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Abstract 

Algebraic geometric reasoning by the Griibner basis method and Wu’s method has been shown 
to be powerful enough to prove those complex geometric theorems that could not be proved 
by ordinary logical reasoning methods. These algebraic reasoning methods, however, have a 
crucial limitation: they cannot correctly handle any geometric concepts involving order relations 

such as between and congruent angles. To overcome this limitation, we propose a novel geometric 
reasoning method, where both logical and algebraic reasoning methods are integrated into a unified 
reasoning process. In this paper, we prove the soundness of the proposed reasoning method and 
demonstrate its effectiveness with several illustrative examples. 

1. Introduction 

Geometric reasoning implies reasoning about geometric concepts, and geometric the- 
orem proving is its typical example. There have been proposed two different approaches 
to geometric reasoning: logical and algebraic reasoning. 

Most of the earlier systems for automated geometric theorem proving took the former 
approach based on the first-order predicate calculus, and many efforts have been made to 
improve their reasoning capabilities (e.g. [6,16] ). However, those geometric theorems 
which could be proved were limited to rather simple ones. 

On the other hand, Wu [ 171, Buchberger [ 3,4], and others proposed new geometric 
reasoning methods based on algebraic reasoning, where geometric concepts are repre- 
sented by algebraic equations and geometric reasoning is realized by algebraic operations 
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on such equations. In the late 1980s many researchers were attracted to the algebraic 
approach and various geometric reasoning methods and systems were developed based 
on Wu’s method and on Buchberger’s Grobner basis method [ 5,1 l-15]. 

Algebraic geometric reasoning by Wu’s method and the Grtibner basis method has 
been shown to be powerful enough to prove those complex geometric theorems that 

could not be proved by ordinary logical reasoning methods. As will be discussed later, 
however, these algebraic reasoning methods have several crucial limitations and hence 
their reasoning capabilities are not perfect either. 

Most geometric reasoning methods so far proposed took either a logical or algebraic 
approach exclusively and little attention was paid to the comparison and integration of 

these two approaches. But now, since we have much experience with both reasoning 

methods, we should investigate their characteristics in detail to develop a more capable 
reasoning method. 

Roughly speaking, characteristics of logical and algebraic geometric reasoning can 
be summarized as follows. First, algebraic reasoning is suitable for representing and 

reasoning about 
l metric information such as length of line segments, 
l parallelism between multiple lines, 

l collinearity of multiple point data, and 
l congruence of points such as intersections among multiple lines. 

This is because all these geometric concepts can be represented by simple polynomial 
equations. 

In algebraic reasoning, however, it is difficult to handle geometric objects with com- 
plex internal structures such as polygons; since algebraic reasoning describes a geometric 

problem in terms of coordinate values of point data, the algebraic description is very flat 
and uniform and no structural organization mechanism is supported. Moreover, practi- 
cally usable algebraic reasoning methods, such as Wu’s method and the Griibner basis 
method, cannot manage any inequalities, because their computation is defined in the 
complex number domain. This means that geometric reasoning by these methods cannot 
handle any geometric concepts involving order relations such as between and congruent 

angles. (This problem will be discussed in detail later.) 
In logical reasoning, on the other hand, both the structural information and order 

relations can easily be represented in terms of logical formulae, while rather compli- 
cated reasoning capabilities are required to manage the metric information, parallelism, 
and collinearity and congruence of points. The complication comes from the fact that 
reasoning about equivalence and equality relations is required to handle these geometric 

concepts. 
As can be seen from the above discussion, logical and algebraic reasoning methods 

are complementary to each other. Thus to realize a more capable geometric reasoning 
system, we should integrate these two reasoning methods; in the integrated reasoning 
system, limitations of one reasoning method can be compensated by the other method. 
This is the key idea of our research. 

Recently, Arnon [2] and Iba et al. [ 9, lo] proposed geometric reasoning systems 
which employed both logical and algebraic reasoning methods. Their reasoning meth- 
ods, however, should be regarded as a combination rather than integration. In Arnon’s 
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Table 1 
Four primitive predicates 

on(P.L) Point P is on line L 
betveen(P,A.B) Point P is located between a pair of points A and B 
eqseg(A.B.C,n) The length of line segment AB is the same as that of CD 
eqang(A.B,C,D.E,F) The size of LABC is the same as that of LDEF 

95 

system, for example, geometric reasoning itself was realized by algebraic reasoning, 
and logical formulae were used mainly for problem description. That is, no substantial 
geometric reasoning was conducted by logical reasoning. The system proposed by Iba 
et al., on the other hand, incorporated a bi-directional transformation function between 
logical and algebraic problem descriptions, by which heterogeneous geometric reasoning 
was realized. However, substantial geometric reasoning was still conducted by algebraic 
reasoning and the role of logical reasoning was confined to an auxiliary one to sup- 
port algebraic reasoning: e.g. the priority determination of variables to make algebraic 
reasoning efficient. 

In this paper, we propose a novel geometric reasoning method which integrates both 
logical and algebraic reasoning into a unified reasoning process, and demonstrate its ef- 
fectiveness with several illustrative examples. The integration here means that substantial 
geometric reasoning is conducted by both logical and algebraic reasoning. 

In Section 2, following a summary of the Griibner basis method, we point out its 
three limitations: the real versus complex number domain problem, the quantification 
problem, and the order relation problem, Then we discuss a method to handle order 
relations by the Griibner basis method in detail. Section 3 proposes an integrated logical 
and algebraic geometric reasoning method, where the most crucial limitation of the 
Grebner basis method, the order relation problem, is overcome with the help of logical 
reasoning. Then the soundness and completeness of the proposed method are discussed. 
Section 4 describes a geometric theorem proving system developed which is based 
on the integrated reasoning method, and its effectiveness is demonstrated with several 
illustrative examples in Section 5. Section 6 gives conclusions and future problems. 

2. Algebraic geometric reasoning by the Gtibner basis method and its limitations 

2.1. Refutational reasoning by rhe Griibner basis method 

Hilbert [7] defined an axiomatic theory of Euclidean plane geometry in terms of 15 
axioms. All axioms except that of continuity can be described as logical formulae in the 
first-order predicate calculus. Table 1 shows four primitive predicates used to describe 
the axioms. 

Let Axioms denote the set of Hilbert’s axioms. ’ Then, the proof of a geometric 
property Cone under a given set of hypotheses {hypl , hyp2, . . . , hyp,} is formalized as 
follows. 

1 In practical applications, the axiom of continuity is eliminated from Axioms, because it is second-order and 
its elimination does not introduce any problems in proving most theorems in Euclidean plane geometry. 
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Table 2 

Algebraic representation of the four primitive predicates (from [ 10 ] ) 

on(P,U 

between(P,A,B) 

eqseg(A,B,C,D) 

eqang(A,B,C,D,E,F) 

NXp + h!‘p + I’ = 0 

(XB - *A)* + (!‘&I - ?'A)* ~ (XD -xc)? - (yo - vc)* = 0 

(xg #SAVJ’B #?‘A)A(\A #XCVjJB #,v,)A 

-(3tE~)(O<t<1/\x~=(I-t)XA+tXCAy~=(1-rt)YA+t!’C)A 
((-rA - x8)(xC -XL?) + (?A - ."B)(yC - .vS)j2 
((XD - XE12 + (!‘D - YE)*)((xF - XEj2 + (.vF - !aE)2) = 
((x,9 - *&)(XF - XE) + (?D - YE)(YF - ?'E))* 
((XA - .rR)* + (?A - ~R)*)((xC - nBj2 + (YC - .vR)*) A 

(@A - .ra)(xc -XL?) + (VA - YS)(YC - YR)) 
((XD - XE)(x.F - XE) + (XI - YE)(YF -YE)) > 0 

Axioms U { hypl , hyp:!, , hyp, } 1 COW, (1) 

where hypr , hypz, . , hyp,, and Cone denote logical formulae in the first-order predicate 

calculus. This formula is equivalent to 

Axioms /= (hypl A hyp2 A . . A hyp,) + Cone, 

which implies that all logical models of Axioms satisfy 

(2) 

(hypl A hypz A . . A hyp,) - Cow. (3) 

In refutational reasoning, we prove formula (2) by showing that the negation of the 
right-side logical formula 

-{ ( hypl /I hyp:! A . A hyp,) ----) Cone} 

s ( hypl A hyp2 A . A hyp,, A ( Xonc) (4) 

is not satisfied by any logical models of Axioms. However, since it is known that 
Axioms is categorical and all its logical models are isomorphic, it is sufficient to show 
that logical formula (4) is not satisfied by a specific logical model of Axioms. To 
prove this unsatisfiability, the refutational reasoning by the Griibner basis method uses 
the algebraic model of Axioms defined by analytic geometry in the two-dimensional 
orthogonal coordinate system. 

First, the algebraic meanings of the four primitive predicates in Table 1 are described 

by a set of polynomial equations, inequations (negated equations), and inequalities 
with variables in IR (If& the set of real numbers) representing coordinate values of 
points. Table 2 shows such algebraic descriptions, where xp and yp represent the x-y 
coordinates of point P, respectively [ 141. 

Then we can derive the algebraic representation of logical formula (4)) since all 
logical formulae about Euclidean plane geometry can be described in terms of the four 
primitive predicates. Although the derived algebraic representation includes negated 
equality ( # ) and inequality relations (<, <), and disjunctive and negation operators ( 
V and -), we can eliminate them in the following way. First, by introducing an auxiliary 
variable z (E JR) and applying the following rules, we can eliminate negated equality 
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and inequality relations. Let P denote an algebraic formula with real-valued variables 
and coefficients. Then, 

P # OH (3Z)PZ - 1 =o, (5) 

P > 0% (3Z)PZ2 - 1 =o, (6) 

p 2 0 * (3z)p - z* = 0. (7) 

Disjunctive and negation operators can be eliminated by using the following rules. Let 

f and g denote algebraic formulae with real-valued variables and coefficients. Then, 

f=OVg=O($fg=O, (8) 

T(f =O) H (3z)fz - 1 =o. (9) 

Using these rules, we have the following conjunctive set of polynomial equations as the 

algebraic representation of logical formula (4). 

hl = 0 A h* = 0 A . . . Ah,=OAcz-l=O, (10) 

where we assume for simplicity that those elementary logical formulae in (4)) 

hYP1 ,hYPz,. . . , hypn, and +~WZC, are represented by polynomial equations hi = 0, 
h* = 0,. . . , h, = 0, and cz - 1 = 0, respectively. Note that we intentionally omitted all 
quantifiers from (10). The quantifier problem will be discussed in the next section. 

Now we can prove the insatisfiability of logical formula (4) by showing that the 
simultaneous polynomial equations in (10) have no solution in R. 

Let zp~~~q{f,R,o,. . . , fkRk0)) denote the set of solutions in R of the simulta- 

neous polynomial equations, inequations, and inequalities fl RIO,. . . , fkRk0 
(Ri E {=, # , >, 2) ( 1 < i < k)) with variables xl,. . . ,x,. Similarly let 
Z;‘V~..,xl,’ ({f 1 R,O, . . . , fkRk0)) denote the set of solutions in @ (the set of complex 
numbers). Then, the goal of the refutational algebraic reasoning is to prove 

* ,.,.I Y”!.Zl 
({h, = 0, h* = 0,. . . ) h, = 0, cz_ - 1 = 0)) = 0, (11) 

where 0 denotes the empty set and yt , . . . , y,, z variables included in polynomials 

hl,hz,-. . , h,, and cz - 1. Note that in our case all coefficients in the polynomials are 
real numbers. 

In the Grobner basis method, Eiq. ( 11) is proved in the following way [4 1. Let F = 

{fly. . . , fk} denote a set of polynomials including variables xl,. . . , x, and coefficients 

al,..., a, E Cc, and let GB( F) denote the Griibner bases of F. Then it is known that 

$“-‘x”’ ({ fl = 0, . . . , fk = 0)) = 0 

+ z~“““xu’ ({f, = 0, . . . , fk = 0)) = 8 

e+ 1 E GB(F). 

Using this property, IQ. ( 11) can be proved as follows. 

Z$“,~..z?‘“‘VL I ((h, = 0, h2 = 0,. . . , h, = 0, cz - 1 = 0)) = 0 

(12) 
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+ I E GB({h,,h2,...,h,,cz - l}). (13) 

That is, if the Grobner bases of (hi, IQ,. , h,, cz - I} include 1, then Eq. (11) holds, 

which in turn implies that formula ( I) holds and the geometric property Cone is proved 
under the set of hypotheses {hypl, hyp,p:!, . , h,vp,,}. 

2.2. Limitations of the Griibner basis method 

The refutational reasoning by the Grobner basis method described above is not com- 
plete and has the following three theoretical limitations. 

( I ) Real versus complex number domain problem. The Griibner basis method works 
in the complex number domain while the algebraic representation of the Eu- 

clidean plane geometry is defined in the real number domain. This makes the 
implication in ( 13) (+) uni-directional. That is, while the Grobner basis method 
is sound, it is not complete; it cannot prove all geometric theorems. Wu’s method 
also shares this incompleteness. Although Kutzler [ 141 noted that this incom- 

pleteness is not significant because most Euclidean theorems are valid also in c:, 
the degree of the incompleteness is not clear. 

(2) Quantijcation problem. The following is the strict representation of the proposi- 
tion proved by the refutational reasoning by the Grijbner basis method. 

-/,$I~-. .?‘.,.z 1 ((h _ 
, - 0, h2 = 0,. , h, = 0,cz - 1 = 0)) = 0 

ET((3y ,,..., y,,,,z)(h, =OAh2=OA...Ah,,=OAci - 1 =O)}. 

(14) 

Translating this back to the original logical formula, we have 

(t’x){(hyp, AhypzA...Ahyp,,) +Conc}, (15) 

where Qx denotes that all variables are universally quantified. That is, the form 
of those geometric problems that can be proved by the Grobner basis method is 
confined to this universally quantified one. In other words, geometric problems 

including existential quantifiers cannot be proved by the Grijbner basis method. 
Note, however, that some existential quantifiers such as those introduced by 
rules (5) and (9) into the problem hypotheses can be eliminated by using the 

following property of the first-order predicate calculus. 

((3X)cu(X) - p, f (QX)((-u(X) .--t P), (16) 

where CU(.X) and p denote logical formulae with and without free variable x 
respectively. This limitation is not so significant either, because most geometric 
theorems can be described by universally quantified logical formulae as shown 
in (15). 

(3) Order relation problem. Since the Grobner basis method processes a conjunctive 
set of polynomial equations, those algebraic representations including negated 
equality and inequality relations, and disjunctive and negation operators must be 
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Table 3 
Reduced algebraic representations after the inequality elimination 

betueen(P.A,B) (3tEW)(XP=(l-f)XA+t~EAyP=(1-f)yA+tyB) 

eqangU,B,C,D,E,P) (QI + XA V YE + YA) A (IA + Xc V YB + Yc)A 

~(3tEW)(x~=(l--)XA+mCAyB=(l-t)yA+t~c)A 

((IA - nB)(.%Z -XB) + (YA - YS)(YC - YB)J2 

((ID - Xd2 + (YD - YE)2)((XF - XE)’ + (YF - YEj2) = 

((XD - XE)(xF - XE) + (YD - YE)(YF -YE))* 

((XA - XEJ2 + (YA - Yd2)((xC - xSj2 + (YC - YB)2) 

99 

transformed into equations by using rules (5), (6), (7)) (S), and (9). In apply- 
ing the Griibner basis method, however, rules (6) and (7) become meaningless; 
the Grobner basis method works in @ while these rules are originally defined in 
R. That is, it is impossible to translate inequalities in the real number domain 
into valid equations in the complex number domain. 

In this paper we call order relations those geometric relations whose algebraic 
representations include inequalities. As can be seen from Table 2, between 
and eqang are order relations, whose valid algebraic representations cannot be 
obtained in the Grobner basis method. In fact all geometric theorems proved so 
far by the Grobner basis method do not include any order relations [ 4,5,8,1 l- 
151. This is also the case in Wu’s method. This limitation is crucial because 
the very primitive and important geometric relation eqang cannot be handled by 
the Grijbner basis method. In the next section, we will discuss the problem of 
reasoning about order relations in more details. 

2.3. Reasoning about order relations 

One way to handle order relations by the Grobner basis method is to remove in- 
equalities from their algebraic representations. Note that even if we used transformation 
rules (6) and (7), the resultant equations would introduce no effective constraints in 
the complex number domain. That is, the effect of the rule application is the same 
as the inequality elimination. Table 3 shows such reduced algebraic representations of 
between and eqang. The reduced algebraic representation of between becomes equiv- 
alent to the algebraic representation of on, and that of eqang implies that two angles 
81 and 62 satisfy cos2 81 = cos2 02. That is, it means 81 and 02 are either congruent 
or supplementary. In this section, we will discuss the soundness and capability of the 
Griibner basis method when we use these reduced algebraic representations. 

The elimination of inequalities implies the expansion of the solution set of simultane- 
ous equations. Let {gt RIO,. . . , g,R,O} (Ri E {=, # , >, 2) ( 1 < i < q) ) denote a set 
of simultaneous equations, inequations, and inequalities including variables xl,. . . , x, 
and {&R{O,... , g:, RbO} (R$ E {=, Z}, @$O E (81 R10, . . . , g&O} ( 1 6 j < 4’) > a 
set of equations obtained by eliminating all inequalities. Then, 

$l,...*XC,’ ({g, RIO, . . . , g4R40}) 
G 2$1~.-~xu’ ({g; R;O, . . . , g4’ R;,O}) (17) 
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This expansion of the solution set introduces the following problems into the Grobner 
basis method. 

Before discussing the problems, we define several simplified notations. Let H 
and C denote the original algebraic representations of the set of hypotheses 
{hypt , hypz, . . . , hyp,} and the geometric property to be proved Cone, respectively. Let 
H’ and C’ denote the reduced set of equations and inequations obtained by eliminating 
inequalities from H and C respectively. In what follows we abbreviate Z$‘~..~Yni’ (X) 
to Z,(X) and Zlvl.....?c!t 

c (X) to a(X), where X denotes a set of algebraic equations, 
inequations, and inequalities. 

First, from ( 17) we have 

Za(W C Za(H’), (18) 

Z,(C) cr Z,(C’). (19) 

Secondly, since Eq. ( 11) implies Zn (H) n Zw (C) = 8, what is proved by the Grijbner 

basis method can be described by 

&R(H) G Z,(C). (20) 

2.3.1. Case I: order relations are included in the problem hypotheses 
In this case, since H includes inequalities, we eliminate them to obtain H’. Suppose 

the proof by the Griibner basis method succeeds. This means that Zn( H’) c Z,(C). 
Note that we assume C does not include any inequalities. Then from ( 18) we have 
Zn ( H) C Zw (C) Consequently, the Grobner basis method is sound even if we eliminate 
all inequalities from the hypotheses of a given geometric problem. 

On the other hand, suppose the geometric problem described by H and C is a valid 
theorem of Euclidean plane geometry, that is, assume Zw( H) C Z,(C). In this case, 
after the inequality elimination, we may have Zw(H’) $J Zw(C) because (18) holds, 
and as a result &( H’) 9 Z,(C). That is, H’ and the negated C may not be inconsistent 
and consequently the Grobner basis method may fail in proving the given problem even 
if it is a theorem. This means that the elimination of inequalities from the problem 
hypotheses can introduce another incompleteness besides the one which the Griibner 
basis method originally has (i.e. ( 13) ) 

Fig. 1 shows such an example. Whereas the problem described in Fig. 1 is a valid 

geometric theorem, it is invalidated by the inequality elimination. In the figure, predicate 
line specifies that those points in its argument list are aligned on a straight line, and 
para(xl , x2, xg, x4) implies that two lines specified by pairs of points XI and x2, and x3 
and x4 are parallel. The strict definitions of these predicates will be given in Section 4. 

First, since predicate line is an order relation, it is reduced to on by the inequal- 
ity elimination. Then, the reduced problem hypotheses result in including a geometric 
configuration such as shown in Fig. 2, where the conclusion para(a,b, d, c> does not 
hold. Similarly, the inequality elimination from order relation eqang relaxes the problem 
hypotheses to include a geometric configuration such as shown in Fig. 3, where again 
the conclusion para(a, b,d, c) does not hold. 
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, 
Hypotheees: lme([a,bl). line([b,cl). 

Ilne([a.e.cl) line([c,dl). 

lme([a.dl). eqang(e.a.d,e,b,c). 

line([b,e.dl). eqseg(a,e,b,e). 

Conclus~,n: para(a,b,d.c). 

a ? b 

d ? C 

Fig. 1. Example 1: a geometric problem which includes order relations in its hypotheses. 

d 

a 

Fig. 2. A geometric configuration implied by the reduced algebraic representation of the problem hypotheses in 
Fig. 1, where the order of points b, e, and d is changed to d, b, and e. Then, the conclusion para(a, b,d, c) 

becomes invalid. 

a ? b 

Fig. 3. Another geometric configuration implied by the reduced algebraic representation of the problem 
hypotheses in Fig. 1, where Lead and Lebc are regarded as supplementary instead of congruent. Then, the 
conclusion para(a, b.d, c) becomes invalid. 

2.3.2. Case II: order relations are included in the problem conclusion 
In this case, since C includes inequalities, we eliminate them to obtain C’. Here we 

assume that H does not include any inequalities. Suppose the inconsistency between 
H and the negated C’ is proved by the GrSbner basis method and we have Zn( H) c 
Z,(C’). However, ZR(H) C Zw(C) may not hold because Z,(C) C Zn(C’>. That is, 
the soundness of the Griibner basis method is invalidated by the inequality elimination 
from the problem conclusion C. 

Fig. 4 illustrates such an example, where predicates rangle (right angle), midpoint, 
and perpen (perpendicular) are defined later. We cannot apply the Griibner basis method 
to this problem, because it is not sound for this problem; the conclusion of the problem 
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Fig. 4. Example 2: a geometric problem which includes an order relation in its conclusion. 

includes order relation eqang. 
In summary, with the inequality elimination, we have: 
. 

. 

Expansion of incompleteness (Case I) : Some geometric theorems whose hypotheses 
include order relations cannot be proved. 

Invalidation of soundness (Case II) : The proof becomes unsound for those problems 

whose conclusions include order relations. 

3. Integrated logical and algebraic reasoning 

In this section, we propose an integrated logical and algebraic reasoning method to 

solve the above two problems of the Grijbner basis method in handling order relations. 
Our basic idea is as follows. As noted before, logical reasoning can handle order 
relations without any problem, and moreover it can transform order relation eqang into 
non-order relations by using geometric theorems such as that about congruent triangles. 
If such a transformation is possible, then the Grijbner basis method can be applied to 
the transformed problem. Based on this idea, we developed a geometric theorem proving 
system, where both logical and algebraic reasoning modules cooperate to solve a given 
problem. Fig. 5 shows the organization of the system. 

3.1. Scheme of the integrated reasoning 

A geometric problem to be proved is described by using those predicates defined in 
Section 4. As shown in Figs. 1 and 4, the problems given to our system include no 
disjunctive or negation operators and all variables denoting points, a, b, c and so on, are 
regarded as being universally quantified. Note that, as discussed in Section 2.2 and as 
will be discussed below, this does not mean that our system cannot handle these logical 
operators or existential quantifiers. 
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___--_-----__----__-___, 
I 

WPoam I Predicate Transform problem based : Y-/No 
‘+ eqang + on geometric theorems 7 . 

Coaclu.5ion ; exist ? Yes ( Logical Reasoning ) I 

Add subsidiary conditions 

( Algebraic Reasoning ) 
I 

(____________----------- 

Fig. 5. Organization of the integrated logical and algebraic geometric reasoning system. 

First, the system examines if the problem description includes eqang. If not, it directly 
activates the algebraic reasoning module based on the Griibner basis method to prove 
the problem. Otherwise, the system activates the logical reasoning module. 

The logical reasoning module first applies the stored geometric axioms and theorems 
to the problem hypotheses to derive all possible new geometric relations, which then 
are added to the hypotheses. If the conclusion is included in the hypotheses expanded 
by this forward reasoning, the problem is proved. Otherwise, if the conclusion does not 
include eqang, then the system activates the algebraic reasoning module to prove the 
conclusion under the expanded hypotheses. In this case, the inequality elimination is 
applied to the expanded hypotheses. If the conclusion is described by eqang, on the 
other hand, it starts the backward reasoning to derive sub-goals of the conclusion. 

Since there are multiple applicable axioms and theorems in the backward reasoning, its 
process can be described by an AND-OR tree whose root node denotes the conclusion 
(Fig. 6). The system examines each sub-goal one by one to prove it: 

( 1) If the sub-goal is included in the expanded hypotheses, then it is proved. 
(2) If the sub-goal is described by eqang again, then conduct the backward reasoning 

recursively. 
(3) If the sub-goal does not include eqang, then activate the algebraic reasoning 

module to prove it under the expanded hypotheses. 
Using these integrated reasoning methods, the system tries to form a derivation AND 
sub-tree included in the AND-OR tree which connects the given hypotheses to the 
conclusion. 

While the above reasoning scheme handles only eqang, we can conduct a similar 
reasoning based on the other primitive order relation, between. In our system, however, 
we do not accept those problems whose conclusions include between, nor do we use 
those geometric axioms and theorems in the backward reasoning that generate sub-goals 
including between. This is partly because a few problems include between in their 
conclusions and partly because between can be transformed into non-order relations 
only in very special cases. 

When between is included in the problem hypotheses, the system uses it as it is in the 
forward reasoning, while between(P,A,B) is transformed into the non-order relations 
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0 Cor~lus~o~~ @ Proved Node. 

. ORNode 0 Derwed Geometnc Relation 

0 AND Node (Sub-goal) 0 Hypothesis 

- hg&:d “en”awn -I+ Proved by Croebner Basis Method 

~ Sub-goal Lmk __ - Proved by Logical Reasoning 

I 
I 
I 
\____________-___, / 

*; 

I 
I I 
I Sub-g<& I 

ir_~---__----_i 

,t 

Grobner Basis Method 

: 

------------7 
\ 

Expanded fiypolheses , 
I 

Forward Reasoning 1 

YiiiE-)j 
-_----__---_/ 

Fig. 6. AND-OR tree representing a reasoning process 

on(eL) Aon(A,L) Aon(B,L) A (A # B) A (A # P) A (P f B) 

before appiying the algebraic reasoning module. This is equivalent to the inequality 
elimination from the hypotheses, and hence the soundness of the proof is maintained. 
Thus, the reasoning capability of our system about between is very limited. 

3.2. Properties of the integrated reusoning 

3.2.1. Properties of the logical reasoning 

In the logical reasoning module, ordinary deductive reasoning is conducted by using 

a set of geometric theorems Th = { thl , thz, , thl} as well as Axioms, where Axioms k 

th; ( 1 < i < I). 
To realize efficient reasoning, the axioms and theorems used in the forward and 

backward reasoning processes are confined to those described by Horn clauses: 

(V’x)((A, r\...l\A,) -B). (21) 

where Ai (1 < i 6 r) , B are positive literals. Thus, although the logical reasoning is 
sound, it is not complete. 

3.2.2. Soundness of the integrated reasoning 
The proof by the integrated reasoning can be classified into the following three types: 
( 1) The problem does not include eqang and is proved by the algebraic reasoning 

module. 
(2) The problem includes eqang and is proved by the logical reasoning module. 
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(3) The problem includes eqang and is proved by the cooperation of the logical and 
algebraic reasoning modules. 

The soundness of the proof in cases ( 1) and (2) is trivial. Note that as discussed 
before, the soundness is maintained even if the problem includes the other order relation 
between, because it is included only in the problem hypotheses. 

As for case (3), the soundness of the proof is trivial if eqang is included only in 
the problem hypotheses. If the conclusion includes eqang, then the backward reasoning 
is conducted to generate a set of sub-goals, whose soundness is guaranteed by the 
incorporated axioms and theorems. When the conclusion is proved by the integrated 
reasoning, each sub-goal is proved by either sound logical or sound algebraic reasoning. 
Consequently, the soundness of the overall reasoning process is guaranteed. That is, 
the integrated reasoning realizes the sound proof of those geometric problems that the 
Grobner basis method alone cannot perform by sound reasoning, i.e. those including 
eqang in their conclusions. An example of this will be given in Section 5. 

3.2.3. Completeness of the integrated reasoning 
Since both logical and algebraic reasoning modules are incomplete, the integrated 

reasoning is not complete either. However, it can prove some problems which cannot be 
proved by the Grobner basis method alone. As discussed in Section 2.3.1, the Griibner 
basis method fails in proving some theorems including eqang in their hypotheses. In the 
integrated reasoning, on the other hand, the forward reasoning expands the hypotheses 
by adding newly derived geometric relations before applying the Grobner basis method. 
If this forward reasoning transforms eqang correctly into non-order relations, z (Hyp U 

New) c Z@(C) holds and hence the Grobner basis method can prove the problem. Here 
Hyp u New denotes the algebraic representation of the expanded hypotheses after the 
inequality elimination. Thus, the range of the geometric problems which can be proved 
is expanded by the integrated reasoning. An example of this will be given in Section 5. 

4. Integrated geometric theorem proving system 

We developed a geometric theorem proving system based on the integrated reasoning 
method described above, where several additional reasoning facilities are incorporated 
to augment its reasoning capability. 

4.1. Problem description method 

A geometric problem to be proved is described as a logical formula 

(hypl Ahyp:!A--.Ahyp,) --, Cone, (22) 

where hypl, hypn, . . . , hyp,, and Cone are positive literals and all variables are universally 
quantified. 

The following nine predicates are used for the problem description: 
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Definitions of higher-level predicates 

collinear(A,B,C)@$(3 L)(on(A,L)Aon(B,L)Aon(C,L)) 

online(P,A,B) @noteq(A,B)Acollinear(P,A,B) 

midpoint(P,A,B) ~noteq(A,B)Acollineer(P,A,B)Aeqseg(A,P,P,B) 

para(A,B,C,D) ++-(3P)(online(P,A,B)Aonline(P,C,D)) 

rangle(A,B,C) ~noteq(A,B)Anoteq(B,C)A(3P)(midpoint(B,A,P)Aeqseg(A,C,C,P)) 

perpen(A,B,C,D) @noteq(A,B)Anoteq(C,D)A ((=oteq(A,C)Arangle(B,A,D))V 

(noteq(A,C)Aonline(A,C,D)Arangle(B,A,C))V 

(noteq(A,C)A-online(A,C,D)Aonline(C,A,B)Arangle(A,C,D))V 

(noteq(A,C)A-online(A,C,D)A-online(C.A.B)A 

(~P)(online(P,A,BfAonline(P,C,D)Arangle(A.P,C)))) 

eq=g ewx collinear 

online midpoint para 

rangle perpen line 

Note that all these nine predicates take points as their arguments. 
Among the four primitive predicates listed in Table 1, between is substituted by 

line, whose meaning will be given later. Note that since line is an order relation like 

between, it can be used only to describe the problem hypotheses. 
We exclude on, because no information useful for reasoning is specified by describing 

either on(A,L) or on(A,L) A on(B,L), and because the collinearity among more than 
three points, on(A, L) A on(B,L) /\ on(C,L) A. ., can be described by using the 
predicate collinear. Note that on is used internally by the system. 

4.1.1. Dejinition of higher-level predicates 
To facilitate the problem description, it is often useful to define higher-level predicates. 

As pointed out in [ 141, however, their geometric meanings must be specified very 
strictly; careless loose definitions can lead to the failure of proof and sometimes introduce 
unsoundness into geometric reasoning. Table 4 shows the strict definitions of six higher- 
level predicates, which are derived by the method described in [ 141. Here predicate 
noteq(A ,B) implies that two points A and B are different and its algebraic representation 
is defined as follows. 

notedA, B) ++ x,4 f XB ‘d y/, # J’s (23) 

Thus noteq is a non-order relation and is often used to specify subsidiary conditions to 
exclude degenerated geometric configurations. Note that several redundant noteqs are 

included in Table 4 to clarify non-degenerated case specifications. 
As is obvious from the definitions in Table 4, these six predicates are non-order 

relations since they are defined in terms of the primitive non-order relations on, eqseg, 

and noteq. Table 5 shows their algebraic representations. 
The definition of and reasoning based on para involve some complications. As shown 

in Tables 4 and 5, para(A, B, C, D) is originally defined as a non-order relation. In logical 
reasoning, however, we must regard it as an order relation to apply geometric theorems 
about the congruence of corresponding (alternate) angles formed by a line intersecting 
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Algebraic representations of higher-level predicates 

collinear(A,B.C) (YE - YA)XC + (XA - XS)YC + (XSYA - XAYB) = 0 
online(P,A.B) (XA + XB v YA + YE) A (YA - yP)XB + (XP - XA)yB + (XAYP - XPYA) = 0 

midpoint(P,A,B) (XA +XBVYA +yj~)A2Xp-xA-X~=OA2yp-yA-y~=0 

para(A,B,C,D) (XA + XSVYA + yB)A(XC # XDVYC + yD)n 

(YB-YA)~c+(~A-~B)Yc+(~BYA--~AYB) +OA 

(XB-XA)(YD-Yc)-(XD-XC)(YB-YA)=O 

rangle(A,B,C) (XA + XBVYA + YB)A(XE + XcVYe + yc)A 

(XA - xB)(xC - XB) + (YA - yB)(yC - YB) =o 

perpen(A,B,C,D) (XA f XB VYA # YE) A (Xc # XD VYC # YD)A 

(X~-XA)(XD-xCf+(yB-yA)tyD-yC)=O 

with parallel lines. That is, to identify the corresponding (alternate) angles, we need to 
determine if the directions of the pair of line segments AB and CD coincide with each 
other or not. 

To solve this problem, we regard para(A,B, C,D> as denoting the following order 
relation ord-para(A , B , C , D> when it is included in the problem hypotheses. 

ord-para(A,B,C,D) %para(A,B,C,D) A 
(3 P)(between(P,A,D) A between(P,B,C)), 

where ord-para(A , B , C, D> means that line segments AB and CD are parallel and have 
the same direction. Then, the system can conduct the forward logical reasoning using 
geometric theorems about the corresponding (alternate) angles to derive new geometric 
relations. 

On the other hand, if para is included in the conclusion, it is regarded as the non-order 
relation as defined in Tables 4 and 5. Since the algebraic representation of ord-para is 
reduced to that of para by the inequality elimination and ord-para appears only in the 
hypotheses, the soundness of the integrated reasoning is maintained. In short, the system 
regards those paras in the hypotheses as order relations ord-paras while paras in the 
conclusion are regarded as non-order relations. Users should take this into account when 
describing a problem. 

4.2. Specijkation of geometric conjiguration 

In proving geometric theorems, we usually draw a figure based on the problem 
description and try to find a proof strategy by analyzing the figure. Such reasoning 
assisted by geometric figures is called diagrammatic reasoning [ 11. 

In our system, we prepare a special predicate line to describe the geometric config- 
uration, by which the logical reasoning is facilitated. line takes a plain list of points 
as its argument and declares the existence of a straight line as well as the fact that the 
points in the list are aligned on that line. From this definition, it is obvious that line is 
an order relation and that between can be described by line. That is, line can appear 
only in the problem hypotheses to maintain the soundness of the integrated reasoning. 
Moreover, since line subsumes non-order relations collinear and, online, we need 
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not use the latter predicates to describe the hypotheses; collinear and online are 
used only to describe the conclusion. 

In logical reasoning, the system tries to prove only those relations between line 

segments and angles which are located on and formed by those straight lines declared 
by line. That is, the system neglects as irrelevant those line segments and angles 
which are not included in the declared geometric configuration. With this “focusing” 
mechanism, the number of derived geometric relations in the forward reasoning and sub- 

goals in the backward reasoning is reduced considerably and as a result the efficiency 
of the logical reasoning is improved. 

4.3. Geometric axioms and theorems 

The system incorporates the following axioms and theorems for logical reasoning, 

where (m, n) stands for: m, the number of axioms and theorems used in the forward 
reasoning and n, that used in the backward reasoning. 

( I ) Geometric axioms (6, 3). Among the fifteen Hilbert axioms, only simple ones 
are used excluding the continuity and Archimedes axioms. 

(2) Theorems about higher-level predicates ( 16, 4). These theorems specify the 
definitions of higher-level predicates by using primitive ones. 

(3) Fundamental geometric theorems (30, 19). These include those theorems about 

congruent triangles, the congruence of corresponding and alternate angles formed 
by a line intersecting parallel lines, the congruence of two base angles in a 
equilateral triangle, and so on. 

(4) Inference rules for equivalent relations. eqseg, eqang, and para are equivalent 
relations. The system applies inference rules about equivalent relations to con- 

struct equivalent classes based on each of eqseg, eqang, and para, and conducts 
reasoning based on the equivalent classes. In the backward reasoning to prove 
eqang, especially, a two stage reasoning process is conducted to generate sub- 

goals. Suppose the current goal is to prove 19, = 02. Then, based on the equivalent 
classes including 81 and 02, 01 = {Ori,. . ,&,} 3 81 02 = (021,. . . ,02,} 3 82, 
the system first generates a set of sub-goals: Bri = 02j (1 < i < m, 1 < j < n). 

At the second stage, the geometric axioms and theorems are applied to each 
01; = &j to derive sub-sub-goals. If a certain 8ii = &j is proved successfully, 
then 01 and 02 are merged into one equivalent class and hence the goal 81 = & 

is proved. 
In the forward reasoning all possible axioms and theorems are applied to derive new 

geometric relations, and the breadth-first search is conducted in the backward reasoning. 

Even if we use these brute force search methods, the efficiency is kept reasonable 
because of the focusing mechanism described before. 

4.4. Transformation to algebraic representation 

The logical problem description is transformed into the corresponding algebraic one 
based on Tables 2, 3, and 5. Note that these transformation rules are strict in the sense 
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Fig. 7. Straight lines, line segments, and angles. 

that appropriate subsidiary conditions to exclude degenerated geometric configurations 
are attached. 

By defining the coordinate system properly, we can reduce the number of variables in 
the algebraic representation. This makes the computation by the Grobner basis method 
efficient. In our system, the point which is specified to be on the largest number of lines 

is selected as the origin, and the one among these lines on which the largest number of 
points are located as the x-axis. 

5. Proof examples 

In this section we demonstrate the effectiveness of the integrated geometric reasoning 
system with several selected examples. 

5.1. Notation 

We use the following notations to describe the process of reasoning. 

l Internal representation of lines, line segments, and angles. Suppose the geometric 
configuration shown in Fig. 7 is given. Inside the system, the straight line passing 
through points a, o, and b is described by the list [a, o , bl , line segment ab by 

seg(a,b), and Lbod by a.ng(o, Ca,o,bl, Cc,o,dl). 
l Internal representation of equivalent classes. The equivalent classes defined by 

eqseg, eqang, and para are described by lists of line segments, angles, and straight 

lines, respectively. Right angles are also grouped into a list named RANGLE. The 
given and derived hypotheses described by the other predicates are stored in a list 

named OTHERS. 

5.2. Example 1 

Problem. Let e denote the intersection of the pair of diagonals of quadrangle abed If 

ae = be and Lead = Lebc, then prove abj)dc (Fig. 1). 

As discussed before, the Grobner basis method fails in proving this problem because 

order relation eqang is included in the hypotheses (see Figs. 2 and 3). In the integrated 
reasoning, first the forward reasoning was activated. Although eight geometric axioms 
and theorems were applied to derive ten new geometric relations (Fig. 8), the conclusion 
could not be proved. Then, since the conclusion is non-order relation para(a, b , d, c> , 
the Grobner basis method was applied using the expanded hypotheses and the conclusion. 
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__ - 
EQSEG =[iseg(a,c),seg(b,d)l [seg(a,d),seg(b,c)l 

[seg(a,e).seg(b,e)l [segk.e),seg(d.e)ll 

EQANG =[[ang(a,la.bl.[a.dl), ang(b,[b,al.[b,cl) 3 

[asg(a,[a.bl.ra.e,cl~. ang(b.Cb.al,[b.e,dl) 1 

~ang~a.~a,dl.~a,e,cl~. ang(b,[b.cl,[b.e.dl) 1 
[ang(c.Cc,bl.[c.dl). ang(d,[d,al,[d.cl) 1 
[ang(i,[c,b],tc.e,a:). ang(d,Ld,al,[d.e,bl) 1 
[ang(c,ic.dl,[c,e.al). ang(d.[d.cl,[d,e,bl) I 
[ang~e,~a.e.il,~b.e,dl~.ang~e.~c,e.al,~d,e.~l~l 

[.~g~..Ia,e.cl,~d,e,bl~,ang~e,~b.e.dl,~c,e.a~~ll 

PARA =[I 

RANCLE= [I 

OTHERS= [I 

Fig. 8. Internal representation of the reasoning process in Example I. 

25 polynomial equations were derived from the logical descriptions, and it was shown 

that their Grijbner bases included I. Thus the problem was proved successfully. 

5.S. Example 2 

Problem. Let abc be a triangle with right angle Labc and d be the midpoint of the 

diagonal side ac. Let f be the root of the perpendicular from d to side ab, and e 

the point on the extended perpendicular such that ad = de. If we connect e with a 
respectively c by line segments, then prove Lace = Lecb (Fig. 4). 

Since this problem also includes eqang, the forward reasoning was conducted first 

to derive 12 new geometric relations (Fig. 9). Here again the logical reasoning failed, 

which then activated the backward reasoning because the conclusion was described 
by eqang. First two sub-goals were generated using the equivalent classes defined 
by eqang, to which four geometric axioms and theorems were applied to generate 

six sub-sub-goals. From a sub-goal at the first level eqang(ang(c, Cc,bl , Cc,el ) , 
ang(e, [e,c], [e,f ,dl)), para([b,c], Ce,f ,dl) was derived as a sub-sub-goal. 
Here, the directions of two lines Cb, cl and Ce , f , dl were shown to coincide with each 
other because points b and f are aligned on the same line [a,f , b] and points c and d 

are aligned on the same line [a, d, cl. Therefore, this sub-sub-goal can be considered 
as being described by non-order relation para. Consequently, the Grobner basis method 

was applied using the expanded hypotheses and this sub-sub-goal. Then it was shown 
that the Griibner bases of the 37 derived polynomials included 1, and hence the problem 
was proved successfully. 

5.4. Example 3 

Problem. Given a triangle abc, let d be the point on side bc such that ab = bd = dc 
and m the point on side ab such that mdjjac. Let e be the midpoint of segment bd and n 
the intersection of line segments ae and dm. Then prove Lead = Ldae ( [ 161 Fig. 10). 

The similar forward and backward reasonings were conducted to produce the expanded 
hypotheses (Fig. 11) and two sub-goals based on the equivalent classes defined by 

eqang. 
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EPSEG =[[seg(a,d),se~(c.d).seg(d.e)l] 

EPANC =[[ang(a,la,d.cl.Ca,el), ang(e,[e,al,~e.f,dl) I 

Cang(b.[b.cl,[b,f.al). a”g(f.[a.f,bl. [d.f,el), 
a”g~f.~a,f,bl,~e.f.dl~.a”g~f,~b,f,al,~d.f.el~. 
a”g(f,[b,f,al.[e.f.dl~ 1 

~a”g~c.~c.bl,~c,d.al~. ang~d,ic.d,al.~d,f,el~l 
[ang(c.[c,d.al.lc.el). a”g(e,[e.cl,[e,f,dl) 11 

PARA =[I 

RANCLE=[ang(b.[b.cl .[b.f,al). ang(f.[a.f,bl.[d.f,el), 
a”g~f.~a.f.bl,~e,f.dl~,ang~f,~b,f,al.~d,f,el~, 
ang(f,[b.f,al.[e.f,dl) 1 

OTHERS=~perpen~~a,b,fl.~b.cl~.perpen~~a.b,fl,~d,e,fl~, 
mldpoint(d.a,c) 1 

Fig. 9. Internal representation of the reasoning process in Example 2. 

Hypotheses: llne(tb.e,d,cl). llne(la,dl) 
I~“e([b,m.al). eqseg(a,b.b,d). 
ll”e(ra.n.el). eqseg(b,d.d,c). 
hle([a,cl). eqseg(b.e.e,d). 
hne(h,n.dl). para(a.c.m.d). 

Conclusxon: eqa”g(c,a,d,d.a,e). 

Fig. 10. Example 3 (from [16]). 

EPSEG =[[seg(a,b),seg(b.d).seg(c.d)l 
[seg(b,e).seg(d.e)ll 

EQANG =[hng(a, h.cl, [a,dl), an&d. [d,al s [d.n.mll) 1 
[ang(a.ia.cl,[a,m.bl). angh [a,m.bl, [m,“.dl) 1 
lang~a.~a.cl,~a.n.el~. ang(n,[a,n.el.[m,“.dl). 
ang(n,[d.n,ml.[e.“.aJ~ 1 

[an&, la.dl, [a.m.bl). ang(d.[c,d,e,bl.[d.al) 1 

[ang(c.~c,al.[~~d,e.bl).ang(d,[c.d.e.bl.[d,n,ml)l 
~a”g~n,~a,“.el,~d.n.ml~.ang~n.~e,n.al.~m.n,dl~ 11 

PARA =[[[a.cl.[n.n.dll 
[Ic,al.~d,n.mlll 

RANGLE= Cl 
OTHERS=~m~dpoint~d.b.c~.midpaint~e.b.d~l 

Fig. 11. Internal representation of the reasoning process in Example 3 

The first sub-goal eqang(ang(a, Ca,dl, la,n,el),ang(d,Cd,al, Cd,n,ml)> 
was successfully transformed to a single sub-sub-goal without any order relation 
para( Ca , n, el , Cm, n, dl > by the backward reasoning. Then, the Griibner basis method 
was applied, but it was terminated by time-out. Note that since this sub-sub-goal is not 
a valid proposition, the Griibner basis method cannot prove it in theory. 

Next, from the second sub-goal eqang(ang(a, Ca,dl, Ca,n,el>, 
ang(d, Cd,al , Cd,n,ml)>, a single sub-sub-goal eqseg(seg(a,n), seg(d,n)) was 
generated. This time, the Grobner basis method worked successfully for 37 polynomial 
equations, and the problem was proved. 



6. Conclusion 

In this paper we first pointed out that the algebraic reasoning by the Grobner basis 
method (and Wu’s method) cannot handle order relations correctly although they are 
essential to geometric reasoning. To solve this problem, we proposed an integrated 

logical and algebraic reasoning method. In our method, the logical reasoning decomposes 
a given geometric problem into sub-problems as well as derives new geometric relations. 
Then those sub-problems without order relations are solved by the Grobner basis method 
using the original and newly derived hypotheses. In other words, logical and algebraic 

reasoning modules cooperate with each other to solve the geometric problem. We proved 
the soundness of our integrated reasoning method and demonstrated its effectiveness with 
illustrative examples which could not be proved by the Grobner basis method alone. 

The following are future problems to be studied. 
( I ) The current system cannot prove those problems whose conclusions (and sub- 

goals) include order relations between. Moreover, reasoning based on ord-para 
and para in the current system is not sophisticated. To handle these order 

relations, we have to analyze their fundamental conceptual structures extensively 
and develop a more capable logical reasoning method. 

(2) The current system cannot handle algebraic relations between angles: e.g. the 
algebraic constraint that the sum of three interior angles of a triangle is equal to 
180”. To handle these relations, we have to introduce another algebraic reasoning 

mechanism. 
( 3 ) Many geometric problems include complex objects with internal structures (e.g. 

polygons) and propositions about their quantitative properties (e.g. area sizes). 
To handle these geometric concepts, we have to introduce a higher-level descrip- 
tive method to represent regions and planes by sets of points. 
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