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Abstract

Recently, W.-C. W. Li, et al. (Lect. Notes in Comput. Sci. 2369 (2002) 372) developed a non-
deterministic algorithm to perform a computer search for polynomials that recursively define asymp-
totically good sequences of function fields. In this paper, we build on this work by refining this
algorithm.We give many sufficient conditions for the construction of such sequences and we describe
the techniques used in the search. Many examples are given. The resulting towers are important for
the construction of asymptotically good sequences of codes and they could provide further numerical
evidence for Elkies’modularity conjecture.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Much work has been devoted to the construction of asymptotically good sequences of
function fields over a finite field, that is, sequences of function fields over a fixed finite field
with asymptotically many rational places relative to the genus. The main motivation for
such constructions is their usefulness in the construction of sequences of arbitrarily long
codeswith parameters exceeding or close to theGilbert–Varshamov bound. For applications
to coding theory, one requires an explicit presentation of these function fields. Explicit
constructions began in 1995 in a paper by Garcia and Stichtenoth[10]. Subsequent work
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on this topic include, among others,[4,5,10–14,16,17]. For a reference describing non-
explicit constructions, using class field theoretic techniques, we recommend the book by
Niederreiter and Xing[20]. Recently, in[17], a non-deterministic algorithm is developed
to perform a systematic computer search for polynomials that recursively define explicit
asymptotically good sequences of function fields. In this paper, we build on this work by
refining this algorithm. In this section, we give some background and a detailed description
of the algorithm. In Section 2 we give many sufficient conditions for the construction of
such sequences. In Section 3 we describe some of the techniques used in the search and in
Section 4 we describe the computer implementation and improvements of the algorithm.
Finally, in Section 5 we present many new examples. Unless otherwise mentioned, we will
use the same notation as in[21], for example, we denote the set of places of a function field
F byP(F ) and its number of rational places byN(F ).
A tower of function fields overFq is defined to be a sequenceF = (F0, F1, F2, . . .) of

function fields, having the following properties:

(i) F0 ⊆ F1 ⊆ F2 ⊆ . . . .
(ii) For eachn�0, the extensionFn+1/Fn is separable of degree[Fn+1 : Fn] >1.
(iii) The genusg(Fj ) >1 for somej �1.
(iv) Fq is the full field of constants of eachFn.

As noted in[10], the conditions (ii), (iii) and the Hurwitz genus formula imply that
g(Fn) → ∞ asn → ∞. A towerF = (F0, F1, F2, . . .) is calledtameif each extension
Fn+1/Fn, n=0,1, . . ., is a tame extension. For any towerF= (F0, F1, F2, . . .) of function
fields overFq , let

�(F) := lim
i→∞ N(Fi)/g(Fi).

It is shown in[13] that this limit is well defined. A towerF is said to beasymptotically
good(respectivelyasymptotically bad) if �(F) >0 (respectively�(F) =0). It is clear that
�(F)�A(q) whereA(q) = lim supg→∞Nq(g)/g whereNq(g) is the maximum number
of rational places of a function field with genusg and with the finite fieldFq as the full
field of constants. Drinfeld and Vladut[3] showed thatA(q)�√

q − 1. It was also shown
by Ihara[15], and Tsfasman et al.[22] in special cases, thatA(q) = √

q − 1 whenq is a
square. Whenq is not a square, the exact value ofA(q) is currently unknown. We say that
the towerF overFq is optimal if �(F) = A(q).
In the case thatq is a square, Garcia and Stichtenoth[9] discovered the first explicit

optimal tower overFq—thus providing a more elementary proof of the Ihara result that
A(q)=√

q −1 if q is a square. Subsequently in[10], Garcia and Stichtenoth found another
optimal towerG := (Fi) overFq , q a square, with the following simpler description: let
q20 = q and putF0 := Fq(x0); for n >0 we haveFn := Fn−1(xn) where

x
q0
n + xn = x

q0
n−1

x
q0−1
n−1 + 1

. (1)

In these towers wild ramification occurs and so the genus computation is difficult. Subse-
quently in[14,4] explicit towers with tame ramification were found. In[4], using modular
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curve constructions, Elkies found entire families of explicit optimal towers with tame ram-
ification. Tame towers have the advantage that the genus computation is simpler. In fact,
for a tame towerF, under additional assumptions, we have the following lower bound
for �(F):

Theorem 1.1(Garcia et al.[14]). LetF = (F0, F1, F2, . . .) be a tower of function fields
overFq satisfying the following conditions:

(i) All extensionsFn+1/Fn are tame.
(ii) The setRF = {P ∈ P(F0)|P is ramified inFn/F0 for somen�1} is finite.
(iii) The setSF={P ∈ P(F0)|degP =1, andP splits completely in all extensionsFn/F0}

is non-empty.
ThenF is an asymptotically good tower and

�(F)� 2s

2g(F0) − 2+ r
, (2)

wheres := #SF andr := ∑
P∈RF

degP .

Given f (x, y) ∈ Fq [x, y], a towerF = (F0, F1, . . .) over Fq is said to be (recur-
sively) defined byf (x, y) if F0 = Fq(x0) is the rational function field and for eachn >0,
Fn = Fq(x0, x1, . . . , xn), wheref (xi, xi+1) = 0 for 1� i < n. For brevity, we usually
specify a tower by stating the polynomialf (x, y) which defines the recursion. Thus the
Garcia–Stichtenoth towerG above would be presented by

f (x, y) = (xq0−1+ 1)(yq0 + y) − xq0.

Next we describe the algorithm used in[17] to perform a search for asymptotically good
recursively defined tame towers. The main idea for the algorithm comes from the proof
in [10] that the recursion (1) gives an optimal tower. Essentially, the algorithm checks if
the conditions of Theorem 1.1 are satisfied. Givenf (x, y) ∈ Fq [x, y], the most difficult
conditions to check for are: whetherf (x, y) gives rise to a tower and condition (ii) of
Theorem 1.1.
LetK = Fq denote a fixed algebraic closure ofFq . Observe that ifF= (F0, F1, F2, . . .)

is a tower overFq then the compositeF · K := (F0 · K, F1 · K, . . .) satisfies conditions
(i), (ii) and (iii) in the definition of a tower. Also note that the setRF of Theorem 1.1 is
finite if and only if the setRF·K is finite. Thus, we may takeK to be the field of constants
forF and we letF := K(x, y), f (x, y) = 0 wheref (x, y) ∈ K[x, y] is irreducible.
DefineP1 to be the setK ∪ {∞} where∞ is a formal symbol which does not belong

toK; for a given rational function fieldK(z) and� ∈ P1, we denote byP�(z) the zero of
z − � in K(z) if � ∈ K; otherwiseP�(z) denotes the pole ofz in K(z). If �, � ∈ P1, we
write � ← � if there exists a placeQ in F such thatQ extends both the placesP�(x) and
P�(y).
In [12], it is shown that a necessary condition forf to define an asymptotically good

tower is that the degrees off in both variables are equal, so we assume this aboutf . Let
m be the degree off in both variables. LetM denote the set of all� ∈ P1 such thatP�(x)

is totally ramified in the extensionF/K(x) and letN denote the set of all� ∈ P1 such
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that the placeP�(y) is ramified in the extensionF/K(y) with ramification indexe such
that g.c.d(e, m) >1 orp dividese wherep is the characteristic ofFq . Then condition (ii)
is checked as follows:

(1) PutR0 := {� ∈ P1|P�(x) ramifies inF/K(x)}.
(2) Ri+1 := {� ∈ P1|� ← � for some� ∈ Ri} for i = 0,1,2, . . .

(3) PutR := ⋃∞
i=0Ri .

(4) If the setR is finite thenRF is finite (see Theorem 2.6).

Computationally, each successiveRi is computed and if for somej >0 we have that

Rj ⊆
j−1⋃
i=0

Ri, (3)

then we conclude thatR = ⋃j−1
i=0Ri is finite. This explains why the algorithm is not deter-

ministic: we do not know the smallestj for which (3) may hold. Also we have no way of
deciding at the outset in which finite field to do all the computations. It may well happen
that (3) holds while the smallest finite field containingR is too large to do computations in
a reasonable running time.
Next we show how we checked for condition (iii). In this case, the setSF is easily

computed as follows: For each� ∈ Fq let

S(�) = {� ∈ Fq ∪ {∞}|� ← �}.
Let

S0 := {[�, S(�)]|� ∈ Fq ∪ {∞} and P�(x) splits completely inFq(x, y)/Fq(x)}.
For i �1 we define setsSi andS′

i recursively as follows:

S′
i−1 := {� : [�, S(�)] ∈ Si−1}

and

Si := {[�, S(�)] ∈ Si−1|S(�) ⊆ S′
i−1}.

Note that the sequence(Si) satisfiesS0 ⊇ S1 ⊇ S2 ⊇ . . . . If for somei we have that
Si =Si+1 then the sequence stabilizes:Si =Si+1=Si+2= . . . and ifSi �= ∅ then the places
P�(x0) (� ∈ S′

i) split completely in each extensionFn/F0. We set

SF = {P�(x0) : � ∈ S′
i}.

After checking that conditions (ii) and (iii) of Theorem 1.1 are satisfied, the next step
is to determine if the sequence(Fi) is infinite. In order to do this, we choose only those
equations which result in towers where there is ramification in each stepFn+1/Fn as it is
an easy matter to automatically check for this condition while searching for the setR. The
above algorithm was implemented using the algebraic number theory package KASH[2].
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The following new towers were found in[17]:

Theorem 1.2(Li et al. [17]). Each of the polynomials below defines an optimal tower over
the indicated finite field:

• 2xy2+ (x2+ x + 1)y + x2+ x + 2 overF9,
• (4x + 1)y2+ (x2+ x + 2)y + x + 3 overF25,
• (x2+ 6)y2+ xy + x2+ 4 overF49,
• x2y3+ (x3+ x2+ x)y2+ (x + 1)y + x3+ x overF4.

In [17] it is shown that the above towers are new in the sense that they cannot be embedded
in any of the known towers. In the appendix of[17], Elkies proves that the four towers
described above define newmodular towers and that they dominate knownmodular towers.
He [4,5] has shown that every currently known explicit optimal tower overFq2 is either
elliptic modular or Drinfeld modular. In particular the Garcia–Stichtenoth tower above is
Drinfeld modular. He further conjectures that all the optimal towers overFq2 constructed
recursively should be modular. Every new tower found in this paper dominates a tower
which is known to be modular. As pointed out by Elkies[17], this strongly suggests that
they are also modular. The modularity of the new towers are yet to be determined.
It should be pointed out that while our computer searches are extensive, they are not

exhaustive. In this paper we focused only on towers defined by degree two polynomials.
There are two most striking observations from the accumulated data: the first is the above-
mentioned fact that every asymptotically good tower found dominates a known modular
tower. The other is that we found no asymptotically good towers over prime fieldsFp for
p=3,5,7,11,13. This leads to the question whether there are any. In[16], Lenstra gives an
elegant proof that a construction ofGarcia et al. presented in[14] (for every finite fieldwhich
is not prime) cannot work over prime fields. This, coupled with our data, suggests that there
are no asymptotically good towers over prime fields defined by degree two polynomials.
Further outputs from the algorithm, especially for higher degree polynomials, will be

recorded on a web page[19].

2. On the construction of recursively defined towers

Throughout this section we use the following notation. Letf (x, y) ∈ Fq [x, y] and let
m be the degree off in the y variable. LetF0 := Fq(x0) be the rational function field.
We will only consider extensions ofF0 in a fixed algebraic closure ofF0. Forn >0 define
Fn := Fn−1(xn) wherexn is a solution tof (xn−1, T ) = 0. We will say that the resulting
sequenceF0,F1, . . . is recursively defined byf (x, y) and we putF := ⋃

i �0Fi . It is clear
that a givenf (x, y)may recursively define more than one such sequence of function fields
and the corresponding fieldF could possibly be different in each case. A crucial condition
to check in the search for good towers is that[F : Fq(x0)] = ∞. Once this condition is
satisfied and if it is further known that at least one rational place ofF0 splits completely
inF, then the Hasse Weil bound guarantees thatg(Fn) → ∞. In this section we present
many sufficient conditions for the extensionF/F0 to be infinite. As before, letK denote
the algebraic closure ofFq . Since the extensionF/F0 is infinite if and only if the extension
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F · K overF0 · K is infinite, we may takeK to be the field of constants forF. Moreover,
the quantityr in Theorem 1.1 remains unchanged over constant field extensions—typically
(but not always) we work in the smallest constant field extension such that all places in
setRF all have degree one. The following result will be used repeatedly in the sequel (see
also[23]).

Lemma 2.1. LetF ′/F be a finite extension of function fields. Suppose thatF ′ = F1F2 is
the compositum of two intermediate fieldsF ⊆ F1, F2 ⊆ F ′ and thatF = F1∩ F2.Assume
that F1 andF2 are linearly disjoint overF . Let P be a place ofF and letP1 andP2 be
respective places overP in F1 andF2. Then there exists a placeP ′ in F ′ with P ′|P1 and
P ′|P2.

Proof. First assume that the extensionsF1/F andF2/F are separable. Let̃F be the Galois
closure ofF ′ overF . LetQ1(:= P1), Q2, ..., Qn be the places ofF1 that lie overP . We
choose an elementt ∈ F1 such thatvQ1(t) >0 andvQi

(t) <0 for i =2, ..., n (such a choice
is possible by the weak approximation theorem).
We consider a placẽP of F̃overP2 and letQ̃ be a place ofF̃ that lies overQ1. Since the

Galois group ofF̃ /F acts transitively on the places overP , there is a� ∈ Gal(F̃ /F ) with
Q̃� = P̃ . Then, we havet� ∈ P̃ .
Let f be the minimal polynomial oft overF . SinceF1 andF2 are linearly disjoint over

F , the polynomialf is irreducible overF2. The Galois group of̃F /F2 acts transitively on
the zeroes off . As t andt� are zeroes off , there is a� ∈ G̃ := Gal(F̃ /F2) with t�� = t .
Let P ′ := P̃ � ∩ F ′. SinceG̃ fixesF2 element-wise, it follows thatP ′|P2. Sincet ∈ P ′,

it follows from P ′ ∩ F1= Qj for somej ∈ {1, ..., n}, thatP ′|P1.
Now, if F1/F or F2/F is not separable, fori = 1,2 letF ⊆ Ei ⊆ Fi such thatEi/F

separable, andFi/Ei purely inseparable. DefineE′ := E1E2 andQi := Pi ∩ Ei . Due to
the first part of the proof, there is a placeQ′ ofE′ withQ′|Qi . Since the extensionF ′/E′ is
purely inseparable and all places in purely inseparable extensions are totally ramified, the
result follows in this case too.�

Corollary 2.2. Suppose for each k(0�k < n) thatf (xk, T ) is absolutely irreducible over
Fk. For 0� i �j �n defineFi,j = K(xi, xi+1, ..., xj ). For 0� i �j �k� l�n let P, P1
andP2 be places ofFj,k, Fi,k andFj,l respectively, such thatP1|P andP2|P . Then, there
exists a placeP ′ in Fi,l with P ′|P1 andP ′|P2.

Proof. As the polynomialf (xk, Y ) is irreducible overFk for k = 0, ..., n − 1, it follows
from the recursive definition of the intermediate fieldsFi,j , that

ml−k = [Fj,l : Fj,k] = [Fi,l : Fi,k].
Thus,[Fi,l : Fj,l] = [Fi,k : Fj,k] and the fieldsFi,k andFj,l are linear disjoint overFj,k.
Now, the claim follows from lemma 2.1.�

LetM andN be the sets defined in Section 1. Define a sequence of function fields as
follows: putF0 := K(x0), and for eachk�0, letxk+1 be a solution tof (xk, T ) = 0; put
Fk := K(x0, x1, . . . , xk). The next result gives a condition for[Fk : F0] → ∞ ask → ∞.
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Theorem 2.3. Suppose that for some�0 ∈ M\N , there is a sequence(�i )i �0 in P1\N

such that�i+1 ← �i for all i �0.Then for eachk =0,1, . . ., there is a place inFk which is
totally ramified in the extensionFk+1/Fk with ramification indexm so that[Fk+1 : Fk]=m.
In particular, this implies that[Fk : F0] → ∞ ask → ∞. If, in addition, we also assume
thatm is relatively prime with the characteristic ofK, then each extensionFk+1/Fk is also
separable.

Proof. We prove by induction onk that there exists a placeP in eachFk which ramifies in
Fk+1/Fk with indexm. For thefieldF0 the result is trueas theplaceP ∈ PF0 withx0(P )=�0
is totally ramified inF1/F0. Now, suppose the claim is true for 0� i < k. By assumption,
there exists a placeQi inK(xi, xi+1), such thatxi(Qi) = �k−i andxi+1(Qi) = �k−i−1 for
0� i < k. It follows from the induction that the polynomialsf (xi, Y ) are irreducible over
Fi for 0� i < k. By repeated application of Corollary 2.2 we obtain a placeQ of Fk, which
lies over all the placesQi with 0� i < k. ByAbhyankar’s Lemma[21, Proposition III.8.9],
the placeQ overQ ∩ K(xk) has ramification indexr with gcd(r, m) = 1. SinceQ ∩ K(xk)

is totally ramified inK(xk, xk+1)/K(xk), it follows again by Abhyankar’s Lemma thatQ

ramifies inFk+1/Fk with ramification indexm. �

The smallest field containing sequence(�i )i �0 may be large thus making it difficult to
compute. The following corollary however has an effective version which is explained in
Section 2.1.

Corollary 2.4. Suppose thatM�N and that for each� ∈ P1\N there is a� ∈ P1\N such
that� ← �. Then for eachk there is a place inFk which is totally ramified in the extension
Fk+1/Fk with ramification indexm so that[Fk+1 : Fk] = m. In particular, this implies that
[Fk : F0] → ∞ ask → ∞. If, in addition, we also assume thatm is relatively prime with
the characteristic ofK, then each extensionFk+1/Fk is also separable.

Define the setsM ′ := M ∩ K andN ′ := N ∩ K.

Corollary 2.5. Suppose thatf (x, y) is monic iny,M ′�N ′ and that for some�0 ∈ M ′\N ′
there is a sequence(�i )i �0 inK\N ′ such thatf (�i+1, �i ) =0 for eachi =0,1, . . . .Then
for eachk there is a place inFk which is totally ramified in the extensionFk+1/Fk with
ramification indexm so that[Fk+1 : Fk]=m. In particular, this implies that[Fk : F0] → ∞
ask → ∞. If, in addition,we also assume thatm is relatively prime with the characteristic
ofK, then each extensionFk+1/Fk is also separable.

Proof. The result follows because Kummer’s Theorem[21, Theorem III.3.7]guarantees
that the conditions�i+1 ← �i (i �0) of Theorem 2.3 are satisfied.�

Theorem 2.6. LetF be a tower recursively defined by a polynomialf (x, y) and letR =⋃∞
i=0Ri be the set defined in Section 1. Then

RF ⊆ {P�(x0) : � ∈ R}.
Thus, if R is finite thenRF is finite.
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Proof. Using the notation of Section 1, we may assume that the field of constants isK. Let
P ∈ RF. Then there is ann >0 such that there is a placeP ′ ∈ P(Fn−1) lying aboveP that
ramifies in the extensionFn/Fn−1. By Abhyankar’s Lemma[21, Proposition III.8.9], P ′ ∩
K(xn−1) is ramified in theextensionK(xn−1, xn)/K(xn−1)andsoP ′∩K(xn−1)=P�(xn−1)
for some� ∈ R0. From the definition of the setsRi , it follows thatP =P ′ ∩K(x0)=P�(x0)

for some� ∈ Rn−1. This shows thatRF ⊆ {P�(x0) : � ∈ R}. Thus, sinceR is finite, so is
the setRF. �

2.1. An effective version of Corollary 2.4

A priori, checking the conditions of Corollary 2.4 is computationally intensive. On the
computer one has toworkwith a finite field instead ofK—soone has to guess the right finite
field to work with to check the conditions as stated in Corollary 2.4. In this subsection we
present a finite version of this result. Theorem 2.7 below contains an obvious algorithm that
indicates from the outset exactly which finite field we should consider. All the conditions
of Theorem 2.7 are easily checked with KASH.
Letf (X, Y ) ∈ K[X, Y ] be an irreducible polynomial of degreem in each of the variables

X andY . Define the function fieldF := K(x, y) by f (x, y) = 0. We assume thatF is a
separable extension ofK(x) andK(y). LetM andN be defined as above and define the
polynomial

�(X) :=
∏

�∈N∩K

(X − �),

where we take the empty product to be 1.
Next define the following set

B∞ := {� ∈ P1 : � ← ∞}.
Now viewingf (X, Y ) as a polynomial inX with coefficients inK[Y ] we define the poly-
nomialR(Y ) as the resultant of the polynomialsf (X, Y ) and�(X), i.e.,

R(Y ) := Res(f (X, Y ), �(X)).

Finally, letZ be the set of zeroes ofR(Y ) in K. Observe thatZ is a finite set, otherwise
one can show thatf (X, Y ) is not irreducible.

Theorem 2.7. Define a sequence of function fields as follows: putF0 := K(x0), and for
eachk�0, letxk+1 be a solution tof (xk, T ) = 0; putFk := K(x0, x1, . . . , xk).
Assume thatM�N and the following:

(a) if ∞ /∈ N assume thatB∞�N .
(b) if Z�N Then for each� ∈ Z\N assume thatf (X, �) has a zero that does not belong

toN ∩ K.
Then for eachk there is a place inFk which is totally ramified in the extensionFk+1/Fk

with ramification indexm so that[Fk+1 : Fk] = m. In particular, this implies that[Fk :
F0] → ∞ ask → ∞. If, in addition, we also assume thatm is relatively prime with the
characteristic ofK, then each extensionFk+1/Fk is also separable.
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Proof. We show that the conditions of Corollary 2.4 are satisfied, that is, we show that for
each� ∈ P1\N there exists a� ∈ P1\N such that� ← �. Choose� ∈ P1\N . If � = ∞
then condition(a) guarantees the existence of�. Thus assume that� �= ∞. If � /∈ Z then
R(�) �= 0 and the polynomialsf (X, �) and�(X) have no common non-constant factors
(cf. [18, p. 41, Lemma 2.6]) so that any� ∈ K such thatf (�, �) = 0 does not belong toN
as required. If� ∈ Z then condition(b) guarantees the existence of�. This completes the
proof. �

We remark that the conditions for Theorem 2.7 are equivalent to the conditions of Corol-
lary 2.4.
Consider the following example: letf (x, y) = x2y2 + xy + 4x2 + 2x + 4 ∈ F5[x, y].

Using the notation of Theorem 2.7, we haveM = {0,2} andN = {0, ∞} so that�(X) = X

andR(Y ) = 4 so thatZ = ∅ and the conditions of Theorem 2.7 are trivially satisfied.
The following polynomials can also be shown to give rise to towers by verifying the

conditions of Theorem 2.7:x2y2 + 2xy + 4x2 + x + 1, x2y2 + (x2 + x)y + x2 +
4x + 4 ∈ F5[x, y] and x2y2 + 3xy + 2x2 + 2x + 4, x2y2 + 3xy + 4x2 + x + 4
∈ F7[x, y].

3. Elimination techniques

In the above section we gave several sufficient conditions to guarantee that a polynomial
gives rise to a tower. In this section we discuss four methods which proved very effective in
eliminating potential candidates for towers. The first method is an application of a technique
that Elkies used to recognize the modular towers in[17]. This method depends on the
defining polynomials possessing certain non-trivial fractional linear transform symmetries.
In Section 3.2 we present another simple method that depends on the polynomial remaining
unchanged after interchanging the variables. In Section 3.3 we present a method that uses
elimination theory of Groebner bases. Finally, in Section 3.4 we present a criterion for
Galois polynomials to define asymptotically bad towers.

3.1. Elkies’ technique

LetF= ⋃
k �0Fk be a tame tower recursively defined byf (x, y) = 0. Suppose there is

a non-trivial fractional linear transformation� (so �(x) = ax+b
cx+d

for somea, b, c, d ∈ K),
such that

f (�(x), �(y)) = 0 iff f (x, y) = 0. (4)

The fractional linear transformation gives rise to an automorphism�0 of F0 with �0(x0) =
�(x0). It follows from Eq. (4), that�0 can be extended to an automorphism�k of Fk with
�k(xj ) = �(xj ) for 0�j �k. We denote the fixed field ofFk under〈�k〉 with Ek. Then
E := ⋃

k �0Ek is a Galois subtower ofF with [F : E] = o(�), where o(�) is the order
of � when considered as an element ofGL(2, K). It is called the quotient subtower ofF
(under�).
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The towerE is recursively defined by

F (X, Y ) = 0,
whereX = x + �(x) + �2(x) + · · · + �o(�)−1(x), Y = y + �(y) + �2(y) + · · · + �o(�)−1(y),
andF is obtained fromf by eliminatingx andy. Computationally this can be realized by
using Gröbner Basis.
As an example, consider the polynomial

f (x, y) = xy2+ (2x2+ x + 1)y + 2x
over F3. Assuming thatf (x, y) gives rise to a towerT, it is not hard to show that the
ramification locus isR = {x40 + x30 + 2x20 + 1, x40 + 2x30 + x0 + 1, x20 + 1} and the places
S={x0,1/x0} split completely. It follows then fromTheorem1.1 that�(T)�1/2.However,
the tower is finite: observe thatf (x, y)=0 if andonly iff (�(x), �(y))=0where�(x) := 2/x.
Next we form the quotient subtower by introducing the variablesX=x+�(x),Y =y+�(y),
and eliminatex,y from f (x, y) = 0 to obtainF (X, Y ) = 0 whereF (X, Y ) = X + 2Y + 2
but it is obvious thatF (X, Y ) does not give rise to a tower. HenceT is not a tower.
The above approach proved extremely useful to eliminate many possible candidates for

towers: for example, the following polynomials which can be shown not to give rise to
towers over the indicated finite fields:

(x2+ 1)y2+ (x2+ x)y + 1+ 2x overF3,
(x2+ 1)y2+ (x2+ 2x + 2)y + 2+ x overF3,

x2y2+ (x2+ 2x + 2)y + x2+ 2x + 2overF3,
xy2+ (4x2+ x + 4)y + x overF5,

xy2+ (4x2+ x + 2)y + 3x overF5,
xy2+ (4x2+ x + 1)y + 4x overF5
xy2+ (2x2+ x + 4)y + 2x overF5,
xy2+ (2x2+ x + 3)y + 4x overF5,
x2y2+ (x2+ x + 6)y + 6x2+ 6x + 3overF11,
(x2+ 1)y2+ (x2+ x + 4)y + 4x2+ 3x + 2overF11,
(x2+ 1)y2+ (2x2+ 4x + 1)y + 6x2+ 10x + 9overF11.

That same technique applies, if there is a fractional linear transformation� ∈ GL(2, K)

such that

f (�(x), y) = �f (x, y) for some � ∈ K∗.

Again, � induces an automorphism�0 ∈ Aut(F0/Fq), which in this case can be extended
to an automorphism ofFk with �k(xj ) = xj for 1�j �k.
As an example, consider the towerM defined by

x2i+1= x2i + 1
2xi

for i �0, (5)
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which leads to an asymptotically optimal tower, cf.[13]. The right-hand side of Eq. (5) has
the involution� : xi �→ 1/xi .We form the quotient subtower by introducingyi =xi +1/xi .
Then, from Eq. (5), we getx2i+1= 1

2yi and

y2i+1= (yi + 2)2
2yi

,

which defines the same degree two subtowerN as

y2i+1= (yi + 1)2
4yi

(6)

given in[13]. The same involution as above applies now to Eq. (6), which leads to another
(optimal) degree two subtowerL defined by[4]:

z2i+1= (zi + 3)2
8(zi + 1) .

3.2. Symmetric polynomials do not define towers

Let f (x, y) ∈ Fq [x, y] be an absolutely irreducible polynomial. Next we show that if
f (x, y) = f (y, x) and the extensionFq(x, y)/Fq(x) (f (x, y) = 0) is Galois, thenf (x, y)

does not define a tower. This simple result eliminates many possibilities and thus helps to
reduce the total running time. For example, if one considers only degree 2 polynomials,
then immediatelyq6 polynomials are eliminated out of a possibleq9 polynomials. As
examples, consider the polynomialsxy2+ (x2+ 1)y + x + 1, xy2+ (x2+ x + 2)y + 2x
and(x2+1)y2+2xy + x2+2 overF3. Each of these polynomials remain unchanged after
interchanging the variables and thus do not give rise to towers.

Lemma 3.1. Letf (x, y) ∈ Fq [x, y] be an absolutely irreducible polynomial.Suppose that
the extensionFq(x, y)/Fq(x) (f (x, y) = 0) is Galois and thatf (x, y) = f (y, x).Then the
polynomialf (x, y) does not give rise to a tower.

Proof. Define a sequence of function fieldsF0, F1, . . . as follows:F0 := Fq(x0) and
for n >0, Fn := Fn−1(xn) wherexn is a solution tof (xn−1, T ) = 0. First we show that
Fq(x0, x1) = Fq(x1, x2). Observe that sincef (x, y) = f (y, x), we have thatf (x1, x0) =
f (x1, x2) = 0. Thusx0 andx2 are conjugates overFq(x1). Since the extensionFq(x0, x1)/

Fq(x1) is Galois, it follows thatx2 ∈ Fq(x0, x1). ThusFq(x1, x2) ⊆ Fq(x0, x1). Since both
these function fields are of the same degree overFq(x1), they must be equal. Similarly, we
have thatFq(xi, xi+1) = Fq(xi+1, xi+2) for all i �0. But this implies thatx0, x1, x2, . . . all
belong toF1= Fq(x0, x1) so thatFi ⊆ F1 for all i �1. Thus the sequenceF0, F1, . . . is not
a tower. �

3.3. Identifying bad towers using elimination theory

We illustrate this method by example without all the computational details. The reader
may easily fill in the missing computation.
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Assume that the polynomial

f (x, y) = x2y2+ (x2+ x + 1)y + x2+ x + 2 (7)

gives rise to a towerT overF3. Letw1 be a primitive element ofF27 satisfyingw31+2w1+
1= 0 and letw be a primitive element ofF35 satisfyingw5+ 2w + 1= 0. It can be shown
that the ramification set (using the notation of Theorem 1.1) is given by the zeroes of the
polynomials in the setRT·F27 = {1/x0, x0 − w

j
1, j = 1, 2, 3, 5, 6, 7, 9, 11, 14, 15, 16

17, 18, 19, 21, 22, 23, 25}and thesplitting set (againusing thenotationofTheorem1.1) is
given byST·F35={x0−wj |j =198, 110, 196, 88, 104, 136, 215, 22, 70,166, 161, 166,
66, 146, 233, 136, 210, 239, 22, 66, 42, 241, 198, 126, 241, 14, 161, 215, 233, 239}.
It follows from Theorem 1.1 that�(T)� 30

−1+19/2 = 60/17. It can be shown, using
techniques fromGroebnerbases that thecurvedefinedbyf is not closedunderany fractional
linear transforms overF3. Thus Elkies’ technique is not applicable.
DefineF0 := F35(x0) and, forn >0, Fn := Fn−1(xn) wherexn is a solution of the

equationf (xn−1, T ) = 0. Of course, we work in a fixed algebraic closure ofF1. However,
using elimination theory, by successively eliminating the variablesx1, x2, . . ., it can be
shown that the functionsx1, x2, . . . all belong to the (finite) set of zeroes of the polynomials
Pi(T ) below whereu := x0. This contradicts the assumption thatf (x, y) defines a tower.

P0(T ) = f (u, T ),

P1(T ) = T + 2u,

P2(T ) = (u2+ u + 1)T 2+ (u + 1)T + u + 2,
P3(T ) = u2T 2+ (2u + 2)T + 2u,

P4(T ) = (u2+ u + 1)T 2+ u2T + u2+ 1,
P5(T ) = (u4+ 2u2+ 1)T 4+ (2u4+ 2u3+ 2u2+ 2u + 2)T 3

+ (2u4+ 2u3+ 2u2+ 2)T 2+ (u4+ u3+ 2u + 2)
T + u4+ u3+ 2u2+ u + 1,

P6(T ) = (u4+ u3+ u + 1)T 4+ (u4+ u3+ u + 1)T 3+ (2u2+ u)T 2

+ (u4+ u3+ u2+ 1)T + u4+ u3+ u + 2,
P7(T ) = (u4+ 2u2+ 1)T 4+ (u3+ 2u2+ u)T 3+ (2u4+ 2u3+ 2u2+ 2)T 2

+ (u3+ u + 2)T + u4+ 2u2+ 2u + 2,
P8(T ) = (u4+ 2u3+ 2u2+ u + 1)T 4+ (2u3+ 2u2+ u + 1)T 3

+ (2u4+ 2u3+ 2u2+ 2)T 2+ (2u3+ 2u + 1)
T + u4+ 2u3+ 2u2+ 2u + 1,

P9(T ) = (u4+ 2u3+ 2u2+ u + 1)T 4+ (2u4+ 2u3+ 2u2+ u + 1)T 3
+ (2u4+ 2u3+ 2u2+ 2)T 2+ (u4+ u3)T + u4+ u3+ 2u2.

Similarly, it can be shown that the polynomialsxy2+(2x2+x+4)y+4x+1 ∈ F7[x, y],
andxy2+(2x2+x+9)y+7x2+6x+10∈ F11[x, y] do not give rise to towers.Without this
crucial fact, both these polynomials would seem to give rise to asymptotically good towers



H. Maharaj, J. Wulftange / Journal of Pure and Applied Algebra 199 (2005) 197–218 209

over their respective prime fields. Unfortunately, after extensive computational search for
recursively defined asymptotically good towers over prime fields, we still have not found
any. The search was done using degree two polynomials and for the primes 3,5,7,11,13.

3.4. Asymptotically bad towers defined by a family of Galois polynomials

Letf (x, y) ∈ Fq [x, y]beabsolutely irreduciblewith thesamedegreem in both variables.
We assume thatm is relatively prime withq. Define the function fieldF := Fq(x, y) by
f (x, y) = 0. LetM be the set of places ofFq(x) which are totally ramified in the extension
F/Fq(x) and letN be the set of places ofFq(y) that ramify in the extensionF/Fq(y).
AssumeM �= ∅ and that both extensionsF/Fq(x) andF/Fq(y) are Galois. In this section
we prove the following result, under the above hypothesis.

Lemma 3.2. Assume that there is a placeQ in M with gcd(degQ, m) = 1 and which has
the property that for eachP in N , degQ does not dividedegP . . . (†).
Define sequenceF := (Fi) byF0 = Fq(x0) and for i >0, Fi := Fi−1(xi) wherexi is

any solution to

f (xi−1, Y ) = 0.
Then we have the following:

(i) The sequenceF := (F0, F1, F2, . . .) is a tower overFq such that for eachk, there is
at least one place inFk that is totally ramified in the extensionFk+1/Fk.

(ii) The towerF is asymptotically bad.

Proof. (i) Let n�1 and choose a placeQ in Fq(xn) with property(†), that isQ is totally
ramified in the extensionFq(xn, xn+1)/Fq(xn) and the degree ofQ is relatively prime to
m and does not divide the degree of any place ofFq(xn) which ramifies in the extension
Fq(xn−1, xn)/Fq(xn). Let Q′ be a place ofFn that lies over the placeQ. Consider the
respective restrictionsQ0, Q1, . . . , Qn(=Q) ofQ′ to Fq(x0), Fq(x1), . . . , Fq(xn).
We claim that the degree of each placeQi is divisible by the degree ofQ: LetQ′

n denote
the restriction ofQ′ to Fq(xn−1, xn). Observe that

degQ′
n = f (Q′

n|Qn−1)degQn−1= f (Q′
n|Q)degQ, (8)

wheref (Q′
n|Qn−1) andf (Q′

n|Q) are the relative degrees of the placeQn in the extensions
Fq(xn−1, xn)/Fq(xn) andFq(xn−1, xn)/Fq(xn−1). Since these extensions are Galois, it fol-
lows that the relative degreesf (Q′

n|Qn−1) andf (Q′
n|Q) both dividem. Now from Eq. (8)

and the fact that degQ is relatively prime withm, it follows that degQ divides degQn−1.
Now letQ′

n−1 denote the restriction ofQ′ to Fq(xn−2, xn−1). Observe that

degQ′
n−1= f (Q′

n−1|Qn−2)degQn−2= f (Q′
n−1|Qn−1)degQn−1. (9)

Since degQ divides the right-most side of Eq. (9) it follows that degQ divides

f (Q′
n−1|Qn−2)degQn−2
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and hence also degQn−2, using the facts thatm and degQ are relatively prime and that the
extensionFq(xn−2, xn−1)/Fq(xn−2) isGalois so thatf (Q′

n−1|Qn−2)dividesm. Continuing
in thisway, byan inductive argument,wesee that degQdividesdegQi for i=0,1, . . . , n−1
as claimed.
Now, by assumption(†), it follows that none of the placesQi can ramify in the exten-

sionFq(xi−1, xi)/Fq(xi). By Abhyankar’s lemma[21, Proposition III.8.9], it follows that
e(Q′|Q) = 1 so that, again by Abhyankar’s lemma, we have thatQ′ is totally ramified in
the extensionFn+1/Fn. Thatg(Fn) → ∞ asn → ∞ follows from the proof of (ii).
(ii) It is easily shown, by repeated application of the different formula for towers that

�(F) := lim
n→∞

g(Fn)

[Fn : F0] = g(F0) − 1+ 1

2

∞∑
i=1

deg Diff(Fi/Fi−1)
[Fi : F0] .

It is shown in[13] that �(F) = �(F)/�(F) where�(F) = limn→∞N(Fn)/[Fn : F0]
(< ∞).We will show that�(F)=∞. Letn >1 be given. LetQ denote the place ofFq(xn)

with the property in the statement of the theorem for the extensionFq(xn, xn+1)/Fq(xn).
Now letQ′ be any place inFn which lies overQ. From the proof of(i),Q′ is unramified in
the extensionFn/Fq(xn). It is clear that the quantity�(F) remains invariant under change
of constant field. Thus, without loss of generality, wemay increase the constant field so that
we may assume thatQ has degree one and splits completely in the extensionFn/Fq(xn).
Each of themn places ofFn which lie aboveQ are totally ramified inFn+1/Fn. It follows
that

deg Diff(Fn+1/Fn)

[Fn+1 : F0] � mn(m − 1)
mn+1 = m − 1

m
�0

asn → ∞. Thus�(F) = ∞. �

As an example consider the following rational function:

f (x, y) := y3− 1+
(

x − 1
x + 1

)3
= y3− 2 3x

2+ 1
(x + 1)3 (10)

overFp wherep is a prime congruent to 1 or 7 modulo 12. Modulo any such prime−1
3 is

not a square so that 3x2 + 1 is irreducible. Also, since 3 dividesp − 1, Fp contains cube
roots of unity. Thus, using the notation of Lemma 3.2, we haveN ={y − �|� ∈ Fp, �3=1}
andM ={1/x, x2+1/2}. Since the conditions of Lemma 3.2 are satisfied withQ=3x2+1,
it follows thatf (x, y) defined in (10) gives rise to an asymptotically bad tower.

4. The computer implementation

The KASH implementation is essentially the same as outlined in[17] but differs in the
following important ways. LetT be a tower defined by an equationf (x, y) = 0. Since the
polynomialsf (xk, T ) are irreducible for eachk�0, we obtain for the degrees of the field
extensions (using the notation of Corollary 2.2)

[Fk+1 : Fk] = [F1,k+1 : F1,k].
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Thus,

[Fk+1 : F1,k+1] = [Fk : F1,k],
and the equationf (yk+1, yk) =0 defines a sequence(Ek)k �0, Ek := Fq(y0, y1, ..., yk), of
algebraic function fields, such thatf (T , yk) is irreducible overEk for all k�0. In this way,
we obtain a towerS := ⋃

k �0Ek, thedual towerwith respect toT [1]. The towersT
andS satisfy�(T)=�(S). Thus, for computational purposes, we need only consider one
of the polynomialsf (x, y) or f (y, x). Moreover,T′ it a tower defined byf (�(x), �(y))

where�(x) is a fractional linear transform with coefficients inFp, then�(T) = �(T′).
Define the following relation∼ on the setP of polynomials of degreem (in both variables)
in Fp[x, y]: f ∼ g if and only if f (x, y) = �g(y, x), f (x, y) = �g(x, y) or f (x, y) =
(cx + d)m(cy + d)mg(�(x), �(y)) for some fractional linear transformation�(x) = (ax +
b)/(cx+d)with coefficients inFp. It is clear that∼ is an equivalence relation.Occasionally,
we need to consider linear fractional transforms overFp. In this case we say thatf and
g are∼ related overFp if the aboveconditions are satisfied. Consider a lexicographic
ordering on the coefficients of polynomials inFp[x, y] of degreem (in both variables).
From each equivalence class, we choose the smallest element—and do all computation
with that polynomial. This considerably reduced the number of polynomials that we did all
the computations with and allowed us to more efficiently analyze the results without having
the overabundance of data.
In [17], in order to determine whether a polynomial defines a tower, we checked if the

conditions of Theorem 2.3 are satisfied (although the proof of this general lemma was not
known at the time of writing the paper[17]—these conditions are implied in the proofs
of the paper[10]). This had the major drawback that it was not possible to determine the
smallest possible finite field to work with to check this condition. The new feature in the
program is a check for the conditions of Theorem 2.7.While more restrictive than Theorem
2.3, it has the advantage that the conditions can be checked in a finite number of steps.
The techniques of Section 3 were incorporated in the program. In order to implement

Elkies’technique,weuse theGroebner basis features of the computer algebra systemMaple.

5. Examples

The aim of this section is to present a clear picture of the towers found and how they
compare with each other. In order to do this efficiently, we omit many details in the compu-
tations. However, we refer the reader to[17] where the computations are similar and done
in detail. All those polynomials listed below without a reference are new in the sense that
they are not∼-related (over the algebraic closure of the respective finite field) to any of the
currently known polynomials that define optimal towers. Note that we make repeated use
of theorems in Section 2 without indication. We will occasionally use some notation and
terminology from[13]. In addition, we will also use the following terminology: given two
towersF = (F1, F2, F3, . . .) andE = (E1, E2, E3, . . .) overFq , the towerE is said to be
asubtower[10] ofF or thatF is asupertowerof E if there exists an embedding

	 :
⋃
i �1

Ei →
⋃
i �1

Fi
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overFq . We denote this by:E ≺ F.
q = 9:
The polynomial

f (x, y) = (x2+ 1)y2+ 2xy + 2x2+ 1 (11)

gives rise to a towerT overF9 with ramification set given byRT = {zeroes ofx40 + x20 +
2, zeroes ofx40 + 2x20 + 2}.
It can be shown that the zeroes ofx40 + x20 + 2 are totally ramified in the tower. Letw

be a (primitive) element ofF9 which satisfiesw2 + 2w + 2= 0. ThenS = {1/x, x, x −
wj for j = 2,4,6,8} is a set of six places ofF1 which split completely in the tower. We
conclude from Theorem 2.1 that�(T)�2 · 6/(−2+ 8) = 2. SinceA(9) = 2 it follows that
the towerT(9) is optimal overF9 with �(T) = 2.
Now, it is shown in[17] that the towerT1 overF9 given by the equationg(x, y)=2xy2+

(x2+ x + 1)y + x2+ x + 2 is optimal. Moreover, it is shown in[17] thatT1 is “new” in
the sense that all previously known towers overF9 are not subtowers ofT1. In the same
way as in[17], it can be shown that none of the previously known towers (except possibly
T1) is a subtower ofT. Comparison ofT andT1 though does not appear to be easy.
However, it can be shown, for example using computer algebra software with Groebner
basis capabilities, thatf is not∼-relatedoverF̄3.
Consider the following polynomials inF3[x, y]. It can be shown that for eachi, 1� i �7,

fi(x, y) gives rise to an asymptotically good tower, which we denote byTi ; the corre-
sponding lower bound for�(Ti ) (in all cases, except fori = 11,10 obtained by using
Theorem 1.1) is indicated in the last column.

Ref: fi(x, y): �(Ti )�

[14] T1: f1(x, y) = y2+ x2+ x 2
T2: f2(x, y) = y2+ xy + 2x2+ 1 2/3
T3: f3(x, y) = y2+ xy + 2x2+ 2 2/3

[4] T4 : f4(x, y) = y2+ x2y + 1 2
[13] T5: f5(x, y) = y2+ (x2+ 1)y + 1 2

T6: f6(x, y) = y2+ (x2+ 1)y + 2x2 2/3
[17] T7: f7(x, y) = xy2+ (2x2+ x + 2)y + x2+ 2x + 2 2

T8: f8(x, y) = x2y2+ (2x + 1)y + x2+ 2x + 1 2/3
T9: f9(x, y) = (x2+ 1)y2+ 2xy + 2x2+ 1 2

[17] T10: f10(x, y) = xy2+ 2x2y + x2+ 2x + 1 2
[17] T11: f11(x, y) = y2+ (x2+ 1)y + x2+ x + 1 2

The towersT1,T4 andT5 are respectively special cases of the towersL,M andN in
[13]. It is shown in[23] (Beispiel 3.2.6) that the lower bounds given for�(Ti ), i =2,3,6,8
are exact so that these towers are not optimal. Using Elkies’ technique, it can be shown that

• T1 ≺ T2,T3,
• T5 ≺ T6,T8,
• T11 ≺ T10 ≺ T7,T9.
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Moreover, in[17], it is shown thatT1 ≺ T5 ≺ T4. SinceT10 andT11 are subtowers
of optimal towers, it follows that they are optimal. The polynomialf9 is not∼ related to
any other known degree two polynomial which defines an optimal tower.

q = 25:
Consider the following polynomials inF5[x, y]. It can be shown that for eachi, 1� i �19,

fi(x, y) gives rise to an asymptotically good tower, which we denote byTi ; the corre-
sponding lower bound for�(Ti ) (in all cases, except fori =2,19,28 obtained using Theo-
rem 1.1) is indicated in the last column.

Ref: fi(x, y): �(Ti )�

[13] T1: f1(x, y) = y2+ x2y + 4 4
[7] T2: f2(x, y) = y2+ x2y + x 4
[7] T3: f3(x, y) = y2+ x2y + 3x 4
[13] T4: f4(x, y) = y2+ (x2+ 2)y + 1 4
[8] T5: f5(x, y) = y2+ (x2+ 2)y + x2 4
[4] T6: f6(x, y) = y2+ (x2+ 2)y + 2x2+ 1 4
[7] T7: f7(x, y) = y2+ (x2+ 2)y + 3x2+ 4x + 4 4

T8: f8(x, y) = y2+ (x2+ 3)y + 4x2 1
[17] T9: f9(x, y) = xy2+ (4x2+ x + 1)y + x2+ 2x + 3 4

T10: f10(x, y) = xy2+ (4x2+ x + 2)y + 3x2+ x + 4 4
T11: f11(x, y) = x2y2+ (x2+ 3)y + 4 4
T12: f12(x, y) = x2y2+ (x2+ 3x + 3)y + 4 3
T13: f13(x, y) = x2y2+ (x2+ 4x + 2)y + 4 4
T14: f14(x, y) = x2y2+ (x2+ 4x + 2)y + 4x2+ 2 3
T15: f15(x, y) = x2y2+ (x2+ 4x + 4)y + 4x2+ 3x + 2 3
T16: f16(x, y) = (x2+ 1)y2+ (x + 1)y + 2x2+ 4x + 1 1
T17: f17(x, y) = (x2+ 1)y2+ (x2+ 3x + 3)y + x2+ 4 4
T18: f18(x, y) = (x2+ 1)y2+ (2x2+ 2x + 4)y + 3x2+ 3 4

[8] T19: f19(x, y) = y2+ x2y + 3x2+ 2 4
T20: f20(x, y) = y2+ 2xy + 4x2+ 1 1
T21: f21(x, y) = y2+ 2xy + 4x2+ 2 1

[7] T22: f22(x, y) = y2+ 4xy + x2+ x 2
[7] T23: f23(x, y) = y2+ x2y + 2x2+ 2x 4

T24: f24(x, y) = xy2+ (4x2+ x + 2)y + 2x2+ 2x + 3 4
T25: f25(x, y) = x2y2+ xy + 4x2+ 1 4
T26: f26(x, y) = x2y2+ 2xy + 2x2+ 4 4

[7] T27: f27(x, y) = y2+ (x2+ 1)y + x2+ 4x + 4 4

The towersT1, T4 andT6 are respectively special cases of the towersM,N and
L in [13]. All these towers except possiblyTi , i = 8, 16, 12, 14, 15, 20, 21 are op-
timal. (Are the given lower bounds for these also exact?) The towerT22 is actually
optimal, and the indicated lower bound is due to the non-determinism of the
algorithm.
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Using Elkies’ technique and results from[13], it can be shown that each of the towers
above is a super tower of one ofTi , i = 2, 6, 22, 27, 19. More specifically we have

• T2 ≺ Ti for i = 7,12,14,15; andT7 ≺ Ti for i = 3,13
• T6 ≺ Ti , i = 8, 16
• T19 ≺ Ti for i = 5,10,11,18; andT10 ≺ Ti for i = 9,17.
• T27 ≺ Ti for i = 23, 24, 25, 26,
• T22 ≺ T21,T20.

Moreover, in[13] is shown thatT6 ≺ T4 ≺ T1.
The embeddingsT19 ≺ T10 ≺ T9 were shown by Elkies in[17]. The fact thatTi ,

i = 2, 19, 27 are optimal now follows because they are subtowers of optimal towers.
Now 
(Ti ) in each case is easily computed and from this it follows that
(Ti ) is some

integer power of 2 fori �= 2, 19, 8, 16.

Proposition 5.1. None of the towersT2,T19,T27 is isomorphic to any of the towers
Ti , i �= 2, 8, 16, 19, 27.

Proof. We show thatT2 is not isomorphic to any ofTi for i �= 2, 8, 16, 19; and we do
this in detail fori = 1 as the proof is similar in the other case. The proof forT19,T27 is
similar.
Suppose that(F0, F1, F2, . . .) and(E0, E1, E2, . . .) representsT2 andT1, respectively.

Suppose that	 : T1�T2 is an isomorphism. We denote the image ofEi under	 again
byEi so that

⋃∞
i=0Ei = ⋃∞

i=0Fi . Now choosej such thatFj containsE0; andi such that
Ei containsFj . Then[Fj : E0] divides [Ei : E0] = 2i . Now, from Lemma 2.6 in[13]
we have

[Fj : E0] · 
E0
(T1) = [Fj : F0] · 
F0

(T2). (12)

Now 
E0
(T1) = 2 and
F0

(T2) = 3/2 (note that
F25(x0)
(T1) = 3/2, 1 = 19, 27 as well).

From (12) it now follows that[Fj : E0] = 3 · 2j−2, a contradiction. �

While it is unknown if any pair ofT2,T19,T27 are isomorphic, it can be shown that
no two off2, f19, f27 are∼-relatedoverF5.

q = 49:

Ref: fi(x, y): �(Ti )�

[13] T1: f1(x, y) = y2+ x2y + 4 6
[7] T2: f2(x, y) = y2+ x2y + 5x 6
[8] T3: f3(x, y) = y2+ x2y + 5x2+ 5 4

T4: f4(x, y) = y2+ x2y + 6x2+ 3x 6
[13] T5: f5(x, y) = y2+ (x2+ 1)y + 6x2+ 2 6
[8] T6: f6(x, y) = y2+ (x2+ 4)y + x2 6
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Ref: fi(x, y): �(Ti )�

[13] T7: f7(x, y) = y2+ (x2+ 6)y + 2 6
T8: f8(x, y) = y2+ (x2+ 6)y + x2 6

[7] T9: f9(x, y) = y2+ (x2+ 6)y + 4x2+ 6x + 4 6
T10: f10(x, y) = xy2+ (6x2+ 1)y + x2+ 5x + 2 6
T11: f11(x, y) = xy2+ (6x2+ x + 2)y + 4x2+ 6x + 6 6
T12: f12(x, y) = xy2+ (6x2+ x + 5)y + x2+ 4 6
T13: f13(x, y) = x2y2+ xy + 2x2+ 1 6
T14: f14(x, y) = x2y2+ xy + 3x2+ 4 6
T15: f15(x, y) = x2y2+ xy + 4x2+ 4 6
T16: f16(x, y) = x2y2+ xy + 5x2+ 1 6
T17: f17(x, y) = x2y2+ 3xy + 6x2+ 2 6
T18: f18(x, y) = x2y2+ (x2+ 2)y + 4 6
T19: f19(x, y) = x2y2+ (x2+ 6)y + 1 6
T20: f20(x, y) = x2y2+ (x2+ 3x + 6)y + x2+ 2x + 1 6

[17] T21: f21(x, y) = (x2+ 1)y2+ xy + 6x2+ 4 6
T22: f22(x, y) = (x2+ 1)y2+ 6xy + 6x2+ 4 6
T23: f23(x, y) = (x2+ 1)y2+ (x2+ x + 6)y + 3x2+ 6x + 5 6
T24: f24(x, y) = (x2+ 1)y2+ (x2+ 2x + 2)y + 5x2+ 5 6
T25: f25(x, y) = (x2+ 1)y2+ (2x2+ 6x + 1)y + 6x2+ 1 6
T26: f26(x, y) = (x2+ 1)y2+ (3x2+ 2x + 6)y + 5x2+ 5 6
T27: f27(x, y) = y2+ (x2+ 4)y + 3x2+ 4x + 5 6

[8] T28: f28(x, y) = y2+ x2y + 5x2+ 5 6
[7] T29: f29(x, y) = y2+ (x2+ 4)y + 6x2+ x + 1 6

T30: f30(x, y) = xy2+ (6x2+ x + 4)y + 2x2+ 4x + 3 6
[7] T31: f31(x, y) = y2+ x2y + 2x 6
[17] T32: f32(x, y) = y2+ (x2+ x + 6)y + 2x2+ 5x + 6 6
[7] T33: f33(x, y) = y2+ (x2+ 6)y + 4x2+ 2x + 2 6

T34: f34(x, y) = y2+ (x2+ 4)y + 3x2+ 4x + 1 6

The towerT4 is isomorphic to the modular tower defined byy2− (x2− 4x + 1)y − x2

(this tower is modular and corresponds to�1(8) ∩ �0(2k), [6]). The towersT1,T5 and
T7 are respectively special cases of the towersM,L andN in [13].
Using Elkies’ technique and results from[13], it can be shown that each of the towers

above is a super tower of one ofTi , i = 3, 5, 27, 28, 31, 33. More specifically we have

• T3 ≺ T18.
• T5 ≺ T7 ≺ Ti for i = 1, 4, 10, 14, 15 andT1 ≺ Tj for j = 8, 11, 19, 26.
• T27 ≺ T2.
• T28 ≺ Ti for i = 6, 23, 24.
• T29 ≺ Ti for i = 9,13,16,17.
• T31 ≺ T30,T37, andT30 ≺ T20,T12, andT37 ≺ T25.
• T33 ≺ T32 ≺ Ti for i = 21,22.



216 H. Maharaj, J. Wulftange / Journal of Pure and Applied Algebra 199 (2005) 197–218

q = 74:
Increasing the constant field toF74 yields the following additional towers. Curiously the

asymptotic limit does not increase: it remains 6.

fi(x, y): �(Fi )�

F1: f1(x, y) = y2+ (x2+ 3)y + 5x + 4 6
F2: f2(x, y) = y2+ (x2+ 5)y + 5x + 2 6
F3: f3(x, y) = x2y2+ (x2+ 4x + 5)y + 5x2+ x + 6 6
F4: f4(x, y) = y2+ (x2+ 4)y + 6x2+ 3x + 6 6

Using Elkies’ technique, it can be shown that

• T33 ≺ F4 ≺ F1,
• T8 ≺ F2,
• T18 ≺ F3,

where the first towers refer to those overF49.
q = 121:

Ref: fi(x, y): �(Ti )�

[13] T1: f1(x, y) = y2+ x2y + 4 10
[7] T2: f2(x, y) = y2+ x2y + 9x 10
[7] T3: f3(x, y) = y2+ (x2+ 8)y + 3x2+ 4x + 5 10
[7] T4: f4(x, y) = y2+ x2y + 5x 10
[13] T5: f5(x, y) = y2+ (x2+ 3)y + 5 10

T6: f6(x, y) = y2+ (x2+ 7)y + 9x + 4 10
[7] T7: f7(x, y) = y2+ (x2+ 8)y + 10x2+ 7x + 6 10
[7] T8: f8(x, y) = y2+ (x2+ 3)y + 4x2+ 5x + 5 10
[8] T9: f9(x, y) = y2+ (x2+ 7)y + 3x2+ 4 10
[7] T10: f10(x, y) = y2+ (x2+ 7)y + 8x2+ 3x + 5 10

T11: f11(x, y) = y2+ (x2+ 9)y + 6x2+ 9x + 6 10
[8] T12: f12(x, y) = y2+ (x2+ 8)y + x2 10
[8] T13: f13(x, y) = y2+ x2y + 9x2+ 1 10

T14: f14(x, y) = y2+ (x2+ 9)y + 9x + 2 10
T15: f15(x, y) = x2y2+ xy + 4x2+ 1 10
T16: f16(x, y) = x2y2+ 2xy + 3x2+ 4 10
T17: f17(x, y) = x2y2+ 2xy + 8x2+ 4 10
T18: f18(x, y) = x2y2+ (x2+ 7)y + 5 10
T19: f19(x, y) = x2y2+ (x2+ 2x + 1)y + 1 10
T20: f20(x, y) = x2y2+ (x2+ 3x + 6)y + 9x2+ 8x + 3 10
T21: f21(x, y) = x2y2+ (x2+ 3x + 9)y + 4 10
T22: f22(x, y) = x2y2+ (x2+ 8x + 4)y + 5 10
T23: f23(x, y) = (x2+ 1)y2+ (x2+ 4x + 3)y + 10x2+ 3 10
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Ref: fi(x, y): �(Ti )�

T24: f24(x, y) = (x2+ 1)y2+ (3x2+ 4x + 9)y + 8x2+ 8 10
T25: f25(x, y) = (x2+ 1)y2+ (3x2+ 5x + 8)y + 7x2+ x + 8 10
T26: f26(x, y) = (x2+ 1)y2+ (4x2+ 5x + 4)y + 5x + 8 10

The towersT1,T3 andT5 are respectively special cases of the towersM,N andL
in [13]. Thus, from[13], we haveT5 ≺ T3 ≺ T1. In this case, in order for the program to
finish in a tolerable time, we relaxed many of the conditions. This explains why we found
fewer towers here. Using Elkies’ technique, the following can be shown:

T4 ≺ T3 ≺ T2,T22, T8 ≺ T7 ≺ T6,T23,

T11 ≺ T10, T13 ≺ T12 ≺ T14,T19,

T11 ≺ T15,T16,T17, T13 ≺ T18,T24,T25.

T8 ≺ T21 ≺ T20,T26,
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