corresponding
system is now possible with general purpose solvers.

However, for the less specialized classes, this system remains difficult for the most efficient solvers
(several hours of computation). It should be remarked that efficiency of solving algorithms
increases rapidly, and we hope dramatic improvement in next few years, especially for the base
change algorithms (totolex).

Another way for improving the solving process is to chose other systems of equations to be
solved: different modelizations may lead to dramatically different computational times. It is an open
problem to determine, for each combinatorial class, the best system to be solved.

Another open problem is to mathematically prove Fact 1, that is to prove that the value given
there are upper bounds for the genetic number of assembly positions of/A2J2~, (AVf2), IA~V), ~1 ~)
and ~N~). The interest of such proofs is, following the discussion of preceding section, a question
of taste.

One may consider other classes of configurations which are defined by geometrical constraints
such alignment of some points or parallelism of some lines. Some of them have been already
studied[16, 17], but it seems difficult to make a complete list of all such interesting classes.
Nevertheless, it is easy with existing software to know which is the generic number of assembly
positions of any such class.

The most interesting open problem in this area is, in our opinion, to determine, for each class,
the maximal number of real assembly position. The difficulty lies here in the fact that random
experimentation never gives examples where this maximum is reached: the corresponding open set
in the space of parameters is usually too small for hoping that a random choice falls into it.

The results of Section 3 may easily be extended in order to show that the number of simple real
assembly positions do not decrease in a neighbourhood in the parameter space, i.e. that the

776 J.C. Faug&e and D. Lazard

maximal number o f assembly positions do not increase when one specializes the class. F r o m this,
the following result may easily be deduced f rom known examples.

Proposition 6. For all combinator ia l classes there are planar configurations with at least 8 real
assembly positions.

For all classes with a generic number o f assembly positions not lower than 16, there are planar
configurations with at least 16 real assembly positions, except, may be, for (A~V),/MV) and (~F).

Thus the main problem is to exhibit examples with more than 16 real assembly positions.

REFERENCES
1. D. Lazard, Computational Kinematics (J. Angeles, P. Kovacs and G. Hommel, eds.), pp. 175-181.
2. F. Ronga and "1"11. Vust, Stewart platforms without computer?, Preprint. Universit~ de Gen~ve (1992).
3. J. P. Merlet, Les robots parall~les. M~moire d'Habilitation, Universit~ de Nice (1993).
4. D. Lazard, 3rd Int. Workshop on Advances in Robot Kinematic (3ARK, Ferrare, Italy) (V. Parenti-Castelli and

J. Lenar~i~, eds.), 136-142 (1992).
5. I. R. Shafarevieh, Basic Algebraic Geometry. Springer, Berlin (1974).
6. B. Mourrain, Proc. of lSSSAC'93 (Kiew)(M. Bronstein, ed.), ACM Press, 173-182.
7. K. H. Hunt and E. J. F. Primrose, Mech. Mach. Theory 28, 31-42 (1993).
8. W. Lin, J. Dully and M. Griffs, ,L Mech. Design 114, 444-450 (1992).
9. D. Lazard, Proc. of Cortona Conference (1991) (D. Eisenbud et R. Robbiano, eds.). Cambridge Univ. Press (1993).

10. B. Buchberger, G. E. Collins and B. Kutzler, Ann. Rev. Comput. Sci. 3, 85-119 (1988).
11. J. C. Faugrre, P. Gianni, D. Lazard and T. Mora, J. Symb. Comp. 16, 329-344 (1993).
12. C. Traverso, Proc. o f lSSAC 88, Roma. Leet. Notes in Comp. Sc. 358, 125-138 (1988).
13. M. Raghavan, ASME Design and Automation Conf., 32-2, 397-402 (1991).
14. C, Innocenti and V. Parenti-Castelli, Computational Kinematics (J. Angeles, P. Kovacs and G. Hommel, eds),

pp. 141-152. Kluwer (1993).
15. C. Innoeenti, Computational Kinematics (J. Angeles, P. Kovacs and G. Hommel, eds), pp. 251-262. Kluwer (1993).
16. P. Nair, On the kinematics geometry of parallel robot manipulators, Master's thesis. University of Maryland, College,

College Park (1992).
17. D. Lazard and J.-P. Merlet, IEEE Int. Conf. on Robotics and Automation, San Diego (1994).

