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Abstract

Kan extensions over the category of Sets provide a unifying framework for compu-

tation of group, monoid and category actions allowing a number of diverse problems

to be solved with a generalised form of string rewriting. This paper extends these

techniques to K-algebras and K-categories by using Gr�obner basis techniques to

compute Kan extensions over the category of K-modules.

1 Introduction

Computer Algebra: Computer algebra packages are widely used in math-

ematics and computer science to solve combinatorial problems whose essence

is the computation of the quotient of an algebraic structure. Such problems

occur widely throughout mathematics in the theory of groups, rings, modules

etc, and computer science, for example in equational reasoning [14] and the

study of Petri nets [28]. Central to any computer algebra package is the rep-

resentation of the algebraic structure to be quotiented as a data structure and

the algorithms used to compute the quotient. Current packages su�er from

two main drawbacks: i) computation is limited to those algebraic structures

and quotients for which data structures and algorithms have been built into

the package; and ii) many packages are limited to �nite structures as they

enumerate the elements of the quotient. Thus, although there are a num-

ber of successful computer algebra packages for computation over groups, for

example Gap [12], and KBMAG [17], there is little support for computation

structures such as rings, modules and algebras beyond `Vector Enumerator'

which implements a Todd-Coxeter type algorithm for modules [23].
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Categorical Computer Algebra: Our long-term aim is to develop a generic

computer algebra package Kan supporting the computation of a variety of quo-

tients in di�erent algebraic structures. Our central idea is to use generalised

forms of rewriting to compute Kan extensions 4 and then compute other quo-

tients by expressing them as Kan extensions. The use of category theory as

a meta-language for algebra can be traced back to Linton [22] and Lawvere

[21] and the study of algebra has since remained central to the development

of category theory [2]. Our main contribution here is to observe that this

meta-language extends naturally, through the use of Kan extensions, to cover

computational algebra. The use of rewriting to perform computation ensures

that, unlike enumerative methods, our algorithms are not limited to �nite

structures.

Computation over Sets: In our previous work we uni�ed a number of dif-

ferent computational problems as Kan extensions whose codomain was the

category Sets. These included a number of fundamental problems in com-

putational group theory, for example the calculation of presentations, cosets,

orbits and induced actions as such Kan extensions, as well as analogues in the

theory of monoids and categories. The construction of groups and monoids

from �nite presentations is based upon the free monoid functor and hence leads

to a notion of computation based upon a generalised form of string rewriting.

The advantage of this approach is that instead of implementing a number of

di�erent algorithms, and providing each with a correctness proof, we need only

implement a single algorithm which signi�cantly reduces the work required.

The correctness is also simpli�ed because the structures being quotiented and

their representation as Kan extensions are both algebraic in nature and be-

cause the quotient is simply the symmetric closure of the rewrite relation used

to compute it. This work is summarised in Section 2 so as to allow the reader

to familiarise themselves with our general approach.

Computation over K-modules This paper extends our previous work [4] to

computing K-modules, K-algebras and K-categories by using Kan extensions

whose codomain is KMods, the category of K-modules. K-modules are of

particular interest in representation theory, while Lie, Hecke, Serre and String

algebras are widely studied examples of K-algebras. Rather than invent new

computational paradigms for these structures, the categorical approach notes

that K-algebras are internal monoids in the category KMods of K-modules

in the same way that monoids are internal monoids in Sets. Hence one can

compute with K-algebras by using the same Kan extensions as before but

now the codomain of the Kan extension will be KMods. Overall, the change

in algebraic structure from monoid-like structures to K-algebras is elegantly

and succinctly modelled by computing the same Kan extensions but over a

4 Throughout this paper \Kan extension" is taken to mean left Kan extension
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more complex base category. Having reduced computation with K-algebras

to the computation of Kan extensions with codomain KMods, we then turn

to the computation of these Kan extensions. The construction of K-algebras

from �nite presentations is based upon the free ring functor and this leads to

computation based upon Gr�obner basis techniques.

Background: This synthesis of category theory and rewriting is part of a

strand of research dating back to the late 1980's when it was observed that

the traditional denotation models of computation based upon categories could

be extended to cover operational aspects. The seminal research in this �eld has

focused on the development of categorical models of rewriting [30,29,18,25,13].

We hope that, by leading to the actual production of software, this research

will be seen as part of the maturing of the �eld of Categorical Rewriting.

Our work is related to that of Carmody and Walters [6,7] who provided Todd-

Coxeter algorithms for computing Kan Extensions but only over Sets. This

was implemented by Rosebrugh in [10]. The rewriting techniques of [4] pro-

vided an alternative to their enumerative methods in the same way that string

rewriting provides an alternative to traditional Todd-Coxeter for groups [9].

To summarise, this paper provides a number of theoretical and practical in-

sights.

� We show that in the context of K-algebras and K-modules, di�erent quo-

tients can be modelled uniformly as Kan extensions

� We provide evidence that computing quotients in di�erent algebraic struc-

tures can be achieved by changing the codomain of the associated Kan

extension.

� We show that Kan extensions into the category KMods can be computed

by Gr�obner basis techniques.

� We consequently provide algorithms for computing canonical quotients of

K-algebras.

One further question needs to be addressed, namely the suitability of this

paper for a theoretical computer science audience. Although modules and

algebras may not be standard fare for such an audience we believe that our

methodology is. Certainly, category theory has become widespread through-

out the theoretical computer science community in providing a meta-language

for computation. Indeed it is hard to �nd a modern paper on the denotational

semantics of programming languages which is not written in the categorical

dialect. Furthermore, rewriting falls clearly within the realms of theoretical

computer science. We believe that the synthesis of category theory and rewrit-

ing will therefore be of interest to the participants of CATS2002.

3



Ghani and Heyworth

The rest of the paper is structured as follows: Section 2 uses the examples of

groups to explain our general approach, Section 3 introduces K-modules, K-

algebras and K-categories and states their basic properties. Section 4 derives

algorithms to compute Kan extensions over KMods and we brie
y outline some

examples in Section 5. We conclude in Section 6 by outlining plans for future

research.

2 Computation over Sets

We illustrate our previous work on Kan extensions over Sets by describing

several problems in computational group theory and our solution to them.

2.1 Four Problems in Computational Group Theory

Let U : Grp ! Sets be the forgetful functor from the category of groups to

the category of sets and F be its left adjoint.

De�nition 2.1 A group presentation grphXjRi consists of a �nite set X and

a �nite subset R � F (X). A group G is presented by a group presenta-

tion grphXjRi if and only if G is isomorphic to the quotient of F (X) by the

equivalence relation induced by r � 0 for r 2 R.

Categorically, G is presented by grphXjRi if and only if G is the coequalizer

in Grp of

F (R)
r
�

��

0
��F (X)

where r� is induced by the function sending r as an element of R to r as

an element of F (X) and 0 is the constantly 0 function. Either way, G is a

quotient of F (X) and for p 2 F (X), its equivalence class in G is written [p]G.

Problem 2.2 Given a group presentation grphXjRi of G and elements p; q 2

F (X), is it the case that [p]G = [q]G?

Our second problem concerns cosets.

De�nition 2.3 (Cosets)

Let H be a subgroup of G. The set of cosets G=H is the quotient of the carrier

set of G by the equivalence relation g � g + h where g 2 G and h 2 H. The

equivalence class of g 2 G is written gH

In general, the cosets G=H form a set and not a group | the obvious notion

of multiplication is not well-de�ned on the equivalence classes of G=H. This

example shows that one cannot base a general model of algebraic computation

on coequalisers as all objects would have to reside in the same category.

Problem 2.4 Let H be a subgroup of G and g1; g2 2 G. Does g1H = g2H?

Our third problem concerns the notion of an action, or G-set, and seeks to

calculate the quotient of the carrier set by the action.
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De�nition 2.5 If G is a group, then a G-set is a set X with a function

G�X ! X (here written by juxtaposition) such that 1x = x and (g1+g2)x =

g1(g2x).

The orbits of the action are the collections of elements of the set which can be

obtained by applying the action repeatedly to an element.

Problem 2.6 Let � : G�X ! X be a G-set. The orbits of � is the quotient

of X under the equivalence relation x � gx for g 2 G. The orbit of x 2 X is

denoted [x]�. Given elements x0; x1 2 X, is it the case that [x0]� = [x1]�.

Finally, we introduce the problem of induced actions.

Problem 2.7 Let � : G � X ! X be a G-set and f : G ! G0 be a group

homomorphism. The induced action �=f is the G0-set whose carrier is the

quotient of X �G0 by the equivalence relation

hgx; g0i � hx; f(g)g0i (1)

2.2 Uni�cation of Quotients as Kan-extensions

One could write an algorithm, together with an associated correctness proof,

for each quotient one wants to compute. Although this is possible, the volume

of work makes this a lengthy process and increases the possibility of errors

arising in the algorithms or their implementation.

Our alternative approach begins by translating these problems into category

theory. First note that we can regard a group G as a category with one object

and whose hom-set is the set G. Composition in the category is given by

addition in the group and the identity is the zero of the group. Of course, this

construction works for any monoid | the presence of inverses in the group

means that every arrow in the associated category is an isomorphism. We use

G to denote both a group and its associated category. In the same way, group

homomorphisms form functors. Actions are also functors. In particular, given

an action � : G�X ! X we de�ne a functor � : G! Sets whose action sends

the object of G to X and every g 2 G to the function �(g) : X ! X de�ned

by �(g)(x) = gx. The G-set axioms correspond precisely to the functoriality

axioms. If G is a group, we also use G to denote its categorical representation

and similarly for homomorphisms and actions.

Let us turn to our four computational problems. We start with, because it

turns out to be most general, the problem of induced actions. Recall that

we have a G-set � : G � X ! X and a homomorphism f : G ! G0. The

induced action is the G0-action �=f whose carrier is the equivalence classes of

X�G0 under the equivalence relation hgx; hi � hx; f(g)hi and whose action is

h0hx; hi = hx; h0hi. A priori, this particular quotient does not appear to have

any simple categorical explanation in the way that groups, homomorphisms
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and actions did. However, note there is a natural transformation

� : �) �=f Æ f : G! Sets

whose only component �� : X ! X � G0= � is de�ned by �(x) = [hx; 1i],

i.e. the map sending x to the equivalence class of hx; 1i. The naturality of

� is precisely equation 1. The fact that the induced action is the quotient of

equation 1 means that the induced action is the smallest G0-set equipped with

such a natural transformation. That is, there is a natural bijection between

G0-sets  equipped with a natural transformation � : � !  Æ f and natural

transformations �=f )  . The induced action is simply the left Kan extension

of � along f written Lanf�.

De�nition 2.8 (Left Kan Extensions) Let F : A! C and G : A! B be

functors. The left Kan extension of F along G is a functor LanGF : B ! C

such that there is a natural bijection Nat(LanGF;H) �= Nat(F;HG).

Kan extensions were originally developed 40 years ago [19] and have since

become a fundamental construction in category theory [8,24]. There are a

number of alternative formulations of left Kan extensions, e.g. when it exists,

LanG a ÆG : CA ! CB. The above discussion shows that induced actions are

Kan extensions | the natural transformation � is the unit of the adjunction

and the bijection property of � is the universal property of the unit. By itself,

representing induced actions as Kan extensions is not so interesting. However,

what is interesting is that all of the other problems encountered so far are also

induced actions and hence left Kan extensions.

Lemma 2.9 Let 1 be the group with one element and !G : G ! 1 the unique

group homomorphism from G to 1. The orbit of an action � : G! Sets is the

induced action of � along !G, or equivalently, Lan!G�.

Proof. The induced action is a quotient of �(�) � 1 which is isomorphic to

�(�). The equivalence relations are also isomorphic: hgx; �i � hx; !G(g)�i =

hx; �i. 2

Lemma 2.10 Let H be a subgroup of G. If � is the trivial action of H on

the one point set �, then the right (and left) cosets G=H are isomorphic to the

induced action of � along the inclusion i : H ! G or, equivalently, the Kan

extension Lani�.

Proof. The induced action is a quotient of 1 � G which is isomorphic to

G. The de�ning equivalence relations are also isomorphic h�; gi = h�h; gi �

h�; hgi. 2

So we have an elegant and abstract way of encoding computational problems

as Kan extensions. The reader may argue that since all of our examples are

induced actions, induced actions could be taken as the primary concept. In

fact induced actions are precisely Kan extensions of functors whose domain
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and codomain are 1-object categories. The extra generality a�orded by Kan

extensions is crucial in modelling several computational problems , for example

colimits and path algebras as we mention in Section 5.

subsectionComputation via String Rewriting

The key to the computation of Kan extensions is their expression as coends

(LanFM)B =

Z
A2ObA

MA
 B(FA;B)

where
 is the tensor operation. In the examples presented above, the codomain

ofM is Sets and hence MA is just a set while the tensor operation is cartesian

product. In addition, the categories A and B are generated from graphs and

hence B(FA;B) a set of equivalence classes of paths over a generating set �B.

Thus (LanFM)B is contained in the quotient of the free monoid (MA��B)
�

by the equivalence relation induced by the relations of B and the Kan relations

hF (f)(a); gi hM(f)gi. Since these relations are strings, we have expressed the

Kan extension as a quotient of a free monoid by a set of equations between

words, ie a problem expressible within the string rewriting formalism. In par-

ticular, one can use Knuth-Bendix completion for string rewriting to generate

(if possible) a complete string rewrite system and hence decide when two ele-

ments of (MA� �B)
� represent the same element in the Kan extension.

3 Computation over K-modules

Rather than developing new data structures and algorithms for computing

with K-modules, algebras and categories, we regard them as internal con-

structions in KMods and then compute with them as before. In order to do

so, we de�ne the notion of internal monoid | see [24] for details.

De�nition 3.1 A monoid in a monoidal category (C;
; I) consists of an

object X of C together with maps e : 1! X and m : X 
X ! X such that

the obvious monoid laws hold. Given a monoid (X; e;m), the map Z 7! X
Z

de�nes the action of a monad on C. An X-action is an X 
 -algebra.

For example, a monoid M is a monoid in Sets, while a M -action is precisely

a M -set. In the category Ab of abelian groups, a monoid in Ab is a ring R,

while an R-action is a R-module. In the category KMods of K-modules, a

monoid is a K-algebra A while an A-action is an A-module. We now give

more traditional de�nitions of K-modules etc.

De�nition 3.2 (K-modules)

Let K be a �eld. A K-module is an abelian group � together with a scalar
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multiplication � : K��! � (written by juxtaposition) such that

k(g + h) = kg +k h

(k1 + k2)g = k1g + k2g

(k1k2)g = k1(k2g)

1m = m:

The �rst three equations guarantee that � is a bilinear map and, by the

universal property of the tensor of abelian groups, therefore it can be identi�ed

with a group homomorphism � : K
A! A. The third and fourth equations

then make � into a K 
 -algebra. Since K-modules are K 
 -algebras, we

could de�ne KMods to be the Eilenberg-Moore category of the K 
 -monad.

More concretely,

De�nition 3.3 (The category KMods)

Given K-modules � : K 
 A ! A and � : K 
 B ! B, a K-module

homomorphism is a group homomorphism f : A ! B such that f(kg) =

kf(g). The category KMods has as objects K-modules and as morphisms

K-module homomorphisms.

The condition on K-module homomorphisms can be written as a commuting

diagram in Ab

K 
 A

K
f

��

��A

f

��
K 
 B ��B

which illustratesK-module homomorphisms asK
 -algebra homomorphisms.

The categorical approach to modules gives immediate results on the structure

of KMods. Firstly, one can construct free K-modules over sets.

Lemma 3.4 The forgetful functor UM : KMods! Sets has a left adjoint FM
whose action maps a set S to the set of all polynomials k1s1 + � � �+ knsn for

si 2 S and ki 2 K.

In fact KMods arises as a �nitary algebraic theory, so we have the following

lemma.

Lemma 3.5 KMods is locally �nitely presentable and hence complete and co-

complete.

A consequence of this lemma is that a K-module � is �nitely presented if

there is a pair modKh�jRi where � is a �nite set and R � FM (�) is a �nite

set such that � is the coequaliser in KMods of the following diagram

FM(R)
r
�

��

0
��FM(�)
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where r� is the module homomorphism de�ned by sending r to its canoni-

cal interpretation in FM(�) and 0 is the map which is constantly 0. More

concretely, given a presentation modKh�jRi, de�ne an equivalence relation on

FM(�) by f =R h if and only if f = h + k1r1 + � � � + knrn for ki 2 K and

ri 2 R. Then, the set theoretic quotient FM(�)= =R is a K-module and we

say � is presented by modKh�jRi if and only if � � FM(�)= =R.

Lemma 3.6 KMods is a symmetric monoidal closed category as follows

� The unit is the free K-module on one generator, namely K

� The tensor of K-modules R
 A! A and R 
 B ! B is denoted A
K B

and is the quotient of A
 B by the relation r(a
 b) = ra
 b = a
 rb.

� The exponential [A;B] is the set of K-module homomorphisms between A

and B. This set is an abelian group:

(f + g)x = fx + gx; 0x = 0; (f�1)x = (fx)�1:

The scalar multiplication K 
 [A;B]! [A;B] is given by (rf)(x) = r(fx).

Proof. The proof rests upon KMods arising as an example of a commutative

algebraic theory. Note that the commutativity of the theory is essential, eg

the category of groups is not closed. See Borceux 2 pp172 or MacLane pp180

[3,24]. 2

3.1 Enrichment over KMods

We have represented K-algebras as monoids in the category of K-modules.

Recall that computing with groups amounted to turning them into categories

and we do the same for K-algebras. Indeed, this is a general construction

mapping monoids in a monoidal category to categories. In fact the category we

get is enriched over the ambient category. Enriched categories are categories

whose hom is not a set but an object of some other category. We give a basic

description and refer the reader to [3,20] for more details.

If V is a monoidal category, a V -category C consists of a class of objects

jCj and, for each pair of objects a hom C(A;B) which is an object of V . In

addition,

� Identities are given by requiring for each object A 2 jCj, a map 1A : I !

C(A;A) in V

� Composition is given by requiring for each triple of objects A;B;C 2 jCj a

map mA;B;C : C(A;B)
 C(B;C)! C(A;C) in V .

The maps 1A are required to be identities for composition and composition is

required to be associative. V -functors are de�ned similarly. If V = Sets we

get the usual de�nition of a category. If V = Pre we get ordered categories

while if V = Cat we get 2-categories. In this paper, we are interested K-

algebras which are monoids in KMods which will then turn into one object,

KMods-enriched categories, or K-categories for short.
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Lemma 3.7 Let X be a monoid in a monoidal category V . Then X de�nes

a one-object V -enriched category. If V is closed, then every X-action a :

X 
 Y ! Y de�nes a V -functor a : X ! V .

Proof. The proof is the obvious generalisation the presentation in Section 2

of groups as categories. Let X be a monoid in V . de�nitionine the V -category

X to have one object and hom X(�; �) = X. The monoid structure of X en-

sures that X is then a V -category.

For the second part of the lemma, note �rst that the assumption that V is

closed is required to ensure that V is a V -category. To de�ne a V -functor

a : X ! V we must map the single object of X to an object of V and the

obvious choice is a(�) = X. The rest of the proof is then standard with the

action axioms translating precisely into the axioms of a functor. 2

Although computing with K-algebras requires only one object K-categories,

as we remarked before this is overly limiting and in general we want to com-

pute with �nitely presented K-categories. These are a synthesis of the usual

presentation of categories based upon the path functor and the presenta-

tions of K-modules given above. The free K-category on the graph � is

the category PK� whose objects are the objects of � and whose homs are

PK�(A;B) = FM(P�)(A;B) where A;B 2 Ob�, P : Gph! Cat is the path

functor and FM is the free module functor. More concretely, PK�(A;B) con-

sists of all polynomials of the form p = k1w1+ � � �+knwn where k1; : : : ; kn 2 K

and w1; : : : ; wn 2 P�(A;B). As usual, �nitely presented K-categories are a

quotient of a free K-category by a set of relations [26].

De�nition 3.8 (K-category presentation)

A K-category presentation cosists of a �nite directed graph � and a set of

elements R of the free K-category PK� on �. We may write the presentation

as catKh�jRi. The category presented has the same objects as � and its

arrows are the equivalence classes of ArrPK� under the relation generated by

R; i.e. =R which is de�ned by

f =R h if and only if f =R h+ k1p1r1q1 + � � �+ knpnrnqn

where ri 2 R; ki 2 K and pi; qi are arrows of PK� whose composites are

de�ned.

4 Computing Kan Extensions over K-modules

We now formally de�ne those Kan extensions to which we will compute with

Gr�obner basis techniques.

De�nition 4.1 (Kan Presentations)

A Kan presentation for K-categories is a quintuple P := kanh�;�; R;M; F i

where

10
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i) � and � are (directed) �nite graphs;

ii) M : � ! KMods and F : � ! PK� are graph morphisms; For every

object A 2 �, M(A) is presented by modKh�A; RAi.

iii) R is a �nite set of relations on PK�.

kanh�;�; R;M; F i presents the Kan extension of (M 0; F 0) where M 0 : A !

KMods and F 0 : A ! B if A is the free K-category on �, catKh�; Ri is a

K-category presentation for B, M induces M 0 and F induces F 0.

As we have seen, a Kan extension LanFM can be computed pointwise by the

coend formula

(LanFM)B =

Z
A2ObA

MA
 B(FA;B)

In our setting, bothMA and B(FA;B) are �nitely presented K-modules. The

tensor product of two �nitely presented K-modules is �nitely presented and

so we consider the free module over the generators as a basic data structure

over which three forms of equation, and later rewrite rule, will occur: �rstly

equations pertaining to the presentation ofMA, secondly the relations de�ning

B and �nally the equations de�ning the actual Kan extension. Thus, for each

B 2 ObB and A 2 ObB de�ne TA;B to be

TA;B = FM(�A � P�(FA;B)):

Further de�ne TB :=
F
A2Ob� TA;B and T :=

F
B2Ob� TB. Alternatively, TA;B is

the set of all elements k1�1p1+� � �+kn�npn where k1; : : : ; kn 2 K, �1; : : : ; �n 2

�A and p1; : : : ; pn 2 P�(FA;B). We will refer to the elements �p as the terms

of T , whilst noting that not all formal sums of these elements are de�ned in

T . In addition, let �; � : T ! Ob� be de�ned by �(t) := F (A) and �(t) := B

for t 2 TA;B. These are, in e�ect, source and target functions.

As mentioned above, to construct the Kan extension LanFM we need to com-

bine the relations for the category B with the relations in the K-module pre-

sentations de�ningM and relations to force there to be only one natural trans-

formation " from M to LanFM Æ F . Given three sets of relations; QT � T ,

QM �
F
A2Ob� FM [�A] and QR � ArrPK�, de�ne Q = QT +QR +QM .

We compute$Q in T by embedding T in the free polynomial ring T+ = K[(�+

Arr�)�] where � = tA2Ob��A. We choose an admissible well-ordering > on

the monoid (� + Arr�)�, i.e. a well-ordering on the elements of (� + Arr�)�

such that if u1 > u2 then tu1v > tu2v for t; v 2 (� + Arr�)�. Note that this

ordering is stronger than we need, but it is computationally practical as well

as more easily de�ned.

The leading term of any polynomial q = k1u1+ � � �+ knun of T+ is de�ned to

be the element LT(q) = ui in (�+Arr�)� which is largest with respect to the

given ordering. The coeÆcient of ui in q is ki. We note that for polynomials
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generating an ideal in T+ we can divide them all by the coeÆcient of their

leading terms; so we can assume that the coeÆcient of the leading term is 1.

De�nition 4.2 The reduction relation !Q on T is de�ned by

f !Q f � kuqv

when u(LT(q))v occurs in f with coeÆcient k 2 K where either

i) q is in QT or QM , u = 1 and v 2 P� with �(q) = src(v),

ii) q 2 QR, u 2 T and v 2 P� and �(u) = src(q) and tgt(q) = src(v).

The re
exive, symmetric and transitive closure of !Q is denoted
�

$Q. The

equivalence classes of T under
�

$Q are denoted [t]Q. Note that if t 2 TB and

t1 !Q t2, then t2 2 TB and also that the relation preserves addition and scalar

multiplication. This gives us the following result.

Lemma 4.3 For Q, TB as above, the restriction of reduction relation !Q to

the module TB, is well de�ned, i.e. if t 2 TB then [t]Q � TB and TB=
�

$Q is a

K-module.

We now prove that the reduction relation generated by Q on the set of terms

T , that we have described, captures the Kan extension.

Theorem 4.4

Let P := kanh�;�; R;M; F i be a presentation of a left Kan extension over

KMods. De�ne

i) QT := � � F (a)�M(a)(�) for all � 2 �M(src(a)), for all a 2 Arr�,

ii) QM :=
F
A2Ob�RA,

iii) QR := R.

Then the left Kan extension presented by P is (LanFM; ") where

i) LanFM(B) is the K-module TB=
�

$Q,

ii) LanFM(b) is de�ned by LanFM(b)[t]Q := [tb]Q for b in Arr�,

iii) " :M ! LanFM Æ F is given by "A(�) := [�1FA]Q.

Proof. It is required to verify that LanFM , as de�ned above, is a well-de�ned

K-functor. This can be deduced from the fact that the congruence preserves

addition, scalar multiplication and right-multiplication.

To verify that " is a natural transformation of K-functors is straightforward.

Let a : A1 ! A2 in A. Then let � be an element of M(A1). Now by de�ni-

tion (LanFM)(Fa)("A1
(�)) = (LanFM)(Fa)([�1FA1

]Q) = [�1FA1
p]Q = [�p]Q

where [p]R = Fa, and "A2
(Ma(�)) = "A2

([�p]Q) = [�p1FA2
]Q = [�p] so

LanFMFa Æ "A1
= "A2

ÆMa for all arrows a : A1 ! A2 in A.

The universal property completes the proof. Let (E 0; "0) be a pair such that

12
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E 0 is a K-functor from B ! KMods and "0 is a natural transformation of

K-functors. Any natural transformation of K-functors � : LanFM ! E 0 such

that " Æ � = "0 must satisfy the commutative diagram:

M(A1)
"A1��

"
0

A1

��

M(p)

��

LanFMF (A1)
�FA1 ��

LanFM(p)

��

E 0F (A1)

E
0(p)

��
M(A2)

"
0

A2

��
"A2�� LanFMF (A2)

�FA2 ��E 0F (A2)

which allows the unique de�nition �(p) = E 0(p)("0(1A)). Hence (LanFM; ") is

universal. 2

By making the following observations about T and M , we can apply the

standard methods of noncommutative Gr�obner bases [11,27] to obtain a set of

polynomials Q0 so that
�

$Q coincides with
�

$Q0 and
�

!Q0 is complete. Recall

T is a submodule of the K-module T+ = K[(� + Arr�)�] which is a free

polynomial ring. Secondly, we can de�ne !Q+ on K[(� +Arr�)�] by f !Q+

f � kuqv for all k 2 K and u; v 2 (�+Arr�)� such that uLT (q)v occurs in f

with coeÆcient k. Observe that the restriction to T of!Q+ coincides with our

original relation!Q, and that if!Q+ is complete on T+, then!Q is complete

on T . Recall that we can use Buchberger's Algorithm to try to compute a

Gr�obner basis for Q in T+, and thus �nd Q0 such that !Q0+ is complete.

Furthermore, no computation during the execution of Buchberger's Algorithm

for Q will yield a polynomial which is not a member of the submodule T of T+.

Therefore, if Buchberger's Algorithm applied to Q in T+ terminates, giving a

Gr�obner basis Q0, then Q0 is a subset of T + ArrPK� so !Q0 is well-de�ned

and convergent on T . This gives us the following result.

Corollary 4.5 (Application of Gr�obner Basis Theory)

Gr�obner bases can be used to compute left Kan extensions of the above type.

Outline Proof Given Q, we can use the noncommutative version of Buch-

berger's Algorithm in the usual way [27] to attempt to compute a Gr�obner

basis in T+. Suppose Q0 is a Gr�obner basis for Q in T+, then Q generates

a convergent reduction relation on T and the Kan extension is given by the

following:

i) LanFM(B) := irrQ0(TB),

ii) LanFM(b) : t 7! irrQ0(tp), for t in LanFM(B), p in PK� such that

�(p) = b and src(p) = �(t),

iii) "A(�) := �.

where irrQ0(t) is the irreducible result of repeated reduction of t by !Q0 and

irrQ0(TB) is the set of all terms in TB which are irreducible with respect to
�

!Q. 2

13
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5 Examples

We complete the paper by showing how our computational Kan extensions

can be used to solve a number of problems of importance to researchers in

mathematics. The �rst concerns presentations of K-algebras, which recall

we represent as 1-object K-categories. Thus, a K-algebra presentation is a

K-category presentation whose graph has one vertex. Given a K-algebra

presentation catKh�; Ri of B and two elements �; � of the free K-algebra on

�, is it the case that [�]B = [�]B?

Example 5.1 (Algebra presentation) Let A be the trivial K-category and

let B be the K-category B. Let F : A! B be unique functor and let M : A!

KMods map the object of A to the K-module K. Then computing LanFM is

equivalent to computing the algebra presented by K[X�]= =R where X is the

set of edges in �. In detail, the functor LanFM , when applied to the object

of B, gives a K-module isomorphic to the algebra (quotient of a monoid ring)

K[X�]= =R. On arrows, the functor gives us automorphisms of the module,

which de�ne a right action of the module on itself LanFM(b)p = pb. This gives

the multiplication for the algebra. The natural transformation " picks out the

monomial which is the multiplicative identity of the algebra i.e. "A(1) = [1X ]R.

The construction of the quiver algebra over a graph is a fundamental construc-

tion in representation theory. This can be modelled as follows. Note that this

example requires Kan extensions of functors whose domain/codomain have

more than one object.

Example 5.2 (Path Algebra) Let B be a path algebra, i.e. the free K-

category over a graph �. Let � have the same vertices as � but an empty set

of edges and F the inclusion. Let M : A ! KMods map each object of A to

the K-module K. Then the Kan extension LanFM de�nes the quiver algebra

over B.

The free module over an algebra may be computed as follows.

Example 5.3 (Free module over an algebra) Let A be the trivial K-

category and let M map it to a free K-module on a set of generators �. Then

let B be K-algebras regarded as a one object K-category. Let F be the functor

from A to B. Then the Kan extension of M along F gives the free B-module

on �.

The coset construction is fundamental throughout algebra. We have already

seen it in the context of group theory and the following example constructs

cosets ofK-algebras. Note how the construction is only changed by the enrich-

ment with the unit of the monoidal structure on Sets namely 1 being replaced

by the unit of the monoidal structure on KMods, namely K.
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Example 5.4 (Cosets of a sub-algebra in a K-algebra) Let A and B be

K-algebras, regarded as one object K-categories enriched over KMods. Let F

be inclusion of A into B. Then let M map the object of A the K-module K,

and all the arrows to the identity K-module morphism. Then LanFM maps

the single object of B to the module of cosets of A in B.

As is well known, colimits in categories are Kan extensions along a functor

into the terminal category. Enriching this construction allows us to calculate

colimits of K-modules. For simplicity, we tackle coproducts i.e. direct sums

and note that this example requires Kan extensions of functors whose domain

is not a single object K-category. See MacLane for details [24]

Example 5.5 (Coproducts/Direct sums of K-modules) Let A be a dis-

crete category with n objects, and let B be the trivial K-category. Let F be

the unique functor from A to B and let M map the objects of A to K-modules

M1; : : : ;Mn. Then the Kan extension LanFM calculates the coproduct/direct

sum M1 + :: +Mn of K-modules.

Our last example is that of induced modules

Example 5.6 (Induced Modules) Let A and B be K-algebras represented

as one object K-categories and let F : A ! B. Let M map the object of

A to a K-module M(A) and the arrows to endomorphisms of the K-module;

then M de�nes a right A-module. The Kan extension of M along F gives the

right B-module induced by F on M . In detail, LanFM(B) is a K-module and

LanFM(b) : LanFM(B) ! LanFM(B) gives a right action of the elements of

the K-algebra B on LanFMB. The universal property of the natural trans-

formation "A : M(A) ! LanFM(B) con�rms that LanFM(B) is the induced

module.

6 Further work

We have shown that category theory, in particular Kan extensions, provides

an expressive meta-language for describing various quotients involving K-

modules, K-algebras and K-categories. We also showed how Gr�obner bases

techniques could be applied to compute these Kan extensions, thereby opening

the way to their formal implementation as part of a computer algebra package.

We feel that the uni�cation of quotients at the level of Kan extensions, and

the uni�cation of computation in di�erent algebraic structures by a change

of enrichment, is an elegant theoretical insight which will also signi�cantly

improve the quality and reliability of the software.

Future work lies in two directions concerning the implementation of these algo-

rithms and their further theoretical development. The current implementation

is a collection of functions written in Gap, which need further development.

Interfacing the functions for the Kan extensions with a faster Gr�obner basis
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program is one possibility for increasing eÆciency. We are discussing our algo-

rithms with algebraists in order to get more examples to test, in particular we

would like to investigate further the possibility for computing tensor products

as Kan extensions. On the theoretical side, there are a number of enhance-

ments we have in mind: using modularity results in rewriting to integrate the

di�erent notions of rewriting used; using automata theory to give language-

theoretic descriptions of the normal forms of computation; and optimising the

Knuth Bendix process for obtaining complete rewrite systems. Overall there

is certainly much more to do.
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