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Abstract

Recently, W.-C. W. Li, et al. (Lect. Notes in Comput. Sci. 2369 (2002) 372) developed a non-
deterministic algorithm to perform a computer search for polynomials that recursively define asymp-
totically good sequences of function fields. In this paper, we build on this work by refining this
algorithm. We give many sufficient conditions for the construction of such sequences and we describe
the techniques used in the search. Many examples are given. The resulting towers are important for
the construction of asymptotically good sequences of codes and they could provide further numerical
evidence for Elkies’ modularity conjecture.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Much work has been devoted to the construction of asymptotically good sequences of
function fields over a finite field, that is, sequences of function fields over a fixed finite field
with asymptotically many rational places relative to the genus. The main motivation for
such constructions is their usefulness in the construction of sequences of arbitrarily long
codes with parameters exceeding or close to the Gilbert—Varshamov bound. For applications
to coding theory, one requires an explicit presentation of these function fields. Explicit
constructions began in 1995 in a paper by Garcia and Sticht¢h@fhSubsequent work
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on this topic include, among othen#,5,10-14,16,17]For a reference describing non-
explicit constructions, using class field theoretic techniques, we recommend the book by
Niederreiter and Xing20]. Recently, in[17], a non-deterministic algorithm is developed
to perform a systematic computer search for polynomials that recursively define explicit
asymptotically good sequences of function fields. In this paper, we build on this work by
refining this algorithm. In this section, we give some background and a detailed description
of the algorithm. In Section 2 we give many sufficient conditions for the construction of
such sequences. In Section 3 we describe some of the techniques used in the search and in
Section 4 we describe the computer implementation and improvements of the algorithm.
Finally, in Section 5 we present many new examples. Unless otherwise mentioned, we will
use the same notation ag#1], for example, we denote the set of places of a function field
F by P(F) and its number of rational places by F).

A tower of function fields ovel, is defined to be a sequenge = (Fo, F1, F>, ...) of
function fields, having the following properties:

() FCFLICFC....

(i) For eachn >0, the extensiork;,, 1/ F, is separable of degrgé;, .1 : F,] > 1.
(iii) The genusg(F;) > 1 for somej >1.
(iv) [, isthe full field of constants of eadh,.

As noted in[10], the conditions (ii), (iii) and the Hurwitz genus formula imply that
g(F,) — oo asn — oo. Atower# = (Fp, F1, Fo, ...) is calledtameif each extension
F,11/F,,n=0,1, ..., isatame extension. For any tow&r= (Fg, F1, F>, ...) of function
fields overl,, let

MF) = lim N(F)/g(F).

It is shown in[13] that this limit is well defined. A towe#” is said to beasymptotically
good(respectivelyasymptotically bajlif (%) > 0 (respectivelyl(#) =0). Itis clear that
MF)< A(g) whereA(q) = lim SUP,—, o Ng (8)/8 whereN, (g) is the maximum number
of rational places of a function field with gengsand with the finite fieldr, as the full
field of constants. Drinfeld and Vlad{8] showed that (¢) <./g — 1. It was also shown
by Ihara[15], and Tsfasman et g22] in special cases, that(q) = /g — 1 wheng is a
square. Whepg is not a square, the exact valueAfy) is currently unknown. We say that
the tower7 overl, is optimalif A(#) = A(q).

In the case thag is a square, Garcia and Stichten@® discovered the first explicit
optimal tower overl,—thus providing a more elementary proof of the Ihara result that
A(q)=.,/q —1if g is asquare. Subsequently{it0], Garcia and Stichtenoth found another
optimal tower% := (F;) overlF,, ¢ a square, with the following simpler description: let

qg = g and putFp := [, (xo); for n > 0 we haveF, := F,_1(x,) where
q0
X,_
xi(lio + Xn = # (1)
Xp_1 + 1

In these towers wild ramification occurs and so the genus computation is difficult. Subse-
quently in[14,4] explicit towers with tame ramification were found.[l#], using modular
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curve constructions, Elkies found entire families of explicit optimal towers with tame ram-
ification. Tame towers have the advantage that the genus computation is simpler. In fact,
for a tame tower#, under additional assumptions, we have the following lower bound
for A(F):

Theorem 1.1(Garcia et al.[14]). LetF# = (Fy, F1, F2, ...) be a tower of function fields
over [, satisfying the following conditions

(i) All extensions;, 1/ F, are tame
(i) The setRz = {P € P(Fp)|P is ramified inF, / Fp for somen > 1} is finite
(i) ThesetS#={P € P(Fp)| degP =1, and P splits completely in all extensios / Fo}
iS non-empty
ThenZ is an asymptotically good tower and

2s
2¢(Fo) —2+r’
wheres :=#Sz andr := ) p p_ degP.

MTF) 2

()

Given f(x,y) e F4[x,y], a tower# = (Fo, F1, ...) over [, is said to be (recur-
sively) defined byf (x, y) if Fo = [F,(xo) is the rational function field and for eaah> 0,
F, = Fy(xo0, x1, ..., x,), Where f(x;, x;y1) = 0 for 1<i <n. For brevity, we usually
specify a tower by stating the polynomiglx, y) which defines the recursion. Thus the
Garcia—Stichtenoth towef above would be presented by

Flx,y) =@t 4 1)(y90 4 y) — x9°.

Next we describe the algorithm used[i¥] to perform a search for asymptotically good
recursively defined tame towers. The main idea for the algorithm comes from the proof
in [10] that the recursion (1) gives an optimal tower. Essentially, the algorithm checks if
the conditions of Theorem 1.1 are satisfied. Given, y) € [Fy[x, y], the most difficult
conditions to check for are: whethéi(x, y) gives rise to a tower and condition (ii) of
Theorem 1.1.

LetK =Fq denote a fixed algebraic closurelgf. Observe that i = (Fo, F1, F>, ...)
is a tower ovelf, then the composité” - K := (Fp - K, F1 - K, ...) satisfies conditions
(), (i) and (iii) in the definition of a tower. Also note that the sk of Theorem 1.1 is
finite if and only if the selR #.¢ is finite. Thus, we may tak& to be the field of constants
for # and we letF := K (x, y), f(x,y) =0wheref(x, y) € K[x, y] is irreducible.

Define P! to be the sek U {oo} whereoc is a formal symbol which does not belong
to K ; for a given rational function fiel& (z) andv € P!, we denote by, (z) the zero of
z—vin K(z) if v € K; otherwiseP,(z) denotes the pole ofin K(z). If v, u € Pl we
write v < p if there exists a plac@ in F such thatQ extends both the place’ (x) and
Pu(y).

Hln [12], it is shown that a necessary condition forto define an asymptotically good
tower is that the degrees gfin both variables are equal, so we assume this ajfouet
m be the degree of in both variables. LeM denote the set of all P! such thatP, (x)
is totally ramified in the extensiof/K (x) and letN denote the set of all P! such
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that the placeP,(y) is ramified in the extensiol/K (y) with ramification indexe such
that g.c.de, m) > 1 or p dividese wherep is the characteristic df,. Then condition (ii)
is checked as follows:

(1) PutRo := {v € P|P,(x) ramifies inF/K (x)}.

(2) Rit1:={u € PYu « vforsomey € R;}fori=0,1,2, ...
(3) Putr := U?iORi'

(4) If the setRr is finite thenR & is finite (see Theorem 2.6).

Computationally, each successikgis computed and if for somg> 0 we have that
j—1
R; < U R;, )
i=0

then we conclude that = U‘l.’;olR,- is finite. This explains why the algorithm is not deter-
ministic: we do not know the smallegtfor which (3) may hold. Also we have no way of
deciding at the outset in which finite field to do all the computations. It may well happen
that (3) holds while the smallest finite field containiRds too large to do computations in
a reasonable running time.

Next we show how we checked for condition (iii). In this case, theSsetis easily
computed as follows: For eache [, let

S(v) ={u e FyqU{oo}ly < uj.
Let
So :={[v, SM]lv e [, U{oc} and Py(x) splits completely inlF, (x, y)/F,(x)}.
Fori>1 we define sets; andsS! recursively as follows:
=, SO € Si-a}
and
Si = {[v, SM] € Si—1|S(v) S S/ _4}.

Note that the sequends;) satisfiesSp 2 S1 2 S2 2 ... . If for somei we have that
S; = S;+1 then the sequence stabilizés= S;;1=S;;2=...and ifS; # ¢ then the places
Py(xo) (v € S)) split completely in each extensidn, / Fo. We set

S7 = {Py(x0) 1 v € S}

After checking that conditions (ii) and (iii) of Theorem 1.1 are satisfied, the next step
is to determine if the sequencé;) is infinite. In order to do this, we choose only those
equations which result in towers where there is ramification in each/tefy F,, as it is
an easy matter to automatically check for this condition while searching for thie 3éie
above algorithm was implemented using the algebraic number theory package [RASH
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The following new towers were found [d7]:

Theorem 1.2(Lietal.[17]). Each of the polynomials below defines an optimal tower over
the indicated finite field

o 2vy? + (x? +x + Dy +x? +x + 2overFo,

o (4x +1)y%+ (x2+x +2)y +x + 3overlys,

o (x2+6)y2+ xy + x2 + 4 overlFag,

o 2%+ (34 2%+ 2)y? + (x + Dy + 53 + x overFa,

In[17]itis shown that the above towers are new in the sense that they cannot be embedded
in any of the known towers. In the appendix [af7], Elkies proves that the four towers
described above define new modular towers and that they dominate known modular towers.
He [4,5] has shown that every currently known explicit optimal tower dveris either
elliptic modular or Drinfeld modular. In particular the Garcia—Stichtenoth tower above is
Drinfeld modular. He further conjectures that all the optimal towers éyerconstructed
recursively should be modular. Every new tower found in this paper dominates a tower
which is known to be modular. As pointed out by EIkj@&g], this strongly suggests that
they are also modular. The modularity of the new towers are yet to be determined.

It should be pointed out that while our computer searches are extensive, they are not
exhaustive. In this paper we focused only on towers defined by degree two polynomials.
There are two most striking observations from the accumulated data: the first is the above-
mentioned fact that every asymptotically good tower found dominates a known modular
tower. The other is that we found no asymptotically good towers over prime figlfisr
p=3,5,7,11 13. Thisleads to the question whether there are arffj$d} Lenstra gives an
elegant proof that a construction of Garcia et al. presentddirifor every finite field which
is not prime) cannot work over prime fields. This, coupled with our data, suggests that there
are no asymptotically good towers over prime fields defined by degree two polynomials.

Further outputs from the algorithm, especially for higher degree polynomials, will be
recorded on a web pad#9].

2. On the construction of recursively defined towers

Throughout this section we use the following notation. lf¢t, y) € F,[x, y] and let
m be the degree of in the y variable. LetFy := F,(xo) be the rational function field.
We will only consider extensions @ in a fixed algebraic closure dfy. Forn > 0 define
F, := F,_1(x,) wherex,, is a solution tof (x,,—1, T) = 0. We will say that the resulting
sequencéy, F1, ... is recursively defined by (x, y) and we put? := (J; 5 o F;. Itis clear
that a givenf (x, y) may recursively define more than one such sequence of function fields
and the corresponding fiel# could possibly be different in each case. A crucial condition
to check in the search for good towers is thét : [, (x0)] = co. Once this condition is
satisfied and if it is further known that at least one rational placEyadplits completely
in &, then the Hasse Weil bound guarantees #i#},) — oo. In this section we present
many sufficient conditions for the extensigh/ Fyp to be infinite. As before, leK denote
the algebraic closure d%,. Since the extensioff / Fy is infinite if and only if the extension
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F - K over Fyp - K is infinite, we may take& to be the field of constants foF . Moreover,

the quantity- in Theorem 1.1 remains unchanged over constant field extensions—typically
(but not always) we work in the smallest constant field extension such that all places in
setR 4 all have degree one. The following result will be used repeatedly in the sequel (see
also[23]).

Lemma 2.1. Let F’/F be a finite extension of function fieldduppose that’ = F1 F> is
the compositum of two intermediate fieldsC F1, F» € F’ and thatF = F; N Fo. Assume
that F; and F» are linearly disjoint overF. Let P be a place off and let P; and P, be
respective places ove? in F; and F». Then there exists a plac®’ in F’ with P’|P; and
P’| P,

Proof. First assume that the extensidfs/ F andF»/ F are separable. L&t be the Galois
closure of F’ over F. Let Q1(:= P1), Q>, ..., O, be the places of that lie overP. We
choose an elemente F; suchthabg,(r) > 0andvg, (1) <0fori=2, ..., n (such a choice
is possible by the weak approximation theorem).

We consider a placg of Fover P, and letQ be a place of that lies overQ;. Since the
Galois group ofF'/ F acts transitively on the places ovBr there is ar € Gal(F/F) with

)? = P. Then, we have’ € P.

Let f be the minimal polynomial of over F. SinceF1 and F» are linearly disjoint over
F, the polynomialf is irreducible over,. The Galois group of '/ F» acts transitively on
the zeroes off. Ast and:“ are zeroes of , there is a € G := Gal(F/F>) with 1% =1.

Let P’ := P'N F’. SinceG fixes F» element-wise, it follows thaP’| P,. Sincer € P/,
it follows from P’ N Fy = Q; for some; € {1, ..., n}, that P’| ;.

Now, if F1/F or F»/F is not separable, far=1,2 let F C E; C F; such thatt;/F
separable, andi;/E; purely inseparable. DefinE’ := E1E»> andQ; := P, N E;. Due to
the first part of the proof, there is a pla@é of E’ with Q’| Q;. Since the extensioR’/E’ is
purely inseparable and all places in purely inseparable extensions are totally ramified, the
result follows in this case too.[]

Corollary 2.2. Suppose for each®@<k < n) that f (x¢, T) is absolutely irreducible over
Fy. For 0<i < j<n defineF; ; = K (x;, Xit1, ..., x;). For 0<i<j<k<I<n let P, Py
and P, be places of; x, F; x and F;; respectivelysuch thatP,| P and P,| P. Then there
exists a placeP’ in F; ; with P'| Py and P’| P,.

Proof. As the polynomialf (x¢, Y) is irreducible overFy for k =0, ..., n — 1, it follows
from the recursive definition of the intermediate fielgs;, that
m' ™ =[Fj;: Fjl=1[F;: Fil.

Thus,[F;; : F; 1= [Fi, : Fj«] and the fieldsF; , and F;; are linear disjoint over; ;.
Now, the claim follows from lemma 2.1.0]

Let M and N be the sets defined in Section 1. Define a sequence of function fields as
follows: put Fp := K (xp), and for eachk >0, letx;1 be a solution tof (xx, T) = 0; put
Fy := K (xg, x1, ..., xx). The next result gives a condition fpF : Fo] — oo ask — oo.
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Theorem 2.3. Suppose that for some, € M\N, there is a sequencgy,); > in PW\N
such thaty; ., < u; foralli>0.Then foreactt =0, 1, .. ., there is a place inf; which is
totally ramified in the extensioFy 1/ Fy with ramification indexz so that F,1 : Fx]=m.
In particular, this implies thaf Fy : Fo] — oo ask — oo. If, in addition we also assume
thatm is relatively prime with the characteristic &, then each extensiaf.,1/ Fy. is also
separable

Proof. We prove by induction ok that there exists a plade in eachF;, which ramifies in
Fy+1/ Fr withindexm. For the fieldFp the resultis true as the plafec P g, with xo(P)=puq
is totally ramified inFy/ Fo. Now, suppose the claim is true forO < k. By assumption,
there exists a plac@; in K (x;, x;+1), such that; (Q;) = w;_; andx;+1(Q;) = yy_;_4 for
0<i < k. It follows from the induction that the polynomial&x;, Y) are irreducible over
F; for 0<i < k. By repeated application of Corollary 2.2 we obtain a pl@cef F;, which
lies over all the place®; with 0<i < k. By Abhyankar's Lemm#21, Proposition 111.8.9]
the placeQ over Q N K (x;) has ramification index with gcd(r, m) = 1. SinceQ N K (xi)
is totally ramified inK (xx, xx+1)/K (xx), it follows again by Abhyankar's Lemma that
ramifies inFy.1/ Fy with ramification indexn. [

The smallest field containing sequenge); > o may be large thus making it difficult to
compute. The following corollary however has an effective version which is explained in
Section 2.1.

Corollary 2.4. Suppose tha? ¢ N and that for each: € PI\N thereis av € P\ N such
thatv < u. Then for eaclt there is a place inFy, which is totally ramified in the extension
Fyy1/ Fy with ramification indexn so that[ Fi1 : Fr] =m. In particular, this implies that
[Fy : Fo] — oo ask — oo. If, in addition, we also assume that is relatively prime with
the characteristic ok, then each extensioFy., 1/ F; is also separable

Define the setd1’ .= M N K andN’' :=NNK.

Corollary 2.5. Suppose thaf (x, y) is monic iny, M’¢ N’ and that for somey € M'\N’
there is a sequenag;); ~ o in K\ N’ such thatf (; 4, ;) =0foreachi =0, 1,... . Then
for eachk there is a place inF; which is totally ramified in the extensidf,;1/ Fy with
ramification indexn so that Fi 1 : Fx]=m.In particular, this implies thafFy : Fo] — oo
ask — oo. If, in addition, we also assume that is relatively prime with the characteristic
of K, then each extensioFy., 1/ Fy is also separable

Proof. The result follows because Kummer’'s Theorft, Theorem IIl.3.7]guarantees
that the conditiong;  ; < u; (i >>0) of Theorem 2.3 are satisfied[]

Theorem 2.6. Let.# be a tower recursively defined by a polynomjal, y) and letR =
UrZoR: be the set defined in SectionThen

Rz C {Pu(xo) : u € R}.

Thus if R is finite thenR # is finite.
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Proof. Using the notation of Section 1, we may assume that the field of constants et
P € Rz.Thenthereis an > 0 such that there is a plag® € P(F,,_1) lying aboveP that
ramifies in the extensiof,, / F,,_1. By Abhyankar's Lemmg21, Proposition I11.8.9] P’ N

K (x,—1) isramified inthe extensiok (x,_1, x,)/K (x,—1) and soP'NK (x,_1)=Pyu(x,—-1)

for someu € Rg. From the definition of the set®, it follows thatP = P’ N K (xp) = Py (x0)

for somev € R, _;. This shows thaR s C {P,(xo) : 4 € R}. Thus, sincer is finite, so is
the setRz. [

2.1. An effective version of Corollary 2.4

A priori, checking the conditions of Corollary 2.4 is computationally intensive. On the
computer one has to work with a finite field insteadef-so one has to guess the right finite
field to work with to check the conditions as stated in Corollary 2.4. In this subsection we
present a finite version of this result. Theorem 2.7 below contains an obvious algorithm that
indicates from the outset exactly which finite field we should consider. All the conditions
of Theorem 2.7 are easily checked with KASH.

Let f(X,Y) € K[X, Y]beanirreducible polynomial of degreein each of the variables
X andY. Define the function field” := K (x, y) by f(x, y) = 0. We assume thdf is a
separable extension & (x) andK (y). Let M and N be defined as above and define the
polynomial

A0 = [T & -mw,

neNNK

where we take the empty product to be 1.
Next define the following set

Boo:z{ve[lml:veoo}.

Now viewing f (X, Y) as a polynomial inrX with coefficients inK [Y] we define the poly-
nomial R(Y) as the resultant of the polynomiafgX, Y) and4(X), i.e.,

R(Y) :=Regf(X,Y), 4(X)).

Finally, let Z be the set of zeroes @ (Y) in K. Observe tha¥ is a finite set, otherwise
one can show that (X, Y) is not irreducible.

Theorem 2.7. Define a sequence of function fields as follopst Fp := K (xp), and for
eachk >0, letx;1 be a solution tof (xg, T) = 0; put Fy := K (xo, X1, - - - , Xk)-
Assume thay/ ¢ N and the following

(@) if co¢ N assume thaBZN.
(b) if ZZN Then for eacht € Z\N assume thay (X, n) has a zero that does not belong
toNNK.

Then for eactk there is a place inF which is totally ramified in the extensidn 41/ F
with ramification indexn so that[Fy1 : Fx] = m. In particular, this implies thaf Fj, :
Fp] — oo ask — oo. If, in addition, we also assume that is relatively prime with the
characteristic ofK, then each extensioFy 1/ Fy is also separable
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Proof. We show that the conditions of Corollary 2.4 are satisfied, that is, we show that for
eachu € PY\N there exists @ € PY\N such thaty <— u. Chooseu € PY\N. If u= oo

then condition(a) guarantees the existenceiofThus assume that # oo. If u¢ Z then

R(p) # 0 and the polynomialg (X, 1) andA(X) have no common non-constant factors
(cf. [18, p. 41, Lemma 2.§]so that anw € K such thatf (v, 1) = 0 does not belong t&y

as required. Ifx € Z then condition(b) guarantees the existencewfThis completes the
proof. O

We remark that the conditions for Theorem 2.7 are equivalent to the conditions of Corol-
lary 2.4.

Consider the following example: lgt(x, y) = x2y? + xy + 4x2 + 2x + 4 € Fs[x, y].
Using the notation of Theorem 2.7, we hae= {0, 2} andN = {0, co} so that4(X) = X
andR(Y) = 4 so thatZ = ¢ and the conditions of Theorem 2.7 are trivially satisfied.

The following polynomials can also be shown to give rise to towers by verifying the
conditions of Theorem 2.7¢2y? + 2xy + 4x2 + x + 1, x%y? + (x® + x)y + x% +
4 + 4 € Fglx,y] andx?y? + 3xy + 2x% + 2x + 4, x°y° + 3xy + 4> + x + 4
€ Fzlx, yl.

3. Elimination techniques

In the above section we gave several sufficient conditions to guarantee that a polynomial
gives rise to a tower. In this section we discuss four methods which proved very effective in
eliminating potential candidates for towers. The first method is an application of a technique
that Elkies used to recognize the modular tower$lif]. This method depends on the
defining polynomials possessing certain non-trivial fractional linear transform symmetries.

In Section 3.2 we present another simple method that depends on the polynomial remaining
unchanged after interchanging the variables. In Section 3.3 we present a method that uses
elimination theory of Groebner bases. Finally, in Section 3.4 we present a criterion for
Galois polynomials to define asymptotically bad towers.

3.1. Elkies’technique

Let.7 = |J; > oFx be atame tower recursively defined jpyx, y) = 0. Suppose there is

a non-trivial fractional linear transformatian(so e(x) = ‘C‘;‘ig for somea, b, c,d € K),
such that

f(e(x), e(y)) =0 iff f(x, y) =0. 4)

The fractional linear transformation gives rise to an automorphigief Fg with go(xg) =

&(xp). It follows from Eq. (4), thatrg can be extended to an automorphismof F; with

or(x;) = e(x;) for 0< j<k. We denote the fixed field of;, under(o;) with E;. Then
& = Uk>oEk is a Galois subtower ofF with [Z : &] = 0(¢), where @) is the order
of e when considered as an element®f (2, K). It is called the quotient subtower &f

(undere).
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The towerd is recursively defined by
F(X,Y)=0,

whereX = x + e(x) + &2(x) + - - + 2@ 1(x), Y = y + &(y) + 2(y) + - - - + 2@ 1(y),
andF is obtained fromf by eliminatingx andy. Computationally this can be realized by
using Grobner Basis.

As an example, consider the polynomial

f(x,y):xy2+(2x2+x+1)y+2x

over [F3. Assuming thatf (x, y) gives rise to a tower, it is not hard to show that the
ramification locus iR = {xg + x3 + 2x3 + 1, x§ + 2x3 + xo + 1, x§ + 1} and the places
S={xo, 1/x0} splitcompletely. It follows then from Theorem 1.1 thi&t7" ) > 1/2. However,
the tower isfinite: observe thitx, y)=0ifand onlyif f (¢(x), &(y))=0where:(x) := 2/x.
Next we form the quotient subtower by introducing the variallesx +¢(x), Y =y +e¢(y),
and eliminater,y from f(x, y) =0 to obtainF(X,Y) =0whereF(X,Y) =X +2Y + 2
but it is obvious tha# (X, Y) does not give rise to a tower. Hengeis not a tower.

The above approach proved extremely useful to eliminate many possible candidates for
towers: for example, the following polynomials which can be shown not to give rise to
towers over the indicated finite fields:

(2 + 1)y? + (¢ + x)y + 1+ 2x overFs,

(x24+1)y? + (x?> + 2x + 2)y + 2+ x overFs,

x%y? + (x? + 2x + 2)y + x2 + 2x + 2 overFs,

xy? + (4x% 4+ x + 4)y + x overFs,

xy? + (4x% 4 x + 2)y 4 3x overFs,

xy2 + (4x2 +x + 1)y 4+ 4x overlFs

xy? + (2x2 4+ x + 4)y + 2x overFs,

xy2 + 2%+ x+ 3)y + 4x overls,

xzy2 + P+ x+ 6)y + 6x2 + 6x + 3overFi,

(2 4+ 1)y% + (x% + x + 4)y + 4x% + 3x + 2 overFy1,
(x2 4+ 1)y? + (2x% 4 4x + 1)y + 6x2 + 10x + 9overFy,.

That same technique applies, if there is a fractional linear transformatiofi L (2, K)
such that

f(e(x), y) = uf(x,y) for somepu e K*.

Again, ¢ induces an automorphisay € Aut(Fo/F,), which in this case can be extended
to an automorphism af; with o4 (x;) = x; for 1< j <k.
As an example, consider the tower defined by

2 X241

xfq = in for i >0, 5)
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which leads to an asymptotically optimal tower, [df3]. The right-hand side of Eq. (5) has
the involutione : x; — 1/x;. We form the quotient subtower by introducing=x; + 1/x;.
Then, from Eq. (5), we get?, ; = 3y; and

2 _ i +27?
Yiv1= 2y1 ’
which defines the same degree two subtoweas
2
2 »vi+D
A R 6
yl+l 4yl ( )

given in[13]. The same involution as above applies now to Eq. (6), which leads to another
(optimal) degree two subtowe¥ defined by{4]:

ZZ _ (Zi + 3)2
T8z + 1)

3.2. Symmetric polynomials do not define towers

Let f(x,y) € Fy[x, y] be an absolutely irreducible polynomial. Next we show that if
f(x,y)= f(y,x) and the extensiof, (x, y)/F,(x) (f (x, y) = 0) is Galois, thery (x, y)
does not define a tower. This simple result eliminates many possibilities and thus helps to
reduce the total running time. For example, if one considers only degree 2 polynomials,
then immediatelyy® polynomials are eliminated out of a possikjé polynomials. As
examples, consider the polynomials® + (x2 + 1)y +x + 1, xy?2 + (x% + x + 2)y + 2x
and(x? +1)y? + 2xy + x2 + 2 overlFs. Each of these polynomials remain unchanged after
interchanging the variables and thus do not give rise to towers.

Lemma 3.1. Let f(x, y) € [, [x, y] be an absolutely irreducible polynomi&8uppose that
the extensiofi, (x, y)/F, (x) (f(x, y) =0) is Galois and thatf (x, y) = f(y, x). Then the
polynomial f (x, y) does not give rise to a tower

Proof. Define a sequence of function field®, F, ... as follows: Fp := [, (xo) and
forn>0, F, := F,_1(x,) wherex, is a solution tof (x,—1, T) = 0. First we show that
[y (x0, x1) = [, (x1, x2). Observe that sincg¢(x, y) = f(y, x), we have thatf (x1, xo) =
f(x1, x2) = 0. Thusxp andx; are conjugates ové, (x1). Since the extensioR, (xo, x1)/
F4(x1) is Galois, it follows that, € F, (xo, x1). ThusF, (x1, x2) € [, (x0, x1). Since both
these function fields are of the same degree byér,), they must be equal. Similarly, we
have thaftr, (x;, x;+1) = [, (x; 11, x;42) for all i > 0. But this implies thatg, x1, x2, ... all
belong toFy = [, (xo, x1) so thatF; C F; for all i > 1. Thus the sequend®, F1, ... is not
atower. [J

3.3. Identifying bad towers using elimination theory

We illustrate this method by example without all the computational details. The reader
may easily fill in the missing computation.
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Assume that the polynomial
fO=x22 4+ P+ x+Dy+x2+x+2 )

givesrise to atowe? overlFs. Letws be a primitive element dfy7 satisfyingwf + 2w+
1=0and letw be a primitive element df s satisfyingw® + 2w + 1= 0. It can be shown

that the ramification set (using the notation of Theorem 1.1) is given by the zeroes of the
polynomials in the seR 7 f,, = {1/x0, xo —wj, j=1,2 3,5,6, 7,9, 11 14, 15 16

17, 18, 19, 21, 22, 23, 25} andthe splitting set (again using the notation of Theorem 1.1) is
given bySy.[Fasz{xo—wa:lQ& 110 196, 88, 104, 136, 215 22,70 166, 161, 166,

66, 146, 233, 136 210, 239, 22, 66, 42 241, 198 126 241 14, 161, 215 233 239

It follows from Theorem 1.1 that(7) > %(1)9/2 = 60/17. It can be shown, using

techniques from Groebner bases that the curve defingddayot closed under any fractional
linear transforms oveFs. Thus Elkies’ technique is not applicable.

Define Fyp := Fgs(xp) and, forn >0, F, := F,_1(x,) wherex, is a solution of the
equationf (x,—1, T) = 0. Of course, we work in a fixed algebraic closureFpf However,
using elimination theory, by successively eliminating the variablesy, ..., it can be
shown that the functions, xo, . . . all belong to the (finite) set of zeroes of the polynomials
P;(T) below wherea: := xg. This contradicts the assumption thatr, y) defines a tower.

Po(T) = f(u, T),
Pi(T)=T + 2u,
PoT)= W’ +u+DT?+ (u+ DT +u+2,
P3(T) = u’T? + (2u + 2)T + 2u,
Py(T) = W® +u + DT? + u?T +u® + 1,
Ps(T) = u* + 2u? + DT* + 2u® + 2u® + 2u® + 2u + 2)T°
+ @2+ 22+ T? + P+ ul +2u+2)
T+u*+u+2u?+u+1,
Ps(T)=w*+ P +u+DT*+ @+ +u+ T3+ (2u® +uw)T?
+ e+ P+ DT +ut P w42,
PiT) =+ 2> + DT*+ @ + 2u? + ) T3 + u* + 2u® + 2u® + 2)T?
+ @+ u+2T +u®* +2u% 4+ 2u + 2,
Pe(T) = (u* + 2u® + 20 + u + VT* + 2u® + 2u° + u + T3
+ @Qut+ 20+ 242+ 2)T? + (2 + 2u + 1)
T +u*+2u + 2u® + 2u + 1,
Po(T) = (u*+2u® + 2 + u + DT* + 2u* + 2u® + 2u° + u + HT®
+ (2144 + 20+ 202 + 2)T? + W + u®)T + u® + u® + 20>
Similarly, it can be shown that the polynomiats® + (2x2+x+4)y +4x+1 € F7[x, y],

andxy?+ (2x%+x+9)y+7x2+6x+10 € F11[x, y] do not give rise to towers. Without this
crucial fact, both these polynomials would seem to give rise to asymptotically good towers
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over their respective prime fields. Unfortunately, after extensive computational search for
recursively defined asymptotically good towers over prime fields, we still have not found
any. The search was done using degree two polynomials and for the priges 31, 13.

3.4. Asymptotically bad towers defined by a family of Galois polynomials

Let f(x, y) € F4[x, y]be absolutelyirreducible with the same degrea both variables.
We assume that: is relatively prime withg. Define the function field” := [, (x, y) by
f(x,y)=0.LetM be the set of places &, (x) which are totally ramified in the extension
F/F,4(x) and letN be the set of places df, (y) that ramify in the extensio'/[, (y).
AssumeM # ¢ and that both extension/ [, (x) andF /I, (y) are Galois. In this section
we prove the following result, under the above hypothesis.

Lemma 3.2. Assume that there is a plaggin M with gcd(degQ, m) = 1 and which has
the property that for eacl? in N, degQ does not dividelegP ... (1).

Define sequencé := (F;) by Fo = [, (xo) and fori >0, F; := F;_1(x;) wherex; is
any solution to

f(xi—1,Y)=0.
Then we have the following

(i) The sequence := (Fo, F1, F», ...) is a tower overf, such that for eaclt, there is
at least one place it that is totally ramified in the extensiaf,;1/ Fy.
(i) The towerZ is asymptotically bad

Proof. (i) Letn>1 and choose a plaag in [, (x,) with property(1), that isQ is totally
ramified in the extensiofi, (x,, x,+1)/F4 (x,) and the degree of is relatively prime to
m and does not divide the degree of any placé pfx,) which ramifies in the extension
Fy(xn—1,x,)/F4(x,). Let Q" be a place ofF;, that lies over the plac®. Consider the
respective restriction®o, Q1, ..., 0,(=Q) of Q' to [, (x0), Fy(x1), ..., Fy(x,).

We claim that the degree of each plageis divisible by the degree @p: Let Q/, denote
the restriction ofQ” to [, (x,_1, x,). Observe that

degQ, = f(Q,|0n-1) degQ,-1= f(Q,|0) degQ, (8)

wheref (Q,,10,-1) andf(Q,|Q) are the relative degrees of the pla@gin the extensions
Fy(xn—1, x1)/Fy (x,) andlFy (x,—1, x,)/F4 (x4—1). Since these extensions are Galois, it fol-
lows that the relative degregg Q),|0,—1) and f (Q,,| Q) both dividem. Now from Eq. (8)
and the fact that de@ is relatively prime withm, it follows that degQ divides degD,,—1.
Now let O/, _, denote the restriction o’ to [, (x,_2, x,—1). Observe that

degQ;71 = f(Q;/17]_| Qn72) degQrﬁZ = f(Q;/171| anl) deanfl- (9)
Since deq@ divides the right-most side of Eq. (9) it follows that d@glivides
(O, _110n—2)degQ, 2
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and hence also dg@,_», using the facts that and degQ are relatively prime and that the
extensiorf, (x,—2, x,-1)/F, (x,—2) is Galois so thaf (Q),_;|0Q,—2) dividesm. Continuing
in this way, by an inductive argument, we see that@etivides degQ; fori=0, 1, ...,n—1
as claimed.

Now, by assumptiorit), it follows that none of the place@; can ramify in the exten-
sionlF, (x;—1, x;)/F4 (x;). By Abhyankar's lemmd21, Proposition I11.8.9] it follows that
e(Q’'10Q) = 1 so that, again by Abhyankar's lemma, we have thats totally ramified in
the extensiorF;,;1/F,. Thatg(F,) — oo asn — oo follows from the proof of (ii).

(i) It is easily shown, by repeated application of the different formula for towers that

g( Fy) (F)—1+ Zdengﬁ(F/Ft 1)

wF) = lim 7 Fol

n—00 [ ]

It is shown in[13] that A(F) = v(F)/u(F) wherev(F) = lim,_ oo N(F,)/[F, : Fol

(< 00). We will show thatu(#) = co. Letn > 1 be given. LeD denote the place df, (x,)

with the property in the statement of the theorem for the extergjém,, x,+1)/F, (x,).

Now let Q' be any place irF,, which lies overQ. From the proof ofi), Q' is unramified in

the extensiorF, /[, (x,). Itis clear that the quantity(#) remains invariant under change

of constant field. Thus, without loss of generality, we may increase the constant field so that
we may assume thad has degree one and splits completely in the extenBjgt, (x;).

Each of then” places ofF;,, which lie aboveQ are totally ramified inF;, 1/ F,. It follows

that

deg Diff(F,,11/F,) < m"(m—1) m-—1
[(Fpy1: Fol = mrtl 7 om

asn — oo. Thusu(#) =oc0. [0

-0

As an example consider the following rational function:

—1>_3 3 +1
1) 77 a3

over[F, wherep is a prime congruent to 1 or 7 modulo 12. Modulo any such pr#ée’s
not a square so that3 + 1 is irreducible. Also, since 3 dividgs — 1, [, contains cube
roots of unity. Thus, using the notation of Lemma 3.2, we héive {y — a|a € [, =1}
andM ={1/x, x2+1/2}. Since the conditions of Lemma 3.2 are satisfied gita 3x2+1,
it follows that f (x, y) defined in (10) gives rise to an asymptotically bad tower.

fx,y):=y —1+< (10)

4. The computer implementation

The KASH implementation is essentially the same as outlind@4hbut differs in the
following important ways. Let” be a tower defined by an equatigiix, y) = 0. Since the
polynomialsf (x;, T) are irreducible for eackh>0, we obtain for the degrees of the field
extensions (using the notation of Corollary 2.2)

[(Fey1: Fil = [Friesr - Figl



H. Maharaj, J. Wulftange / Journal of Pure and Applied Algebra 199 (2005) 197-218 211

Thus,
[Frr1: Frgeal =[Fk 2 Fiel,

and the equatiorf (yr+1, yx) =0 defines a sequen¢&y ), > o, Ex := F;(yo, y1, ..., yx), Of
algebraic function fields, such thatT, y;) is irreducible ovel&y for all k > 0. In this way,

we obtain a towet?” := J, - oE, thedual towerwith respect to7” [1]. The towers7
and.y satisfyA(7") = A(¥). Thus, for computational purposes, we need only consider one
of the polynomialsf (x, y) or f(y, x). Moreover,7 ' it a tower defined byf (e(x), &(y))
whereg(x) is a fractional linear transform with coefficients i, theni(7) = A(J7).
Define the following relation- on the set? of polynomials of degree: (in both variables)

in Fplx, yl: f ~ gifand only if f(x,y) = 2g(y,x), f(x,y) = ig(x,y) or f(x,y) =

(cx +d)"(cy +d)"g(e(x), e(y)) for some fractional linear transformatiefx) = (ax +
b)/(cx+d) with coefficients i ,. Itis clear that- is an equivalence relation. Occasionally,
we need to consider linear fractional transforms d?/p.rln this case we say that and

g are ~ related overF, if the aboveconditions are satisfied. Consider a lexicographic
ordering on the coefficients of polynomials [ [x, y] of degreem (in both variables).
From each equivalence class, we choose the smallest element—and do all computation
with that polynomial. This considerably reduced the number of polynomials that we did all
the computations with and allowed us to more efficiently analyze the results without having
the overabundance of data.

In [17], in order to determine whether a polynomial defines a tower, we checked if the
conditions of Theorem 2.3 are satisfied (although the proof of this general lemma was not
known at the time of writing the pap§t7]—these conditions are implied in the proofs
of the papef10]). This had the major drawback that it was not possible to determine the
smallest possible finite field to work with to check this condition. The new feature in the
program is a check for the conditions of Theorem 2.7. While more restrictive than Theorem
2.3, it has the advantage that the conditions can be checked in a finite number of steps.

The techniques of Section 3 were incorporated in the program. In order to implement
Elkies’'technique, we use the Groebner basis features of the computer algebra system Maple.

5. Examples

The aim of this section is to present a clear picture of the towers found and how they
compare with each other. In order to do this efficiently, we omit many details in the compu-
tations. However, we refer the readef{13] where the computations are similar and done
in detail. All those polynomials listed below without a reference are new in the sense that
they are not--related (over the algebraic closure of the respective finite field) to any of the
currently known polynomials that define optimal towers. Note that we make repeated use
of theorems in Section 2 without indication. We will occasionally use some notation and
terminology from[13]. In addition, we will also use the following terminology: given two
towers# = (F1, F2, F3,...) and& = (E1, E, E3, ...) overlr,, the toweré is said to be
asubtowerf10] of # or that is asupertowerof & if there exists an embedding

1:UE,~—>UF,~

i1 i=1
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over[F,. We denote this by < 7.
qg=09:
The polynomial

Fe, ) =2+ D2+ 2y +2x2 + 1 (11)

gives rise to a towe# over [Fg with ramification set given bR s = {zeroes oi:é + xcz, +
2, zeroes ofx§ + 2x3 + 2}.

It can be shown that the zeroesx§f+ x3 + 2 are totally ramified in the tower. Let
be a (primitive) element ofg which satisfieav? + 2w + 2 = 0. ThenS = {1/x, x, x —
w/ for j =2, 4, 6,8} is a set of six places af; which split completely in the tower. We
conclude from Theorem 2.1 that7 ) >2-6/(—2+ 8) = 2. SinceA(9) = 2 it follows that
the tower7 © is optimal overfFg with /() = 2.

Now, itis shown i[17] that the toweZ 1 over[Fg given by the equatiop(x, y)=2xy?+
(x2 4+ x + 1)y + x2 + x + 2 is optimal. Moreover, it is shown if{17] that.7 1 is “new” in
the sense that all previously known towers obigrare not subtowers a¥ 1. In the same
way as in[17], it can be shown that none of the previously known towers (except possibly
J 1) is a subtower of7. Comparison of7 and.7 1 though does not appear to be easy.
However, it can be shown, for example using computer algebra software with Groebner
basis capabilities, that is not~-relatedover F3.

Consider the following polynomials ifg[x, y]. It can be shown that for ea¢hl<i <7,
fi(x, y) gives rise to an asymptotically good tower, which we denoteZhyy the corre-
sponding lower bound foi(7;) (in all cases, except far= 11, 10 obtained by using
Theorem 1.1) is indicated in the last column.

Ref: filx, y): MT )=
[14] T1 A,y =y?+x24x 2
T 9 folx, ) =y2+xy+2x%+1 2/3
T 3 falx,y) =y2+xy +2x%+2 2/3
[4] Ta: fax, y) =y +x%y +1 2
[13] Ts: fox, y) =y + (2 + Dy +1 2
Te: fo(x, ) =y + (x2 + Dy + 2¢? 23
[17] T7 frx, ) =xy2 + (22 4+ x +2)y + 1%+ 2x + 2 2
Tg fotr,y) =x2y2 + (2x + Dy +x2+2x + 1 213
T fox, y) = (2 + Dy? + 2xy + 2x2 + 1 2
[17] T 10: fro(x, y) = xy? + 2%y + x2 4+ 2x 4+ 1 2
[17] T 11 fue, ) =2+ @+ Dy +x2+x+1 2

The towers7 1, 7 4 andJ s are respectively special cases of the tow#rs# and. /" in
[13]. Itis shown in[23] (Beispiel 3.2.6) that the lower bounds given ¢ ;),i =2, 3, 6, 8
are exact so that these towers are not optimal. Using Elkies’ technique, it can be shown that

o 71<992, 73,
o 75<7¢,7s,
o 711<J10<77,79.
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Moreover, in[17], itis shown that7 1 < 95 < 7 4. Since 19 and.7 11 are subtowers
of optimal towers, it follows that they are optimal. The polynomfalis not ~ related to
any other known degree two polynomial which defines an optimal tower.

q =25:

Consider the following polynomials ifs[x, y]. It can be shown that for ea¢hl <i <19,
fi(x, y) gives rise to an asymptotically good tower, which we denoteZhy the corre-
sponding lower bound fot(.7 ;) (in all cases, except for=2, 19, 28 obtained using Theo-
rem 1.1) is indicated in the last column.

Ref: fitx,y): MT )=
[13] T 1 Ak, y)=y>+x%y+4
[7] T 2 fa(x,y) = y? + x%y + x
[7] T 3 f3(x, y) = y? + x2%y + 3x
3] T4 fatx, ) =2+ (2 4+ 2y +1
8] Ts: fo(x, y) =2+ (x2 4+ 2)y + x2
[4] T fo(x, ) =y2+ x2+2)y+2x2+1
[7] T fr(x, ) =2+ (x2+2)y +3x% +4x + 4
T g: fg(x,y)=y2+(x2+3)y+4x2
[17] To: folx,y) =xy?>+ 4x°+x+ 1Dy +x2+2x+3

T 10 fro(x, ) =xy° + (x> +x + 2y + 3%+ x + 4
T fuey)=x3?+x2+3)y+4

T 12 Sf12(x, y) =x2y2+ (x2+3x +3)y+4

T 13 fis(x, ) =x2y2 + (x? + dx +2)y + 4

T 14: fra(x, y) =x%y? + (X% +4x + 2y + 4x% 42

T 15 fis(x, y) =x%y% + (x2 4+ 4x + 4y + 4 +3x + 2
T160  fie, ) =2+ Dy2+ (x+ Dy + 2% +4x +1

T 17 fi7(x, ) = (2 + Dy? + (x> +3x + )y +x° + 4
T8 f1e0x, y) = (2 + 1y? + (212 + 2x + 4y + 37 43
(8] T 19. fro(x, y) =y? +x%y + 32 +2
T 20 f20(x, ) = y2 +2xy +4x? + 1
T 21 for(x,y) = y? + 2xy + 4x% 42
[7] T 29. foolx,y) = y2 + 4xy + x24x
[7] T 23 f23(x,y) = y? + x%y + 2x2 + 2x

T 24: foa(x, y) =xy° + (4x% +x +2)y + 2% + 2x + 3
T 25 fas(x,y) =x2y? +xy + 4x2 +1
T 26 fze(x,y)=x2y2+2xy+2x2+4

[7] T o7 for(, )=y + P+ Dy +x2+ 4+ 4

AADMNMNPAPNNRPPARADMNPOWODMNWODMAADMNEI™AMNDAEDMPAED

The towers? 1, 7 4 and .7 ¢ are respectively special cases of the towefs./" and
£ in [13]. All these towers except possibly;, i = 8, 16, 12, 14, 15, 20, 21 are op-
timal. (Are the given lower bounds for these also exact?) The tofwes is actually
optimal, and the indicated lower bound is due to the non-determinism of the
algorithm.
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Using Elkies’ technique and results frdm3], it can be shown that each of the towers

above is a super tower of one &f;, i =2, 6, 22, 27, 19. More specifically we have
o To<7;fori=7,1214,15;and7 7 < .7, fori = 3,13

e 76=<7,;,i=28,16

e T 19=< T ;fori=5,10 11 18;and7 19 < 7, fori =9, 17.

o T o7 < T ;fori =23 24, 25, 26,

o T2 <7 21,7 2.

Moreover, in[13] is shownthatZ7 ¢ < 74 < 7 1.

The embeddings 19 < 7 10 < 7 9 were shown by Elkies ifil7]. The fact that7 ;,
i =2, 19, 27 are optimal now follows because they are subtowers of optimal towers.

Now (7 ;) in each case is easily computed and from this it follows #ii&t; ) is some
integer power of 2 for £ 2, 19, 8, 16.

Proposition 5.1. None of the towers », 7 19, 7 27 is isomorphic to any of the towers
Ti,i #2,8,16, 19, 27.

Proof. We show that7 ; is not isomorphic to any of; fori # 2, 8, 16, 19; and we do
this in detail fori = 1 as the proof is similar in the other case. The proof4oyg, 7 27 is
similar.

Suppose thatFyp, F1, F2, ...)and(Eo, E1, E2, ...) representy , and.7 1, respectively.
Suppose that : 7 1=~.7 7 is an isomorphism. We denote the imagefunder: again
by E; so thatl J° E; = (J72oFi. Now choosej such thatF; containsEg; andi such that
E; containsF;. Then[F; : Eg] divides[E; : Eg] =2'. Now, from Lemma 2.6 if13]
we have

[F}: Eol - yg,(7 1) =[F;: Fol- g, (7 2). (12)

Now 7, (771) = 2 andy g, (7 2) = 3/2 (note thab, ) (7 ¢) = 3/2,£ =19, 27 as well).
From (12) it now follows thafF; : Eq] =3- 2/=2, a contradiction. [

While it is unknown if any pair 0of7 2, 7 19, 7 27 are isomorphic, it can be shown that

no two of f, f19, fo7 are~-relatedover[s.

q =49:
Ref: JiCx, y): MT )=
[13] T 1 Ak, y) =y +x%y + 4 6
[7] T 9. folx,y) = y2 + xzy + 5x 6
(8] T3 fa(x,y) =y2+x%y +5x2+5 4
T 4. falx,y) = y2 + x2y +6x2 + 3x 6
[13] T s fs(x, ) =y2+ x2+ 1)y +6x2+2 6
[8] Te: folx,y) =y2 + (x2+ 4)y + x2 6
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Ref: fi(x, y): T )=

3] 77 fi, ) =y>+x2+6)y+2
T g. fo(x,y) =y? + (x? + 6)y + x?
(7] T9.  folx,y)=y>+ (x> +6)y +4x?> +6x + 4
T100 frolx, y) =xy? + (6x® + 1)y + x> +5x + 2
T fux,y)=xy°+ 6x24+x+2)y+4x2+6x+6
T120 frax,y) =xy2+ (6x2 +x + 5y + x2 + 4
T13 fialx, y) =x?y? +xy + 262+ 1
T4 fualx,y) =x%y? +xy +3x% + 4
T15 fis(x,y) =x%y? +xy +4x* + 4
T16  fie(x,y) =x2y?+xy +5x% +1
T 17 f170x, y) = x2y% 4+ 3xy + 6x2 4 2
T1g  fisx, y) =x%y? + (2 + 2y +4
T190  frolx,y) =x%y? + (x® +6)y + 1
T 200 fa0(x, ) =x%y? + (x24+3x +6)y + x> +2x + 1
171 T falx,y) =%+ 1)y?+xy+6x2+4
T 220 faa(x,y) = (x% + 1)y? 4+ 6xy + 6x2 + 4
T o3 fa3(x,y) =%+ Dy?+ (x2+x+6)y +3x?>+6x+5
Toa foa(x,y) = (x®+ Dy? + (x? + 2x + 2)y + 5x2 +5
Tos  fas(x,y) =2+ Dy?+ (2% +6x + Dy +6x2 + 11
Tae  foe(x,y) =%+ 1y?+ Bx?+2x + 6)y + 5x2 + 5
Tt farx, ) =y>+ (x> +Hy + 2+ 4x +5
Bl T2  fasx,y)=y*+x%y+5x%+5
[7] T 290 fa9(x, )=y + P+ By +6x2+x+1
T30: fao(x,y) =xy? 4+ (6x% + x + 4y +2x% + 4x + 3
[7] T3 fauk,y) =y +x%y+ 2
[17] T3z fa(x,y) =y?+ (x2+x +6)y +2x%> +5x + 6
71 a3 faz(x,y) =2+ (2 + 6)y + 4x? + 2x + 2
T35 faux,)=y>+&?+4y+3?+4x+1

[N N N N N N N N N N N N N N NN NN N NN Ne Mol e Mo R o))

The tower7 4 is isomorphic to the modular tower defined §— (x2 — 4x + 1)y — x?

(this tower is modular and correspondsltg(8) N I'(2), [6]). The towers7 1, 75 and
J 7 are respectively special cases of the toweéfs.# and./" in [13].
Using Elkies’ technique and results frdm3], it can be shown that each of the towers

above is a super tower of one &f;, i =3, 5, 27, 28, 31, 33. More specifically we have
° 9'3 < 9'18-

e I5<TJ7<7;fori=1, 4,10 14 15andy 1 < 7 ; for j =8, 11, 19, 26.

° ,9-27 < 9—2.

o Tog=< T ;fori =6, 23 24.

o T 9= T ,;fori =913 16, 17.

o J31< ?/—30, T 37, andf/—go < 9'20, T 12, andc737 < 9—25.

o T33<T3p=< T ;fori =21 22.
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4.
qg=T7"
Increasing the constant field kg4 yields the following additional towers. Curiously the
asymptotic limit does not increase: it remains 6.

Si(x, y): MF) =
T fix, ) =y2+ x2+3)y+5x+4 6
F o folx,y) =y2+ (x2+5)y +5x + 2 6
F 3. fa(x, y) =x2y? + (x> +4x +5)y +5x° + x + 6 6
T4 fa(x, ) =y>+ x>+ 4y +6x°+3x +6 6
Using Elkies’ technique, it can be shown that
o T33<Fy<F1,
° 5—3 < 972,
o 718< 73,
where the first towers refer to those ogp.
q =121:
Ref: fi(x, y): T )=
[13] 7 fix,y)=y*+x%y +4 10
[7] T2 fa(x,y) = y? + x%y + 9x 10
[7] T 3: e, Y)=y2+ (x2+8)y+3x2+4x +5 10
[7] T 4. fa(x,y) = y? + x%y + 5x 10
[13] 7s: fs(x,y) =y?+ (x> +3)y +5 10
T6: fo(r, ) =y2+ (% + 7Ny +9x+4 10
[7] T f106, ) =2+ (2 4+ 8)y + 10x2 + 7x + 6 10
(7] Ts: falx, y) =y?+ (x2+3)y + 42 +5x +5 10
[8] To fo(x, V) =y2+ (X2 +7)y+3x2+4 10
[7] T 10 fro(x, ) =y?>+ x>+ 7y +8x%>+3x +5 10
T 11 fu1(x, ) =y?> + (x> +9)y + 6x2+9x + 6 10
(8] T12 fr2x.y) =y*+ 2+ 8)y + x? 10
[8] T 13 Sf13(x,y) = y2 + xzy + 0x2 +1 10
T 14 fra(x, ) =y? + (x? + 9y + 9 + 2 10
I 15 fis(x, ¥) = x%y? +xy + 4241 10
7 16 fre(x, y) = x%y2 +2xy +3x? + 4 10
T17. furlx,y) =x?y? + 2xy + 8% + 4 10
T 18 Sfis(x, y) = x2y2 + (x2 +7y+5 10
T 19: flg(x,y)=x2y2+(x2+2x+1)y+1 10
T 20, fa0(x, y) = x%y% + (x> +3x + 6)y + 9x? + 8x + 3 10
T o1 2106, ) =x%y? + (x> +3x + 9y + 4 10
T 29 fa2(x, y) =x%y? + (x2 4+ 8x + 4y +5 10

T 23 fo3(x, y) = (2 + 1)y2 + (x2 +4x +3)y + 10x%2 4+ 3 10
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Ref: Ji(x,y): T )=
T o faa(x,y) = (x2+1)y2+ Bx2+4x +9)y + 8x2+8 10
T 5. fos(x,y) = (%2 +1)y2+ B2 +5x +8)y +7x2+x+8 10
T o6.  fos(x,y) = (x2+ 1)y + (4x2 +5x +4)y +5x + 8 10

The towers7 1, 7 3 and.7 5 are respectively special cases of the towéfs./” and.¥
in [13]. Thus, from[13], we have7 5 < 7 3 < Z 1. Inthis case, in order for the program to
finish in a tolerable time, we relaxed many of the conditions. This explains why we found
fewer towers here. Using Elkies’ technique, the following can be shown:

T4s<T3=<T 2, T 2o, Tg<T7<Te, T 23,

T 11< 7 10, T13< T 12< T 14, 7 19,
T11<715716 717, J13<7 18 J 24,7 25.

T8 < T 21<T 20,7 26
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