
Journal of Functional Analysis 161, 289�363 (1998)

Computer Assistance for ``Discovering'' Formulas in
System Engineering and Operator Theory*

J. William Helton and Mark Stankus

Department of Mathematics, University of California, San Diego, California

Communicated by Ciprian Foias

Received June 6, 1996; accepted January 8, 1998

The objective of this paper is two-fold. First we present a methodology for using
a combination of computer assistance and human intervention to discover highly
algebraic theorems in operator, matrix, and linear systems engineering theory. Since
the methodology allows limited human intervention, it is slightly less rigid than an
algorithm. We call it a strategy. The second objective is to illustrate the metho-
dology by deriving four theorems. The presentation of the methodology is carried
out in three steps. The first step is introducing an abstraction of the methodology
which we call an idealized strategy. This abstraction facilitates a high level
discussion of the ideas involved. Idealized strategies cannot be implemented on a
computer. The second and third steps introduce approximations of these abstrac-
tions which we call prestrategy and strategy, respectively. A strategy is more general
than a prestrategy and, in fact, every prestrategy is a strategy. The above mentioned
approximations are implemented on a computer. We stress that, since there is a
computer implementation, the reader can use these techniques to attack their own
algebra problems. Thus the paper might be of both practical and theoretical interest
to analysts, engineers, and algebraists. Now we give the idea of a prestrategy.
A prestrategy relies almost entirely on two commands which we call NCProcess1
and NCProcess2. These two commands are sufficiently powerful so that, in many
cases, when one applies them repeatedly to a complicated collection of equations,
they transform the collection of equations into an equivalent but substantially
simpler collection of equations. A loose description of a prestrategy applied to a list
of equations is:

(1) Declare which variables are known and which are unknown. At the
beginning of a prestrategy, the order in which the equations are listed is not
important, since NCProcess1 and NCProcess2 will reorder them so that the
simplest ones appear first.

(2) Apply NCProcess1 to the equations; the output is a set of equations,
usually some in fewer unknowns than before, carefully partitioned based upon
which unknowns they contain.

(3) The user must select ``important equations,'' especially any which solve
for an unknown, say x. (When an equation is declared to be important or a

Article ID jfan.1998.3249, available online at http:��www.idealibrary.com on

289
0022-1236�99 �30.00

Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* This work was sponsored by the Air Force Office for Scientific Research and by the
National Science Foundation.

variable is switched from being an unknown to being a known, then the way in
which NCProcess1 and NCProcess2 reorder the equations is modified.)

(4) Switch x to being known rather than unknown. Go to (2) above or stop.

When this procedure stops, it hopefully gives the ``canonical'' necessary conditions
for the original equations to have a solution. As a final step we run NCProcess2
which aggressively eliminates redundant equations and partitions the output
equations in a way which facilitates proving that the necessary conditions are also
sufficient. Many classical theorems in analysis can be viewed in terms of solving a
collection of equations. We have found that this procedure actually discovers the
classic theorem in a modest collection of classic cases involving factorization of
engineering systems and matrix completion problems. One might regard the
question of which classical theorems in analysis can be proven with a strategy as
an analog of classical Euclidean geometry where a major question was what can
be constructed with a compass and ruler. Here the goal is to determine which
theorems in systems and operator theory could be discovered by repeatedly applying
NCProcess1 and NCProcess2 (or their successors) and the (human) selection of
equations which are important. The major practical challenge addressed here is
finding operations which, when implemented in software, present the user with
crucial algebraic information about his problem while not overwhelming him with
too much redundant information. This paper consists of two parts. A description of
strategies, a high-level description of the algorithms, a description of the applica-
tions to operator, matrix, and linear system engineering theory, and a description
of how one would use a strategy to ``discover'' four different theorems are presented
in the first part of the paper. Thus, one who seeks a conventional viewpoint for this
rather unconventional paper might think of this as providing a unified proof of
four different theorems. The theorems were selected for their diverse proofs and
because they are widely known (so that many readers should be familiar with at
least one of them). The NCProcess commands use noncommutative Gro� bner Basis
algorithms which have emerged in the last decade, together with algorithms for
removing redundant equations and a method for assisting a mathematician in
writing a (noncommutative) polynomial as a composition of polynomials. The
reader needs to know nothing about Gro� bner Basis to understand the first part of
this paper. Descriptions involving the theory of Gro� bner Basis appear in the second
part of the paper. � 1999 Academic Press

Contents.
I. Strategies and applications

1. Introduction. 1.1. Background on polynomial equations and ideals. 1.1.1. A few
polynomial equations. 1.1.2. Solutions of polynomial equations and ideals.
1.2. A highly idealized picture. 1.2.1. Basic ``idealized'' operations. 1.2.2. Ideal-
ized strategies. 1.2.3. New derivations of classical theorems: idealized picture.
1.3. A practical picture. 1.3.1. NCProcess commands. 1.3.2. New derivations of
classical theorems: practical picture. 1.4. Algorithms and their properties.
1.4.1. Obtaining smaller Bases; shrinking. 1.4.2. Noncommutative elimination
theory. 1.5. A practical notation. 1.6. Computational concerns.

2. Prestrategy. 2.1. Elimination. 2.2. NCProcess. 2.2.1. The input and output
of NCProcess. 2.2.2. A simple example of NCProcess1. 2.2.3. Categories.
2.2.4. Comparison of NCProcess and Categorize. 2.3. Prestrategy. 2.3.1. When
to stop; the end game.

290 HELTON AND STANKUS

3. Example: The Bart�Gohberg�Kaashoek�Van Dooren Theorem. 3.1. Background.
3.2. The problem. 3.3. Solution via a prestrategy. 3.4. The end game. 3.5. Con-
cluding Remarks.

4. Examples: Matrix Completion Problems. 4.1. The partially prescribed inverse
problem. 4.2. Unitary case of Parrot's Lemma.

5. Strategies and Motivated Unknowns. 5.1. Strategy. 5.2. Computing decomposi-
tions. 5.2.1. NCCollectOnVariables. 5.2.2. Introducing a new motivated
unknown.

6. Example: Solving the H � Control Problem. 6.1. Problem statement. 6.2. Solving
(HGRAIL) using NCProcess. 6.2.1. Step 1: Process and Collect. 6.2.2. Step 2:
The user attacks. 6.2.3. Step 3. 6.2.4. Step 4. 6.3. End game.

7. Monomial Orders.
8. Summary.
9. Appendix to Part I: More details on NCCollectOnVariables. 9.1. Collecting

against a set of expressions. 9.2. NCCollectOnVariables.
II. Theory and More Details.
10. Background on Ideals and Gro� bner Bases. 10.1. The reduction process. 10.2. The

basis algorithm.
11. A Gro� bner Basis Theorem on Elimination Ideals.
12. Finding a Small Generating Set for an Ideal. 12.1. The need to consider small

generating sets. 12.2. Preview of operations. 12.3. The SmallBasis operation.
12.3.1. Approximation of the SmallBasis operation. 12.4. The ShrinkBasis
operation. 12.5. Gro� bner Graph: Background for the RemoveRedundant
Operation. 12.5.1. Gro� bner Basis Background. 12.5.2. The graph. 12.5.3. Defini-
tion of a Gro� bner Graph. 12.6. The RemoveRedundant operation. 12.7. Respect
for categories. 12.7.1. Idealized shrinking by category. 12.7.2. Practical shrinking
by category. 12.8. Remove Redundant Protected.

13. Speeding up runs. 13.1. DegreeCap and DegreeSumCap. 13.2. Monomial orders
vs. run time.

14. Details of NCProcess. 14.1. NCProcess1 command. 14.2 NCProcess2 command.
Appendixes. A. Adjoints. B. Example of discovering. C. Formal descriptions of pure

lex and multigraded lex. C.1. An ordering on Nn. C.2. Formal description of
pure lex. C.3. Formal description of multigraded lex.

I. STRATEGIES AND APPLICATIONS

1. INTRODUCTION

The goal in this paper is to describe and illustrate a highly computer
assisted method for discovering certain types of theorems. Many theorems
in operator theory and engineering systems theory amount to giving
hypotheses under which it is possible to solve large collections of equations.
At the beginning of ``discovering'' a theorem, the problem is to determine
the nature of solutions to a large collection of equations. Discovering a
theorem involves exploring the consequences of these equations until a
simpler equivalent set of equations is found.

291``DISCOVERING'' FORMULAS

The equations mentioned above take the form of a polynomial,1 with
matrices or operators substituted for the variables, set equal to zero.

Vast experience with the commuting case of the manipulation of collec-
tions of equations suggests that using a noncommutative Gro� bner Basis
algorithm is an essential tool for analyzing systems of equations.

We wish to stress that one does not need to know a theorem in order to
``discover'' it using the techniques in this paper. Furthermore, any method
which assumes that all of the hypotheses are known at the beginning of the
computation or that all of the hypotheses can be stated algebraically will
be of limited practical use. For example, since the Gro� bner Basis algorithm
only discovers polynomial equations which are algebraically true and not
those which require analysis or topology, the use of this algorithm alone
has a limited use. Insights gained from analysis during a computer session
could be added as (algebraic) hypotheses while the session is in progress.
Decisions can take a variety of forms and can involve recognizing a Riccati
equation, recognizing that a particular square matrix is onto and so
invertible, recognizing that a particular theorem now applies to the
problem, etc. The user would then have to record and justify these
decisions independently of the computer run.2 While a strategy allows for
human intervention, the intervention must follow certain rigid rules for the
computer session to be considered a strategy.

One thing to bear in mind when reading the examples in this paper is
that they present not just proofs but also the methods for discovering proofs.
This makes their presentation longer than the mere presentation of the
slickest known proof. Also, to a specialist, some of the examples have the
feel of a ``back of the envelope computation.''

The software which was developed for this paper is freely available. It
may be downloaded from the NCAlgebra web site at http:��math.ucsd.
edu�tncalg. The code is accessed through Mathematica. The bulk of the
computations are performed by the C++ code. This is invisible to the user.
The output is automatically displayed to the screen. The output is for-
matted using the program LATEX. One would probably want to use this
software in conjunction with NCAlgebra which is the main Mathematica
package for doing noncommutative algebraic computations. NCAlgebra is

292 HELTON AND STANKUS

1 Informally, a noncommutative polynomial in the indeterminates x1 , ..., xn over the field K
is a polynomial, but one removes the assumption that the indeterminates commute (e.g.,
x1 x2&x2 x1 is not the zero polynomial). Formally, a noncommutative polynomial in the
indeterminates x1 , ..., xn over the field K is a formal sum of elements of formal products ct
where c # K and t is a member of the free semigroup generated by [x1 , ..., xn].

2 See Appendix B for an example of this.

also available from the web site http:��math.ucsd.edu�tncalg.3 This exten-
sive software makes these techniques available for exploration of a new and
unusual type of question in operator theory or systems engineering: which
classical theorems in operator theory or systems theory can be ``discovered''
using a strategy? Of course we hope new theorems will be discovered, but
the best place to evaluate these ideas is on the classics.

1.1. Background on Polynomial Equations and Ideals

When doing analysis, there is often an algebraic component to the
calculations. This algebraic component involves a collection of polynomial
equations in a finite number of variables which are to be evaluated at
elements of some algebra A��the algebra might be n_n matrices, bounded
linear transformations on a complex separable Hilbert space or a variety of
other algebras.4 This paper concerns algorithms which assist in transform-
ing the collection of equations into a more suitable form.

In this paper, we will blur the difference between the polynomial
equation p=q and the polynomial p&q. An algebraist would say that p is
a relation and an analyst would say that p=0 is a polynomial equation.
The difference in language does not lead to problems.

1.1.1. A Few Polynomial Equations

We set the stage by listing a (very) few polynomial equations which
commonly occur in analysis.

(1) A matrix T is an isometry if and only if T*T&1=0, that is, if
(T, T*) is a zero of a (noncommutative) polynomial.

(2) X satisfies a Riccati equation AX+XA*+XRX+Q=0 if and
only if (A, A*, X, R, Q) is a zero of a (noncommutative) polynomial.

(3) A matrix T is an coisometry if and only if TT*&1=0, that is,
if (T, T*) is a zero of a (noncommutative) polynomial.

293``DISCOVERING'' FORMULAS

3 The C++ code compiles with the free compiler g++ (version 2.6.3 or higher) from the
Free Software Foundation. The C++ code is about 15,000 lines and compiles to a binary of
about 1.5 megabytes on a Sun Workstation. We have compiled it with g++ version 2.6.3 on
a Sun Workstation running Sun OS 4.1.3 and with g++ version 2.7.2 on a PC running
Linux. The minimal Mathematica code needed is about 0.30 megabytes, while the Mathe-
matica code for NCAlgebra is about 0.75 megabytes.

4 One can often consider problems which do not seem to involve a single algebra. An exam-
ple is to consider computations involving m_m, m_n, n_m and n_n matrices. Even though
the union of these four sets of matrices is not an algebra, one can create an algebra in which
one can embed these four algebras. Without going into the details, this can be done using a
path algebra where Rm and Rn are vertices and, for example, an m_n matrix is a path from
the Rm vertex to the Rn vertex, c.f. [FaFeGr].

(4) A matrix A is invertible if and only if there exists a matrix B such
that AB&1=0 and BA&1=0, that is, if (A, B) is a common zero of two
(noncommutative) polynomials.

(5) A bounded linear transformation V of a complex Hilbert space is
a partial isometry if and only if V*VV*=V*, that is (V, V*) is a zero of
a (noncommutative) polynomial.

(6) A bounded linear transformation T of a complex Hilbert space
has a pair of complementary invariant subspaces if and only if there exist
operators P1 and P2 such that P2

1=P1 , P1=P1* , P2
2=P2 , P2=P2*,

P1+P2=1, P1TP1=TP1 and P2TP2=TP2 , that is, (P1 , P1*, P2 , P2* , T)
is a common zero of seven (noncommutative) polynomials.

(7) Using a polar decomposition of a bounded linear transformation
of a complex Hilbert space T is equivalent to introducing bounded linear
transformations P and V such that T=PV, V*VV*=V*, P=P* and
P�0, that is, (T, P, P*, V, V*) is a common zero of three (noncom-
mutative) polynomials and one additional constraint holds. Using the idea
of a strategy (which is to be given in this paper), one can use such
additional constraints to one's advantage during an algebraic computation.

(8) (V1 , V2) is a pair of commuting isometries if and only if V1 and
V2 are isometries (V1*V1=1, V 2*V2=1) and V1 and V2 commute (V1V2=
V2V1). The pair (V1 , V2) lifts to a pair of commuting unitaries if and only
if there exists U1 , U2 , L1 and L2 such that L1 and L2 are an isometries
(L1*L1=1, L2*L2=1), U1 and U2 are unitaries (U 1*U1=1, U1U 1*=1,
U2*U2=1, U2U 2*=1) and U1 and U2 commute (U1 U2=U2 U1) and L j

intertwines Vj and Uj for j=1, 2 (U1L1=L1V1 and U2L2=L2V2).
Therefore, the pair (V1 , V2) lifts to a pair of commuting unitaries if and
only if (V1 , V1* , V2 , V2* , U1 , U1* , U2 , U2*, L1 , L1* , L2 , L2*) is a common
zero of 12 (noncommutative) polynomials.

We can summarize the above examples by saying that a number of
properties of matrices and operators (bounded linear transformations of
complex Hilbert space) are equivalent to the statement that a tuple of
matrices (or tuple of operators) is a common zero of a set of polynomial
equations. We now discuss the traditional connection between common
zeros and ideals.

1.1.2. Solutions of Polynomial Equations and Ideals

Let K[x1 , ..., xn] denote the set of (noncommutative) polynomials in
the indeterminates x1 , x2 , ..., xn over a field K. K[x1 , ..., xn] is a noncom-
mutative algebra. Let p1 , ..., pm # K[x1 , ..., xn], C be a set of polynomials
[p1 , ..., pm] and r=(r1 , ..., rn) with each rj # A. If r is a common zero of
p1 , ..., pm , then r is a zero of every polynomial p which lies in the smallest

294 HELTON AND STANKUS

ideal IC generated by C. Furthermore, if [q1 , ..., ql] is a generating set
for the ideal IC , then r is a common zero of the p's if and only if it is a
common zero of the q's. These ideas are learned by most mathematics
undergraduates in the case that the indeterminates xj lie in a commutative
algebra and they also hold when the xj lie in a noncommutative algebra.

The practical value of doing this algebraic manipulation is that instead
of trying to solve for the common zeros of p1 , ..., pm directly, it could be
advantageous to find a different set C$=[q1 , ..., ql] of polynomials which
generates the same ideal as [p1 , ..., pm] and then solve for the common
zeros on the q's. For example, C$ might consist of decoupled polynomial
equations which could be solved numerically (say using Matlab) while the
original set C produces numerically intractable problems.

The reader who is interested in seeing examples at this point might decide
to skip directly to Section 3.

1.2. A Highly Idealized Picture

While what we do in the paper is symbolic computation and centers on
computer experiments, perhaps the simplest description of the ideas is in
terms of an idealized problem in noncommuting algebra. We first consider
two extremely powerful hypothetical operations and then show in
Section 1.2.2 how they are combined in what we call an idealized strategy.

1.2.1. Basic ``Idealized '' Operations

Suppose that we are in a context where there are knowns [a1 , ..., ar] and
unknowns [x1 , ..., xs].

The first operation which we consider is called Categorize. There are two
key ideas behind the functioning of Categorize. Firstly, it finds equations
not involving any unknowns, equations involving one unknown, equations
involving two unknowns, etc. We will give an example below which shows
how this can be beneficial. Secondly, Categorize applies to polynomials
which are members of IC _ C$, but which are not members of IC$. More
precisely, Categorize associates to two collections of polynomials C and C$
(in K[a1 , ..., ar , x1 , ..., xs]), the collection [Pj] j�0 of subsets of IC _ C$.
Each Pj consists of polynomials which depend on exactly j unknowns and
which lie in IC _ C$"IC$, that is, which are members of IC _ C$ but which are
not members of IC$. Categorize is not implementable on a computer,
because subsumed in the Categorize command is the ability to eliminate
unknowns (whenever algebraically possible) from equations in the original
set of polynomial equations. In fact, the paper [TMora] shows that there
does not exist a computer algorithm which can determine whether or not
P1 is the empty set.

295``DISCOVERING'' FORMULAS

For an example of how Categorize can be useful, suppose that C is a
collection of polynomial equations in knowns aj and unknowns xk . If it
could be shown algebraically that the Riccati equation x1a1 a2x1+a1x1+
x1 a3+a4=0 follows from C, then this Riccati equation would be a
member of P1 . Knowing that x1 satisfies a Riccati equation can be of great
value since Riccati equation can be quickly solved numerically. In this
example, C$ is the empty set.

A slightly more complicated example would be if it could be shown
algebraically that an expression, such as x1 x2+x3 , solved a Riccati
equation, e.g., if

(x1x2+x3) a1 a2(x1x2+x3)+a3(x1 x2+x3)+a5a6=0 (1.1)

follows from a collection of polynomial equations C. The left hand side of
(1.1) would depend on three unknowns x1 , x2 , and x3 and, therefore,
would be a member of P3 , not P1 . It is natural, however, to view (1.1) as
an equation in one new unknown y and to rewrite the left hand side of
(1.1) as the composition

k(a1 , ..., a6 , q(a1 , ..., a6 , x1 , x2 , x3))

where q(a1 , ..., a6 , x1 , x2 , x3)=x1 x2+x3 and k(a1 , ..., a6 , y)= ya1 a2 y+
a3 y+a5 a6 . In this example, we would call y a motivated unknown. The
second of our two idealized operations is called Decompose and associates
to a polynomial p all non-trivial maximal compositions.5 Decompose, there-
fore, produces motivated unknowns. Decompose will not be used, or dis-
cussed further, until Section 5.

1.2.2. Idealized Strategies
We now describe what we mean by an idealized strategy. An idealized

strategy uses the Categorize and Decompose operations. While an idealized
strategy cannot be implemented on a computer, approximations of it can
be implemented and the use of these approximations is the core of our
paper.

An idealized strategy is an iterative procedure which would invoke
Categorize on the pair of sets of polynomial equations C and C$ (C$ is
initially empty), allow creation of motivated unknowns, allow for
unknowns to be redeclared as knowns and allow for human intervention.
Human intervention would consist of selecting particular equations which

296 HELTON AND STANKUS

5 If p and k are polynomials and k is a polynomial in one unknows (say y), then we say
polynomial p is a composition of k and q if we can obtain p by replacing every occurrence
of y with q, that is, p(a1 , ..., ar , x1 , ..., xs)=k(a1 , ..., ar , q(a1 , ..., ar , x1 , ..., xs)). If p is a
composition of k and q, then the composition is trivial if and only if k has the form
k(a1 , ..., ar , y)=cy+d for some scalars c and d. The decomposition is called maximal if k has
no non-trivial decomposition.

are nice in some way (e.g., this is a Riccati equation), adding them to the
collection C$ and possibly selecting a motivated unknown y as described
above. This procedure would terminate when the ideal generated by
P0 _ C$ equals the ideal generated by C _ C$. This, of course, is equivalent
to the condition that Pj is a subset of IP0 _ C $ for each j�1. In other words,
an idealized strategy terminates when all of the polynomial equations
which can be derived algebraically and involve unknowns can be derived
algebraically from the equations in C$ together with the equations which
do not involve unknowns.

If the reader would indulge us, we now discuss a more visual way of
thinking about idealized strategies. For ease of exposition, the discussion in
this paragraph will ignore the possibility of introducing motivated
unknowns, the redeclaration of unknowns as knowns or human intervention.
For each pair of collections of polynomials C and C$, suppose that one has
an idealized display:

P0 is the set of equations in IC _ C $"IC $ which have exactly 0 unknowns. =
The equations in C $ are shown here

The equations in P1 are shown here.

=
IC _ C $"ICP1 is the set of equations in IC _ C $"IC $ which have exactly 1 unknowns.

The equations in P2 are shown here.
P2 is the set of equations in IC _ C $"IC $ which have exactly 2 unknowns.

The equations in P3 are shown here.
P3 is the set of equations in IC _ C $"IC $ which have exactly 3 unknowns.

v
v
v

When one begins using an idealized strategy, C would be the collections
of equations coming from the problem at hand and C$ would be initially
empty. During each iteration of a strategy, one would choose a number of
polynomials from the ideal IC _ C$ generated by C _ C$, (that is, below the
dark line) and place them in C$ (that is, above the dark line). The idealized
display would then adjust itself so that what appears in P0 above the line
and what appears below the line corresponds to the new value of C$. When
the equations below the dark line are in the ideal generated by the equa-
tions above the dark line, the idealized strategy is complete. If C$0=[] and,
for 1�k�l, C$k is produced from C and C$k&1 using one step of an
idealized strategy and each equation which is in C$k but not in C$k&1 has
at most 1 (motivated) unknown, then we say that C$l is derivable from C
by an idealized strategy.

A question about strategies is
Which classical results can be derived using an idealized strategy?

297``DISCOVERING'' FORMULAS

This question gives an abstract statement of what we address in this
paper.

One intends, of course, to move beyond this question to the derivation
of new theorems. However, in the early stages of the subject, we think that
the most urgent task is to understand classical theorems from this view-
point. Evaluating these new and unusual techniques on a new and not well
understood problem gives less of an idea of their strength than evaluating
them on a well understood problem. Typically, if we derive a new theorem
using symbol manipulation, then one can go back and produce a proof by
hand, using ideas gotten from the symbolic manipulation.

1.2.3. New Derivations of Classical Theorems: Idealized Picture

We shall see in this paper that the algebra components of four theorems
can be ``discovered'' using a strategy:

(1) The minimal factorization of a system due to Bart�Gohberg�
Kaashoek and van Dooren.

(2) The Doyle�Glover�Khargonekar�Francis theorem of H� control.

(3) A matrix completion theorem due to W. W. Barrett, C. R.
Johnson, M. E. Lundquist, and H. Woerderman.

(4) A matrix completion theorem due to Steve Parrot.

We can interpret this from a traditional viewpoint as the following
theorem.

Theorem 1.2. The key formulas in Theorems 1, 3, 4 above can be derived
with an idealized strategy.

We use the name 1-Decompose to also refer to the Decompose opera-
tion, we use the name 1-motivated unknown to refer to motivated
unknown and we use the name idealized 1-strategy to refer to an idealized
strategy. For the 1-Decompose operation, the key was to find a polynomial
k in the knowns and one unknown and a polynomial q such that when q
is substituted for the one unknown of k, one obtains p. Likewise, we could
consider l-decompositions which would consist of finding a polynomial k
in l unknowns and l polynomials q1 , ..., ql such that when qj is substituted
for the jth unknown for 1� j�l, one obtains p. An l-Decompose opera-
tion would then be an operation which found all j-motivated unknowns for
1� j�l and an idealized l-strategy would allow the use of the l-Decom-
pose operation.

A variant on 1-Decompose which we shall use frequently is called
symmetric 1-Decompose. This applies in an algebra with involution, w � w*
for all w, for example, a matrix algebra with adjoints or transposes.

298 HELTON AND STANKUS

Symmetric 1-Decompose applied to p yields a 2-decomposition of
p as p(a1 , ..., ar , x1 , ..., xs)=k(a1 , ..., ar , q(a1 , ..., ar , x1 , ..., xs), q(a1 , ..., ar ,
x1 , ..., xs)*) where the second polynomial q(a1 , ..., ar , x1 , ..., xs)* is the
adjoint of the first.6

We were not able to derive the key formulas of the theorem of item 2
above with a 1-strategy, but they can be derived with a symmetrized
2-strategy.7 The use of a symmetrized 2-strategy forces human intervention,
but it is small because the 2-decomposition required is easy to recognize
from the output of the NCProcess1 command. (Note that it originally took
5 years to discover the theorem).

There are less conservative ways of choosing knowns and unknowns
under which the derivation would be classed as a symmetrical 1-strategy.

1.3. A Practical Picture

As mentioned before, an idealized strategy cannot be implemented on a
computer. Section 1.3.1 gives a very brief introduction to the command
which will be used to approximate to an idealized strategy.

1.3.1. NCProcess Commands

The idealized operations Categorize and Decompose cannot be
implemented on a computer. There are two difficulties with implementing
an approximation to the Categorize operation. The first difficulty is that a
computer cannot generate the ideal IC . The second difficulty is that if a
human is presented with a large subset8 of the ideal IC , then looking for
``interesting'' polynomials to place in C$ can be overwhelming.

The NCProcess commands approximate the Categorize and Decompose
operations and address the two difficulties mentioned above. This paper
studies two such commands, NCProcess1 and NCProcess2. NCProcess1
functions as follows:

(1) NCProcess1 takes as input a set C of polynomial equations.
Some of these equations may be marked ``important.'' These important
equations are in the set C$ mentioned in Section 1.2.2.

299``DISCOVERING'' FORMULAS

6 The precise algebraic meaning of q(a1 , ..., ar , x1 , ..., xs)* is given in Appendix A. For
example, one must assume that there is a notion of conjugation for the coefficients of q. The
meaning of this notation will be clear from context whenever it is used in this paper. See also
Section 1.5.

7 There are less conservative ways of choosing knowns and unknowns under which the
derivation would be classed as a symmetrized 1-strategy.

8 A canonical choice of a large subset would be a Gro� bner Basis or a subset of a Gro� bner
Basis which could be computed in a reasonable amount of time.

(2) NCProcess1 takes the set C and computes a different set of
polynomial equations by running the noncommuting Gro� bner Basis
algorithm. The Gro� bner Basis Algorithm hopefully eliminates unknowns.

(3) NCProcess1 then attempts to find smaller subsets of the set created
in item 2 which generate the same ideal. The way in which NCProcess1
find smaller subsets is described in Section 12 and in [NCGBDoc],

(4) NCProcess1 then takes the small generating set from item 3 and
``factors'' each polynomial in a way which suggests possible decompositions
to the users.

The NCProcess command is described further in Section 2.2.
Item 4 above is the best approximation which we know to the Decom-

pose operation. The notion of factoring mentioned in item 4 is different
from the standard one and is explained in Section 5.

As a final step we run NCProcess2 which aggressively eliminates redun-
dant equations and partitions the output equations in a way which
facilitates proving that the necessary conditions are also sufficient. In terms
of the list above, NCProcess2 carries out items 3 and 4, but not item 2.
NCProcess2 uses a more aggressive algorithm for item 3 than NCProcess1
uses.

The output from the NCProcess commands is displayed along the lines
of the Categorize operation: NCProcess displays all of the output equa-
tions in one unknown together, two unknowns together, etc. For a more
detailed description of the output, see Section 2.2.3.

1.3.2. New Derivations of Classical Theorems: Practical Picture

A strategy is a practical approximation to an idealized strategy and
is based on replacing the Categorize and Decompose commands with
NCProcess1. The idea of a strategy was described in the abstract, while the
precise definition is given in Section 5.1.

Theorem 1.2 follows from the stronger theorem:

Theorem 1.3. The key formulas in Theorems 1, 3, 4 can be derived with
a 1-strategy.

As an example of how Theorem 1.3 is stronger than Theorem 1.2, we
mention that in defining an idealized strategy, we have often said that
there exist polynomials in the ideal or the user selects certain polynomials
from the ideal. In practice, our implemented operations for automatically
reducing the size of generating sets for polynomial ideals remove many
redundant polynomial equations, and the user can select from this reduced

300 HELTON AND STANKUS

generating set. For an example, see Section 3.4. The user has little work to
do in making a selection. In the same spirit as Theorem 1.3, the theorem
of item 2 of Section 1.2.3 can be derived using a symmetrized 2-strategy.

Note in practice a user can get great benefit from our strategy software
when he thinks up a clever (unmotivated) unknown, but we are unable to
formalize or analyze this type of intervention, so it plays no role in this
paper.

1.4. Algorithms and Their Properties

Finding different sets of noncommutative polynomials which generate
the same ideal is one of the main tasks underlying this paper. The two
implementable operations we find critical to this paper are the Gro� bner
Basis Algorithm and the ``shrinking'' of a basis for a polynomial ideal to a
smaller generating set. These operations are encapsulated in the NCProcess
commands.9

In Part I we give enough of an explanation of the theory behind the
NCProcess commands (Sections 1.3.1, 2.2, and 2.3) for a practitioner,
analyst or engineer to understand the results given in Part I. Part II of
the paper gives details and properties of the algorithms of this paper and
completes the description of the theory behind the NCProcess commands.

1.4.1. Obtaining Smaller Bases; Shrinking

Often the Gro� bner Basis algorithm gives a generating set for a polynomial
ideal which is large enough so that looking for ``interesting'' polynomials
can be overwhelming (see Section 1.3.1); therefore, it is necessary to find a
smaller generating set. It is our belief and experience that most highly
algebraic mathematics theorems amount to giving a small generating set for
an ideal. This is consistent with the esthetic that one wants simple
hypotheses. Also with respect to the use of the theorem for numerics, if one
tries to solve redundant equations, then small errors in data and roundoff
make the equations contradictory. One reason that one does not seek a
minimal (in cardinality) generating set for the ideal is that sometimes one
does not want to eliminate certain equations involving knowns (see
Section 12.7). Algorithms for finding small generating sets for ideals is the
topic of Part II in Section 12.

Section 12 discusses the theory behind the algorithms which we use for
finding small generating subsets11 of a given set. These algorithms also

301``DISCOVERING'' FORMULAS

9 This is available for free. See the NCAlgebra web site http:��math.ucsd.edu�tncalg.
10 Deleted in proof.
11 Small rather than minimal because finding minimal generating subsets is unsolvable by

Lemma 12.2.

pertain to finding minimal generating sets although we do not typically
employ them for that purpose.

1.4.2. Noncommutative Elimination Theory

Those already knowledgeable about computer algebra know that an
important classical property of commutative Gro� bner Basis concerns
elimination ideals. If G is a Gro� bner Basis with respect to an elimination
order (see Definition 11.2), I is the ideal generated by G and Ij is the j th
elimination ideal, then G & Ij is a Gro� bner Basis for Ij . In Section 11, we
generalize this to the noncommutative case. This result is crucial to assur-
ing that the Gro� bner Basis algorithm puts the collection of polynomial
equations into a triangular form. Pure lex and, more generally, multigraded
lex are examples of such elimination orders.

1.5. A Practical Notation

Notice that, in the above text, we always considered polynomials in
indeterminates a1 , ..., ar , x1 , ..., xs . We will be considering matrices or
operators with names such as T, U, T*, T&1, MT, etc. If we continue to use
a's and x's for the indeterminates, then, in practice, one would be required
to keep track of some not-so-easily-rememberable bijection between the
indeterminates and matrices such as the bijection _ define by setting
_(x1)=T, _(x2)=U, _(x3)=T*, etc. Instead we have chosen to use the
same name (or a similar name) for the indeterminate and the corresponding
matrix.

1.6. Computational Concerns

The output from any of the NCProcess commands takes the form of
either a LATEX file or a text file. In some cases, we have slightly reformatted
the LATEX output so that it takes up less space on the printed page. This
change involved displaying two or three equations on one line rather than
presenting one equation on each line.

Since this paper discusses mathematics and does not explain how to use
the code, it is not easy to see that, for the computer experiments presented
in this paper, there is very little which needs to be typed. For example,
when performing the computations in Section 2.2.2, one would not type in
the 5 equations of (2.3). One instead would type in the 2_2 matrix and tell
the computer that it is an isometry and that U is unitary.

302 HELTON AND STANKUS

2. PRESTRATEGY

We feel that it is helpful to begin by introducing a procedure which is
simpler than a strategy, a procedure which we call a prestrategy. Strategies
will be discussed in Section 5.

In Section 1.2.2, an idealized strategy was discussed. It involves the use
of the idealized operations Categorize and Decompose. A prestrategy will
be based on the NCProcess1 and NCProcess2 commands which implement
part of the Categorize operation and will not involve the Decompose
operation at all. The NCProcess commands are based on a Gro� bner Basis
algorithm and much of its power is devoted to eliminating variables for
equations��a topic which we now discuss briefly.

2.1. Elimination

The theory of elimination is well known for the case of commutative
Gro� bner Basis Algorithms (cf., [CLS], Ch. 3) and we show in Part II in
Section 11 that it extends in a strong form to the noncommutative case.

Commutative Gro� bner Basis Algorithms (GBA) can be used to
systematically eliminate variables from a collection of polynomial equa-
tions (e.g., [pj (x1 , ..., xn)=0: 1� j�k1]) so as to put it in triangular form.
One specifies an order on the variables (x1<x2<x3< } } } <xn) which
corresponds to one's priorities in eliminating them. Here the GBA will try
hardest to eliminate xn and try the least to eliminate x1 . The output is a
list of equations in a ``canonical form'' which is triangular:

q1(x1)=0

q2(x1 , x2)=0

q3(x1 , x2)=0
(2.1)

q4(x1 , x2 , x3)=0

} } }

qk2
(x1 , ..., xn)=0.

Here the polynomials [qj : 1� j�k2] generate the same ideal that the
polynomials [pj : 1� j�k1] do. Therefore, the set of solutions to the col-
lection of the polynomial equations [pj=0: 1� j�k1] equals the set of
solutions to the collection of polynomial equations [qj=0: 1� j�k2].
This canonical form greatly simplifies the task of solving the collection
of polynomial equations by facilitating backsolving for xj in terms of

303``DISCOVERING'' FORMULAS

x1 , ..., x j&1 . The effect of the ordering on the variables is to specify that
variables high in the order will be eliminated while variables low in the
order will not be eliminated.

In the noncommutative case, Gro� bner Basis algorithms exist ([FMora]).
One can define lexicographic and lexicographic-like term orders (see
Section 7 and Appendix C). Again, a Gro� bner Basis for a collection of
polynomial equations is a collection of noncommuting polynomial
equations in triangular form (see Theorem 11.3). There are some difficulties
which don't occur in the commutative case. For example, a Gro� bner Basis
can be infinite in the noncommutative case (see Section 12 for a way to
counteract this effect). However, we believe that noncommutative Gro� bner
Basis may prove to be extremely useful, see [HW] or [HSW], for applica-
tions to simplification of complicated expressions. As we shall see, the
present paper concerns a different type of application, that of eliminating
unknowns from collections of equations, which is the main function of the
NCProcess commands.

In this paper, Gro� bner Bases are computed using an algorithm in
[TMora]. See also Section 10 for further discussion. We use the abbrevia-
tions GB and GBA to refer to Gro� bner Basis and Gro� bner Basis Algorithm
respectively. Since we will not always let the GBA run until it finds a
Gro� bner Basis, we will often be dealing with sets which are not Gro� bner
Bases, but rather intermediate results. We call such sets of polynomial
equations partial GBs.

2.2. NCProcess

As we mentioned before, the operation Categorize described in
Section 1.2 is a mathematical abstraction and is an idealization of what can
be done on a practical level. We now discuss the NCProcess commands
which have been implemented and fulfill part of the goals of the Categorize
operation.

While the NCProcess commands make heavy use of the GBA, a person
can use it without knowing anything about GBAs.

2.2.1. The Input and Output of NCProcess

The input to the NCProcess commands is:

I1. A list of knowns.

I2. A list of unknowns (together with an order which gives you
priorities for eliminating them, see Section 7).

304 HELTON AND STANKUS

I3. Collections C and C$ of equations in these knowns and
unknowns.12

The output of the NCProcess commands is a list of expressions which are
mathematically equivalent to C _ C$. When using NCProcess1, this equiv-
alent list hopefully has solved for some unknowns. The output is presented
to the user as

O1. Unknowns which have been solved for and equations which
yield these unknowns.

O2. Equations involving no unknowns.

O3. Equations selected or created by the user.13 An example is given
in the context of S1 and S2 below (Section 2.3) There are also times during
a strategy or prestrategy when one wants to introduce new variables and
equations. This is illustrated in Section 3.

O4. Equations involving only one unknown.

O5. Equations involving only 2 unknowns, etc.

We say that an equation which is in the output of an NCProcess
command is digested if it occurs in items O1, O2, or O3 and is undigested
otherwise. Often, in practice, the digested polynomial equations are those
which are well understood.

We now turn to an example. In Section 2.2.4, we compare the NCProcess
commands to the Categorize operation which was described in Section 1.2.

2.2.2. A simple Example of NCProcess1

A simple example of the use of NCProcess1 is to classify m_n matrices14

x such that

_U
0

x
W& (2.2)

305``DISCOVERING'' FORMULAS

12 C$ consists of equations which are selected or created by the user. In the first run of an
NCProcess command, the set C$ is empty. More details about selecting equations are found
in Section 2.3. See also item O3 below.

13 In the first run of an NCProcess command, there are no equations which are selected or
created by the user. A user-selected equation is a polynomial equation which the user has
selected. When an equation is selected, the algorithms described in Section 12 treat these
equations as ``digested.'' The selected equation is now given the highest priority in eliminating
other equations when NCProcess runs. For example, equations which one knows can be
solved by Matlab can be selected. These equations of this item (O3) are the equations of C$
from item I3 above. More details about selecting equations are found in Section 2.3.

14 This session will also classify bounded linear transformations x. This is slightly less trivial,
because we are not necessarily working in a finite dimensional space.

is an isometry where U is given, U is known to be unitary and W is given.
Thus, we are trying to solve the following collection of equations15 for x.

U*U&1=0 UU*&1=0 U*x=0
(2.3)

x*U=0 x*x+W*W=1

Now, of course, since U* is invertible, x=0. Let us see how NCProcess1
behaves on the equations of (2.3). NCProcess1 creates the following output
which we call a ``spreadsheet.'' The � appearing in the spreadsheet below
may be read as an equal sign.

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[x, x*]
The corresponding rules are the following:

x � 0
x* � 0

The expressions with unknown variables []
and knowns [U, W, U*, W*]
UU* � 1
U*U � 1
W*W � 1

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[]

The polynomials listed in the spreadsheet above16 generated the same
ideal as those in (2.3). Therefore, any solution to (2.3) is a solution of the
equations in the spreadsheet and vice-versa. Therefore, if U is unitary, then
the matrix in (2.2) is an isometry if and only if x is the zero matrix and W
is an isometry.

306 HELTON AND STANKUS

15 Even though this article is not intended as a user manual for the software which we have
developed, it is important to note that there is often very little typing required in order to input
collections of equations. For example, one does not type in the 5 equations of (2.3), but types
in the 2_2 block matrix and tells the computer that it is an isometry and that U is unitary.

16 More precisely, the spreadsheet displays polynomial equations. We shall continue to blur
the distinction between the polynomial equation p=q and the polynomial p&q.

2.2.3. Categories

Suppose we are given a set V of unknown variables and a set of polyno-
mial equations C. By the V-category of C we mean the collection of
polynomial equations p=q of C such that the set of unknowns appearing
in p&q is exactly V. That is, p=q is in the V-category of C if and only if
p=q is in C and each element in V is a variable in p&q and each
unknown in p&q belongs to V. The spreadsheet shown above has three
non-empty categories: a []-category which equals [U*U=1, UU*=1,
W*W=1], a [x]-category which equals [x=0] and a [x*]-category
which equals [x*=0]. In addition to V-categories, we shall keep track of
the singleton category which consists of equations of the form v= p where
v is a single variable, p is a polynomial and satisfies the technical condition
that v is greater than any of the terms appearing in p with respect to the
monomial order (see Section 7). In the example above, the singleton
category consists of the equations x=0 and x*=0. These equations are
very useful because they say one unknown can be solved for in terms of the
others variables (and therefore eliminated). Note there is a (harmless)
overlap between the singleton category and V-categories.

2.2.4. Comparison of NCProcess and Categorize

Structurally, the NCProcess commands act like Categorize, except that
Categorize would create an infinite number of sets each of which are typi-
cally infinite and NCProcess creates a finite number of finite sets. The
following paragraph makes the above statement more precise.

Categorize associates an infinite number of typically infinite sets17

[Pj]j�0 to the sets C and C$ (see item I3 in Section 2.2.1). The union of the
Pj 's is the set IC _ C$"IC$. Therefore, the union of IC$ and the Pj 's is IC _ C$.
On the other hand, when NCProcess is given two collections of equations
C and C$, NCProcess computes a finite number of finite sets [Qj]0� j�N

such that the four properties appearing below hold. Properties 1, 2, and 3
show that a major difference between the Qj 's and the Pj 's is that the union
of IC$ and the P j 's is the ideal IC _ C$, whereas the union of the Q j 's and
C$ is a generating set for the ideal IC _ C$. Property 4 involves a difference
in the way the equations are presented in comparison to the figure in Sec-
tion 1.2.2.

(1) For all j, the elements of Qj are equations which depend on
exactly j unknowns.

307``DISCOVERING'' FORMULAS

17 Either the set Pj is infinite, equals [0] or equals the empty set.
18 Deleted in proof.

(2) For j�1, Qj is a subset of IC _ C$.

(3) The smallest ideal generated by the union of C$ and the sets Qj 's
is IC _ C$.

(4) If there is an equation in Q j which is in the singleton category
(see Section 2.2.3), then this equation is displayed according to item O1
rather than according to items O4 and O5.

The sets Qj above can be related to categories as described in
Section 2.2.3. In a trivial way, the set Qj is precisely the union of
V-categories of D where V ranges over all sets of exactly j unknowns and
where D is the union of the Qj 's.

Both NCProcess1 and NCProcess2 use algorithms which remove redun-
dant equations (see Section 1.4) when forming the sets Qj . Given a
particular input (see Section 2.2.1), the sets Qj which NCProcess1 creates
are, in general, different from the sets Qj which NCProcess2 creates. This
is where the two differences between NCProcess1 and NCProcess2 lie. We
now describe these two differences. Firstly, NCProcess1 runs a GBA before
removing redundant equations, but NCProcess2 does not run a GBA
before removing redundant equations. The role of NCProcess2 is to find a
smaller generating set��not to find new equations which hold. Secondly,
the algorithm which NCProcess2 uses for removing redundant equations is
more aggressive than that of NCProcess1 and, therefore, can take a longer
time to execute. NCProcess2 is used only when it is believed that all of the
interesting equations for the problem under consideration have been found.
NCProcess2 tries to assure that its output has the property that the k th
polynomial on the spreadsheet is not in the ideal generated by the first
k&1 polynomials.19 The output of NCProcess2 is often smaller (and is
never larger) than its input.

2.3. Prestrategy

The idea of a prestrategy is:
The input to a prestrategy is a set of equations C.

S0. Set C$=[] (see Section 2.2.1).

S1. Run NCProcess1 which creates a display of the output (see
O1�O5 in Section 2.2) and look at the list of equations involving only one
unknown (say a particular equation E17 has exactly one unknown x3).

308 HELTON AND STANKUS

19 NCProcess2 cannot guarantee this property, since the ideal membership problem is
known to be unsolvable [TMora].

S2. The user must now make a decision about equations in x3 (e.g.,
E17 is a Riccati equation so I shall not try to simplify it, but leave it for
Matlab). Now the user declares the unknown x3 to be known. The user
would also select the equation E17 as important. User selecting an equation
corresponds to adding it to the set C$.

S3. Either do the ``End game'' (see Section 2.3.1) or Go to S1.

The above listing is, in fact, a statement of a 1-prestrategy. Sometimes
one needs a 2-prestrategy in that the key is equations in 1 and 2 unknowns.

Another point is that the user can select certain equations which he
deems important. The NCProcess commands give these priority over
subsequent equations when eliminating unknowns.

The point is to isolate and to minimize what the user must do. This is
the crux of a prestrategy.

2.3.1. When to Stop; the End Game

The prestrategy described above is a loop and we now discuss when to
exit the loop.

The digested equations (those in items O1, O2 and O3) often contain the
necessary conditions of the desired theorem and the main flow of the proof
of the converse. If the starting polynomial equations follow as algebraic
consequences of the digested equations, then we should exit the above loop.
The starting equations, say [p1=0, ..., pk1

=0], follow as algebraic conse-
quences of the digested equations, say [q1=0, ..., qk2

=0], if and only if the
Gro� bner Basis generated by [q1 , ..., qk2

] reduces (in a standard way) the
polynomial pj to 0 for 1� j�k1 . Checking whether or not this happens is
a purely mechanical process. (See Section 10).

When one exits the above loop, one is presented with the question of
how to finish of the proof of the theorem. We shall call the steps required
to go from a final spreadsheet to the actual theorem the ``end game.'' We
shall describe some ``end game'' technique in Section 8. We shall illustrate
the ``end game'' in Section 3.4 and Section 6.3. As we shall see, typically the
first step is to run NCProcess2 whose output is a very small set of
equations.

3. EXAMPLE: THE BART�GOHBERG�KAASHOEK�VAN DOOREN
THEOREM

In this section, we derive a theorem due to Bart, Gohberg, Kaashoek
and van Dooren. The reader can skip the statement of this theorem

309``DISCOVERING'' FORMULAS

(Section 3.1) if he wishes and go directly to the algebraic problem
statement (Section 3.2).

3.1. Background

Definition. A factorization

�www
[a, b, c, 1]

�www
[e, f, g, 1]

�www
state dim=d1 state dim=d2

of a system [A, B, C, 1] is minimal if the statespace dimension of
[A, B, C, 1] is d1+d2 .

Theorem [BGKvD]). Minimal factorizations of a system [A, B, C, 1]
correspond to projections P1 and P2 satisfying P1+P2=1,

AP2=P2 AP2 and (A&BC) P1=P1(A&BC) P1 . (3.1)

We begin by giving the algebraic statement of the problem. Suppose that
these factors exist. By the Youla�Tissi statespace isomorphism theorem,
there is map

(m1 , m2) : Statespace of the product � Statespace of the original (3.2)

which intertwines the original and the product system. Also minimality
of the factoring is equivalent to the existence of a two-sided inverse
(nT

1 , nT
2)T to (m1 , m2). These requirements combine to imply that each of

the expressions of (FAC) below is zero.

3.2. The Problem

Minimal factors exist if and only if there exist m1 , m2 , n1 , n2 , a, b, c, e, f
and g such that the following polynomials are zero.

310 HELTON AND STANKUS

Am1&m1a&m2 fc Am2&m2e

B&m1 b&m2 f &c+Cm1

n1 m1&1 n2m2&1 (FAC)

n1m2 n2m1

& g+Cm2 m1n1+m2 n1&1

Each of these expressions must equal 0. Here A, B and C are known.
The problem is to solve these equations. That is, we want a constructive

theorem which says when and how they can be solved.

3.3. Solution via a Prestrategy

We now apply a prestrategy to see how one might discover the theorem
of Section 3.2.

We run NCProcess1 for 2 iterations where the input is the equations
(FAC), together with the declaration of A, B, C as knowns and the remain-
ing variables as unknowns. The file created by NCProcess is a list of
equations whose solution set is the same as the solution set for the FAC
equations. The output is the spreadsheet appearing below. (We added the
<=== appearing below after the spreadsheet was created.) The � below
can be read as an equal sign.

THE ORDER IS NOW THE FOLLOWING:
A<B<C<<m1<<m2<<n1<<n2<<a<<b<<c<<d<<e<< f<<g

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[a, b, c, e, f, g]
The corresponding rules are the following:

a � n1Am1 b � n1B c � Cm1

e � n2Am2 f � n2B g � Cm2

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[n1, n2 , m1, m2]

311``DISCOVERING'' FORMULAS

The expressions with unknown variables [n1, m1]
and knowns [A, B, C]
n1m1 � 1
(1&m1n1)Am1&(1&m1n1)BCm1=0 <===

The expressions with unknown variables [n1, m2]
and knowns [A]
n1m2 � 0
n1Am2 � 0

The expressions with unknown variables [n2 , m1]
and knowns [A, B, C]
n2 m1 � 0
n2 BCm1 � n2Am1

The expressions with unknown variables [n2 , m2]
and knowns []
n2 m2 � 1

The expressions with unknown variables [n2 , n1, m2 , m1]
and knowns []
m2n2 � 1&m1n1 <===

The above ``spreadsheet'' indicates that the unknowns a, b, c, e, f, and g
are solved for and states their values. The following are facts about the out-
put: (1) there are no equations in 1 unknown, (2) there are 4 categories of
equations in 2 unknowns and (3) there is one category of equations in 4
unknowns. A user must observe that the first equation20 which we marked
with <=== becomes an equation in the unknown quantity m1 m1 when
multiplied on the right by n1 . This motivates the creation of a new variable
P defined by setting

P1=m1n1 . (3.3)

The user may notice21 at this point that the second equation marked
with <=== is an equation in only one unknown quantity m2n2 once the
above assignment has been made and P1 is considered known. These obser-
vations lead us to ``select'' (see footnote corresponding to O2 in
Section 2.2) the equations m1n1&P1 and m2 n2&1+m1n1 . Since we
selected an equation in m2n2 and an equation in m2n2 , it is reasonable to
select the equations n1m1&1, and n2m2&1 because they have exactly the
same unknowns.

312 HELTON AND STANKUS

20 This polynomial is not written as a rule since it has a collected form as described in
Section 9. This collect form can be used to assist a person in finding decompositions
(Section 1.2.1). This will be described in Section 5.

21 If the user does note notice it at this point, it will become very obvious with an additional
run of NCProcess.

Run NCProcess1 again22 with (3.3) added and P1 declared known as
well as A, B and C declared known. The output is:

THE ORDER IS NOW THE FOLLOWING:
A<B<C<P1<<m1<<m2<<n1<<n2<<a<<b<<c<<e<< f<<g

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[a, b, c, e, f, g]
The corresponding rules are the following:

a � n1Am1 b � n1B c � Cm1

e � n2Am2 f � n2B g � Cm2

The expressions with unknown variables []
and knowns [A, B, C, P1]
P2

1 � P1

&P1A(1&P1)=0
AP1&P1A&(1&P1) BCP1=0

USER CREATIONS APPEAR BELOW

m1m1 � P1

n1m1 � 1
n2m2 � 1
m2n2 � 1&m1n1

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[n1, n2 , m1, m2]

The expressions with unknown variables [n1, m1]
and knowns [P1]
�n1m1 � 1
�m1n1 � P1

The expressions with unknown variables [n2, m2]
and knowns []
�n2m2 � 1

The expressions with unknown variables [n2 , n1, m2, m1]
and knowns []
�m2n2 � 1+ &m1n1

Note that the equations in the above display which are in the undigested
section (i.e., below the lowest line of thick black lines) are repeats of those
which are in the digested section (i.e., above the lowest line of thick black
lines). The symbol � indicates that the polynomial equation also appears

313``DISCOVERING'' FORMULAS

22 There is limit of 2 iterations.

as a user select on the spreadsheet. We relist these particular equations
simply as a convenience. We will see how this helps us in Section 3.4. Since
all equations are digested, we have finished using NCProcess1 (see
Section 3 in Section 2.3). As we shall see, this output spreadsheet leads
directly to the theorem about factoring systems.

3.4. The End Game

The first step of the end game is to run NCProcess2 on the last
spreadsheet which was produced in Section 3.3. The aim of this run of
NCProcess2 is to shrink the spreadsheet as aggressively as possible without
destroying important information. The spreadsheet produced by NCPro-
cess2 is the same as the last spreadsheet which was produced23 in
Section 3.3.

Note that it is necessary that all of the equations in the spreadsheet have
solutions, since they are implied by the original equations. The equations
involving only knowns play a key role. In particular, they say precisely
that, there must exist a projection P1 such that

P1AP1=P1 A and P1 BCP1=P1 A&AP1+BCP1 (3.4)

are satisfied.
The converse is also true and can be verified with the assistance of the

above spreadsheet. To do this, we assume that the matrices A, B, C and P1

are given and that (3.4) holds, and wish to define m1 , m2 , n1 , n2 , a, b, c, e, f
and g such that each of the equations in the above spreadsheet hold.
If we can do this, then each of the equations from the starting polynomial
equations (FAC) given in Section 3.2 will hold and we will have shown that
a minimal factorization of the [A, B, C, 1] system exists.

(1) Since P2
1=P1 , it is easy to show that there exists (not necessarily

square) matrices m1 and n1 such that n1m1=1 and m1n1=P1 . These are
exactly the equations in the [n1 , m1]-Category of the above spreadsheet.

(2) Since (1&P1)2=1&P1 , it is easy to show that there exists (not
necessarily square) matrices m2 and n2 such that n2m2=1 and m2n2=
1&P1 . These are exactly the equations in the [n2 , m2]-Category of the
above spreadsheet together with the equations in the [n2 , m2 , n1 , m1]-
Category of the above spreadsheet.

(3) Since we have defined m1 , m2 , n1 and n2 , we can define a, b, c,
e, f and g by setting a=n1Am1 , b=n1 B, c=Cm1 , e=n2Am2 , f=n2 B and
g=Cm2 . These are exactly the equations in the singleton category.

314 HELTON AND STANKUS

23 It is not hard to see that NCProcess2 would not have an effect, since the set of equations
found on the previous spreadsheet can be easily seen to be minimal. We include the run here
for pedagogical reasons.

Here we have used the fact that we are working with matrices and not
elements of an abstract algebra.

With the assignments made above, every equation in the spreadsheet
above holds. Thus, by backsolving through the spreadsheet, we have
constructed the factors of the original system [A, B, C, 1]. This proves

Theorem ([BGKvD]). The system [A, B, C, 1] can be factored if and
only if there exists a projection P1 such that P1 AP1=P1A and P1 BCP1=
P1A&AP1+BCP1 .

Note that the known equations can be neatly expressed in terms of P1

and P2=1&P1 . Indeed, it is easy to check with a little algebra that these
are equivalent to (3.1). It is a question of taste, not algebra, as to which
form one chooses.

For a more complicated example of an end game, see Section 6.3.

3.5. Concluding Remarks

We saw that this factorization problem could be solved with a
2-prestrategy. It was not a 1-prestrategy because there was at least at one
point in the session where the user had to make a decision about an
equation in two unknowns. On the other hand, the assignment (3.3) was
a motivated unknown. We will see in Section 5.1 that this is a 1-strategy.
For example, the equation

(1&m1 n1) Am1&(1&m1 n1) BCm1=0 (3.5)

in the two unknowns m1 and n1 can be transformed into an equation in the
one unknown m1n1 by multiplying by n1 on the right:

(1&m1n1) Am1 n1&(1&m1n1) Bcm1n1=0. (3.6)

If we do not restrict ourselves to the original variables but allow construc-
tions of new variables (according to certain very rigid rules), then the
factorization problem is solvable using a generalization of a 1-prestrategy,
called a 1-strategy. Section 5 will describe 1-strategies.

The brevity of this presentation in a journal suppresses some of the
advantages and some of the difficulties. For example, one might not
instantly have all of the insight which leads to the second spreadsheet. In
practice, a session in which someone ``discovers'' this theorem might use
many spreadsheets. All that matters is that one makes a little bit of
progress with each step. Also, since this paper discusses mathematics and
does not explain how to use the code, it is not easy to see that there is very
little which needs to be typed and that the computer computations are fast.
For example, when performing the computations in Section 2.2.2, one does
not type in the 5 equations of (2.3). One instead, types in the 2_2 block
matrix and tells the computer that it is an isometry and that U is unitary.

315``DISCOVERING'' FORMULAS

4. EXAMPLES: MATRIX COMPLETION PROBLEMS

4.1. The Partially Prescribed Inverse Problem

Now we consider a type of problem known as a matrix completion
problem. We pick one suggestion by Hugo Woerderman and we are
grateful to him for discussions.

Given matrices a, b, c and d, we wish to determine under what conditions
there exists matrices x, y, z and w such that the block two by two matrices

_a
y

x
b& _w

d
c
z& (4.1)

are inverses of each other. Also, we wish to find formulas for x, y, z and w.
This problem was solved in a paper by W. W. Barrett, C. R. Johnson,

M. E. Lundquist and H. Woerderman [BJLW] where they showed it splits
into several cases depending upon which of a, b, c and d are invertible. In
our next example, we assume that a, b, c and d are invertible and derive
the result which they obtain. If one runs NCProcess1 on the polynomial
equations which state that a, b, c and d are invertible together with the
eight polynomial equations which come from the two matrices above being
inverses of each other, one gets the spreadsheet:

THE ORDER IS NOW THE FOLLOWING:
a<a&1<b<b&1<c<c&1<d<d&1<<z<<x<<y<<w

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[w, x, y]
The corresponding rules are the following:

w � a&1d&1zbd x � d&1&d&1zb y � c&1&bzc&1

The expressions with unknown variables []
and knowns [a, b, c, d, a&1, b&1, c&1, d&1]
aa&1 � 1 bb&1 � 1 cc&1 � 1 dd&1 � 1
a&1a � 1 b&1b � 1 c&1c � 1 d&1d � 1

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[z]

The expressions with unknown variables [z]
and knowns [a, b, c, d]
zbz � z+dac

316 HELTON AND STANKUS

This spreadsheet shows that, if a, b, c and d are invertible, then one can
find x, y, z and w such that the matrices in (4.1) are inverses of each other
if and only if zbz=z+dac. The spreadsheet also gives formulas for x, y,
and w in terms of z.

In [BJLW] they also solve the problem in the case that a is not
invertible��the answer is more complicated and involves conditions on
ranks of certain matrices. It is not clear whether or not these can be derived
in a purely algebraic fashion.

4.2. Unitary Case of Parrot 's Lemma

We begin by stating Parrot's Lemma.

Lemma 4.2 [Y]. Let a be an m_m matrix, c be an n_m matrix and d
be an n_n matrix. There exists an m_n matrix z such that

_a
c

z
d & (4.3)

is a contraction if and only if

aTa+cTc�1;
(4.4)

ccT+dd T�1.

Since we cannot handle inequalities, we analyze the case where the
unknown matrix z must be chosen to make the matrix of (4.3) unitary.

Per our usual advice, when just starting a problem, we take most
matrices to be invertible. Since only a and d are square, we assume that a
and d are invertible.

If a and d are invertible, then the matrix of (4.3) is unitary if and only
if the following polynomials are zero.

&1+aTa+cTc aTz+cTd d Tc+zTa &1+d Td+zTz

&1+aaT+zzT acT+zd T caT+dzT &1+ccT+dd T

(4.5)
a&1a&1 aa&1&1 d &1d&1 dd &1&1

a&1TaT&1 aTa&1T&1 d &1Td T&1 d Td &1T&1.

317``DISCOVERING'' FORMULAS

When we run NCProcess1 on these equations, we obtain the following
spreadsheet:

THE ORDER IS NOW THE FOLLOWING:
a<aT<a&1<a&1T<c<cT<d<d T<d&1<d&1T<<z<<zT

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[z, zT]
The corresponding rules are the following:

z � &acTd&1T zT � &d Tca&1

The expressions with unknown variables []
and knowns [a, c, d, a&1, d&1, a&1T, d&1T, aT, cT, d T]
aa&1 � 1 dd&1 � 1 dd T � 1&ccT a&1a � 1
d&1d � 1 a&1TaT � 1 d&1Td T � 1 aTa&1T � 1
cTc � 1&aTa d Td&1T � 1

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[]

Since the above spreadsheet contains the equations z=&acTd &1T and
zT=&d Tca&1, the equation &acTd &1T=(&d Tca&1)T follows from the
above spreadsheet. The above spreadsheet and the observation just made
shows that, if a, c and d are invertible, then there exists a matrix z such that
the matrix of (4.3) is unitary if and only if cTc+aTa=1, dd T+ccT=1 and
&acTd &1T=(&d Tca&1)T. Moreover, if z exists, then z=&acTd &1T.

To show that under the above invertibility assumptions, there exists an
m_n matrix z such that the matrix of (4.3) is unitary if and only if
cTc+aTa=1, dd T+ccT=1, it is necessary24 to show that the equation
&acTd &1T=(&d Tca&1)T follows from the equations in the spreadsheet
which do not involve either z or zT. One can either show this by hand or
run NCProcess1 on the equations in the above spreadsheet which do

318 HELTON AND STANKUS

24 If NCProcess used a symmetric version of Small Basis By Category (see Section 12.7),
then either z=&acTd &1T or zT=&d Tca&1 would have appeared on the spreadsheet, but not
both. Therefore we would not have to perform this additional step. A symmetric version of
the Small Basis By Category option is being written at the time of the writing of this paper.
This option will be available in a future version of the software.

not involve either z or zT together with25 the equation &acTd &1T=
(&d Tca&1)T and see that this equation is redundant. In summary, if a, c
and d are invertible, there exists a matrix z such that the matrix of (4.3) is
unitary if and only if cTc+aTa=1 and dd T+ccT=1.

Since we assumed that a and d were invertible, the above calculation has
a ``back of the envelope'' flavor. Now that our ``back of the envelope''
calculation assuming invertibility was successful, it is easy to remove the
invertibility assumptions. If we do not assume that a and d are invertible,
NCProcess1 produces the spreadsheet:

THE ORDER IS NOW THE FOLLOWING:
a<aT<c<cT<d<d T<<z1<<zT

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

The expressions with unknown variables []
and knowns [a, c, d, aT, cT, d T]
dd T � 1&ccT

cTc � 1&aTa

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[z, zT]

The expressions with unknown variables [z]
and knowns [a, d, aT, cT, d T]
zd T � &acT

aTz � &cTd

The expressions with unknown variables [zT]
and knowns [a, c, d, aT, d T]
dzT � &caT

zTa � &d Tc

The expressions with unknown variables [zT, z]
and knowns [a, d, aT, d T]
zzT � 1&aaT

zTz � 1&d Td

319``DISCOVERING'' FORMULAS

25 It is important that the equation &acTd &1T=(&d Tce&1)T appears after the other
equations for this run.

One could use these equations to push through to the unitary case of
Parrot's Lemma. However, since the theorem is well known, there is not
much point in publishing this derivation.

Notice from the spreadsheet above that if d is invertible, then one can
solve for z. So far, we only have a result for the case that both a and d are
invertible. Let us consider the case when only d is invertible and see what
happens. If we do not assume that a or aT is invertible, but still assume
that d is invertible (and so, of course, assume that d T is invertible), then
we obtain the following spreadsheet:

THE ORDER IS NOW THE FOLLOWING:
a<aT<c<cT<d<d T<d&1<d&1T<<z<<zT

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[z, zT]
The corresponding rules are the following:

z � &acTd&1T

zT � &d&1caT

The expressions with unknown variables []
and knowns [a, c, d, d&1, d&1T, aT, cT, d T]
dd&1 � 1
dd T � 1&ccT

d&1d � 1
d&1Td T � 1
cTc � 1&aTa
d Td&1T � 1
acTd&1Td&1caT � 1&aaT

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[]

Notice that the last expression in the spreadsheet (acTd &1Td &1caT=
1&aaT) shows that a(cTd &1Td &1c+1) aT=1. Therefore, the matrix a is
onto. Since a is a square matrix, a is invertible. Thus, by using the
spreadsheet and the special properties of matrices (rather than elements of
an arbitrary abstract algebra) we have discovered that if d is invertible,
then a is invertible. At this point in the session we would add the fact that
a is invertible, run NCProcess1 and one would obtain the first spreadsheet
of Section 4.2.

320 HELTON AND STANKUS

5. STRATEGIES AND MOTIVATED UNKNOWNS

In a prestrategy unknowns refers to the original unknowns presented in
the problem. However, it is often the case that there will be some combina-
tion of variables which is a ``natural'' unknown for the problem.
A particular class of these new unknowns, called motivated unknowns, are
gotten from the 1-Decompose operation. Unfortunately, the Decompose
operation is an idealization and the authors do not know an approximation
to it which is implementable.

Also, even if Decompose were implementable, one would not be able to
use it effectively, since the operation associates a composition of polyno-
mials (and therefore, motivated unknowns) to a particular polynomial
and applying Decompose to each polynomial in the ideal would not be
practical.

For example, suppose that a polynomial p(a1 , ..., ar , x1 , ..., xs) appears
on a spreadsheet and has the property that there are other polynomials
L(a1 , ..., ar , x1 , ..., xs) and R(a1 , ..., ar , x1 , ..., xs) for which LpR has a
1-decomposition

LpR=k(a1 , ..., ar , q(a1 , ..., ar , x1 , ..., xs))

where k is a polynomial in one unknown. By the definition of an ideal, LpR
is in the ideal represented by the output of the spreadsheet. The polynomial
LpR will not appear on the spreadsheet, since p appears on the
spreadsheet.26 Therefore, in practice, a person must recognize the L and R,
which yield the 1-decomposition. We formalize this as follows.

Definition 5.1. A polynomial p motivates any unknown y via the
equation y=q(a1 , ..., ar , x1 , ..., xs) if there exist polynomials L(a1 , ..., ar ,
x1 , ..., xs) and R(a1 , ..., ar , x1 , ..., xs) and there exists a polynomial in one
unknown k(a1 , ..., ar , y) such that LpR=k(a1 , ..., ar , q(a1 , ..., ar , x1 , ..., xs)).

Of course, from the perspective of finding zeros on collections of polyno-
mials, if p has a zero, then LpR has a zero and so k has a zero. Since k is
a polynomial in only one unknown variable, finding the zeros of k is bound
to be easier than finding the zeros of p.

The definition we give here is not the most general useful definition
which we could have given. A more general definition would involve
finding a 1-decomposition using any polynomial in the ideal generated by
p rather than those of the form LpR. We have found that the definition we
give above is sufficient for the problems which we are considering.

321``DISCOVERING'' FORMULAS

26 The polynomial LpR will not appear on the spreadsheet, since its normal form with
respect to p is zero.

While we do not know how to implement the Decompose operation
(Section 1.2.1), there is a certain type of ``collect'' command which we have
found very helpful. This ``collect'' command assists the user in performing
decompositions of the polynomial at hand and helps in finding other
polynomials in the ideal which would produce motivated unknowns. (See
the discussion around equation (3.5).)

This section gives a definition of a strategy and then describes a com-
mand which ``collects'' knowns and products of knowns out of expressions.
For example, suppose that A and B are knowns and X, Y and Z are
unknowns. The collected form of

XABX+XABY+YABX+YABY+AX+AY (5.2)

is

(X+Y) AB(X+Y)+A(X+Y). (5.3)

Clearly this suggests a decomposition of (5.2) and indeed the collect command
helps find decompositions of much more complicated polynomials.

Next we give a demonstration of how collect enters the NCProcess
commands.

5.1. Strategy

The idea of a strategy is the similar to that of a prestrategy, except that
it incorporates motivated unknowns. The idea of a strategy is:

The input to a strategy is a set of equations C.

(S0$) Set C$=[].

(S1$) Run NCProcess1 which creates a display of the output (see
O1�O5 in Section 2.2) which contains collected forms of the polynomial
equations. Look at the list of polynomials involving only one unknown or
one motivated unknown (say a particular equation E17 only depends upon
the motivated unknown x3 x2+x1).

(S2$) The user must now make a decision about equations in
x3 x2+x1 (e.g., E17 is a Riccati equation so I shall not try to simplify it, but
leave it for Matlab). Now the user declares a new unknown y and adds the
relation y=x3x2+x1 as a user creation. The user would also select
the equation E17 as important. User selecting an equation corresponds to
adding it to the set C$. See Section 5.2.2 for variants on this step.

(S3$) Either do the ``End game'' (see Section 2.3.1) or Go to S1$.

322 HELTON AND STANKUS

The above listing is, in fact, a statement of a 1-strategy. Sometimes one
needs a 2-strategy in that the key is equations in 1 or 2 unknowns
(motivated or not). Typically, if a problem is solved with a 1-strategy, then
the computer has done a lot for you, while if the problem requires a
2-strategy, then it has done less, and with a 3-strategy much less.

As with a prestrategy, the point is to isolate and to minimize what the
user must do. This is the crux of a strategy.

5.2. Computing Decompositions

In this section we give examples of how one implements the 1-Decompose
operation with human intervention.

We use an example to remind the reader of the notion of a decomposition
of a polynomial (see Section 1.2.1).

Example 5.4. Suppose A, AT, B and BT are knowns and b, d, bT and
d T are unknown. Consider the polynomial

p(A, AT, B, BT, b, bT, d, d T)=1&BTB&dd T+BTbd T&BTbbTB

+dbTB+dATAd T&BTbATAd T

&dATAbTB+BTbATAbTB (5.5)

It can be written as

p=1&BTB&(d&BTb)(d T&bTB)+(d&BTb) ATA(d T&bTB) (5.6)

which is neatly written as a composition

p=k(A, AT, B, BT, q, qT)=1&BTB&qqT+qATAqT

where q=d&BTb. Note that k is a polynomial whose only unknowns are
q and qT.

We do not know a way to compute decompositions and hopefully this
paper's need for a decomposition operator will stimulate a serious quest for
a way to compute decompositions. For now, the best we can hope for is
a modest amount of computer assistance which is why we turn to the
collect-type commands of the next section.

5.2.1. NCCollectOnVariables

This subsection concerns a command NCCollectOnVariables, abbre-
viated NCCV, which is implementable (indeed, it is implemented in

323``DISCOVERING'' FORMULAS

NCAlgebra). A technical description is given in the appendix. Often human
intervention can be coupled with NCCV to discover decompositions.

In addition to being an option for the NCProcess commands, it can be
called as a stand-alone command. It is used in a session where knowns and
unknowns have been declared.

NCCollectOnVariables is a command which ``collects'' maximal products
of knowns and products of knowns out of expressions. Since it collects on
monomials which are products of knowns, it typically presents important
combinations of knowns in its output.

For example, if in a computer session where A and B are set to be
knowns and X, Y and Z are set to be unknowns, then, when NCCollectOn-
Variables is applied to XABZ+YABZ+AX+AY, it returns (X+Y) ABZ
+A(X+Y). Therefore, XABZ+YABZ+AX+AY depends on a motivated
unknown X+Y and an unknown Z.

As another example, if we are in a computer session and A, AT, B1 , BT
1 ,

B2 , BT
2 , C1 , C T

1 , C2 , and C T
2 are set to be knowns and all of the other

variables are set to be unknowns, then when the command NCCollectOn-
Variables is applied to

&E22 E &1
12 E11 B2BT

2 E11E &1
21 E22&E21AE &1

21 E22+E21B1BT
1 E12

&E21 B2BT
2 E12&E22E &1

12 ATE12+E21 B2C1E &1
21 E22

+E22 E &1
12 C T

1 BT
2 E12&E21B1 BT

1 E11 E &1
21 E22

+E21 B2BT
2 E11E &1

21 E22+E22 E &1
12 E11AE &1

21 E22

&E22 E &1
12 E11B1BT

1 E12+E22 E &1
12 E11B2BT

2 E12

+E22 E&1
12 ATE11E &1

21 E22&E22E &1
12 E11B2 C1E &1

21 E22

&E22 E &1
12 C T

1 BT
2 E11E &1

21 E22+E22E &1
12 E11B1BT

1 E11E &1
21 E22

we obtain

E22E &1
12 AT (E12&E11E &1

21 E22)+(E21&E22E &1
12 E11) AE &1

21 E22

&(E21&E22E &1
12 E11) B1BT

1 (E12&E11E &1
21 E22)

+(E21&E22E &1
12 E11) B2BT

2 (E12&E11E &1
21 E22)

&E22E &1
12 C T

1 BT
2 (E12&E11E &1

21 E22)

&(E21&E22E &1
12 E11) B2C1 E &1

21 E22 .

324 HELTON AND STANKUS

In the problem which this expression comes from (see Section 6), the trans-
pose of E21&E22E &1

12 E11 is E12&E11E &1
21 (see Appendix A). Therefore, the

above expression motivates the introduction of motivated unknowns
Q=E21&E22E &1

12 E11 and QT=E12&E11E &1
21 E22 .

As these examples show, NCCollectOnVariables is an extremely
important option for NCProcess.

5.2.2. Introducing a New Motivated Unknown

As in the introduction (Section 1.2.1), suppose we are in a context where
there are knowns [a1 , ..., ar] and unknowns [x1 , ..., xs]. We now describe
how we shall be using the NCCV command to help discover decomposi-
tions. (In the forthcoming example (see Section 6), Step 3 below is easy
enough that it is done by inspection. No run of the GBA is required.)
NCCV can be used as follows:

(1) Apply NCCV to a polynomial p and pay particular attention to
the terms containing the most knowns. That is, for each term, compute the
degree of that term with respect to the set of knowns and use the ones with
the highest degree in this sense.

(2) The collected form of p may suggest a decomposition of p or
suggest that there is another polynomial in the ideal which has a decom-
position. Let us suppose that one of the parenthesized summands of the
collected form of p has a decomposition as k(a1 , ..., ar , q1(a1 , ..., ar ,
x1 , ..., xs), q2(a1 , ..., ar , x1 , ..., xs)). Therefore, we obtain

p=k(a1 , ..., ar , q1(a1 , ..., ar , x1 , ..., xs), q2(a1 , ..., ar , x1 , ..., xs))+s1

(5.7)

from this operation where k is a polynomial and s1 is a polynomial.

(3) Declare both of the new variables Q1=q1(a1 , ..., ar , x1 , ..., xs)
and Q2=q2(a1 , ..., ar , x1 , ..., xs), set Q1 and Q2 lower in the ordering than
all other unknowns and run the GBA. This will convert (5.7) to

p=k2(a1 , ..., ar , q1(a1 , ..., ar , x1 , ..., xs), q2(a1 , ..., ar , x1 , ..., xs))+s2 .

If s2 contains no unknowns, then we have found the desired decomposition.
For example, if, in a computer session, A, B, AT and BT are set to be

knowns and b, d, bT and d T are set to be unknowns, then

1&dd T+BT (bd T&(1+bbT) B)+dbTB&(d&BTb) ATA(bTB&d T)

(5.8)

325``DISCOVERING'' FORMULAS

is the output of NCCollectOnVariables when applied to (5.5). This suggests
we set Q=d&BTb and QT=d T&bTB. Step 3 above converts (5.8) to

p=1&BTB&QQT+QATAQT (5.9)

which gives the decomposition k(A, AT, B, BT, Q, QT) for p as described in
Example 5.4.

6. EXAMPLE: SOLVING THE H� CONTROL PROBLEM

In this section we give an example of solving a problem using a strategy.
We will repeatedly call the NCProcess1 command and from time to time

the Decompose operation will be approximated with a little human
intervention.

A basic problem in systems engineering is to make a given system
dissipative by designing a feedback law. We now give a demonstration of
how one discovers the algebraic part of the solution to this problem. The
engineering motivation is in Appendix D.

6.1. Problem Statement

Let Hxx , Hxz , Hzx , and Hzz be defined as follows.

Hxx=E11 A+ATE11+C T
1 C1+E 12bC2+C T

2 bTE T
12+E11B1bTE T

12

+E11B1BT
1 E11+E12bbTE T

12+E12 bBT
1 E11

Hxz=E21A+
aT (E21+E T

12)
2

+cTC1+E22bC2+cTBT
2 E T

11

+
E21B1bT (E21+E T

12)
2

+E21B1BT
1 E T

11

+
E22bbT (E21+E T

12)
2

+E22bBT
1 E T

11

Hzx=ATE T
21+C T

1 c+
(E12+E T

21) a
2

+E11B2c+C T
2 bTE T

22

+E11B1bTE T
22+E11B1BT

1 E T
21

+
(E12+E T

21) bbTE T
22

2
+

(E12+E T
21) bB1TE T

21

2

Hzz=E22a+aTE T
22+cTc+E21B2c+cTBT

2 E T
21+E21B1 bTE T

22

+E21B1BT
1 E T

21+E22bbTE T
22+E22 bBT

1 E T
21 .

326 HELTON AND STANKUS

The math problem we address is:

(HGRAIL) Let A, B1 , B2 , C1 , C2 be matrices of compatible size be
given. Solve Hxx=0, Hxz=0, Hzx=0, and Hzz=0 for a, b, c and for E11 ,
E12 , E21 and E22 . When can they be solved ? If these equations can be solved,
find formulas for the solution.

We shall make the strong assumption that each Eij is invertible. While
this assumption turns out to be valid, making it at this point is cheating.
Ironically, we recommend strongly that the user make heavy invertibility
assumptions at the outset of a session. Later, after the main ideas have
been discovered, the user can selectively relax them and thereby obtain
more general results.

6.2. Solving (HGRAIL) Using NCProcess

The first step is to assemble all of the key polynomial equations in
executable form:

The polynomials we shall input to NCProcess1 are naturally thought of
in several groups. First, to enforce that the 2_2 matrix (Ei, j) i=1, 2, j=1, 2 is
symmetric, we require each of the following polynomials to be zero:

E T
11&E11 , ET

12&E21 , E T
21&E12 , ET

22&E22 , E &1T
11 &E &1

11 ,

E &1T
12 &E &1

21 , E &1T
21 &E &1

12 , E &1T
22 &E &1

22 .

We also assume that Eij is invertible for i=1, 2 and j=1, 2. We assume the
following polynomials are zero:

E &1
11 E11&1 E &1

12 E12&1 E &1
21 E21&1 E &1

22 E22&1

E T
11E &1T

11 &1 E T
12E &1T

12 &1 E T
21E &1T

21 &1 E T
22 E &1T

22 &1.

Naturally we also assume the following polynomials are zero:

Hxx , Hxz , Hzx , Hzz .

The multigraded lexicographic order (see Section 7) which we use is:
A<AT<B1<BT

1 <B2<BT
2 <C1<C T

1 <C2<C T
2 <<E12<<E T

12<<E21<<
ET

21<<E22<<E T
22<<E11<<E T

11<<E &1
12 <<E &1T

12 <<E &1
21 <<E &1T

21 <<E &1
22

<<E &1T
22 <<E &1

11 <<E &1T
11 <<b<<bT<<c<<cT<<a<<aT.

327``DISCOVERING'' FORMULAS

We ran NCProcess1 for 2 iterations with the option NCCollectOn-
Variables turned on. NCCollectOnVariables was applied to each equation.

The algorithm did not run the full two iterations but finished after one.
Our program produced a message saying that, in fact, the output is a
Gro� bner Basis (rather than a partial GB).

6.2.1. Step 1: Process and Collect

There is no point in listing the full spreadsheet here. Indeed, the only
nontrivial undigested polynomial equations are:

The expressions with unknown variables [bT, b, E&1
21 , E&1

12 , E11]
and knowns [A, B1, C1 , C2 , AT, BT

1 , C T
1 , C T

2]
bbT+bC2E&1

12 +E&1
12 C T

2 bT+E&1
12 E11AE&1

21 +E&1
12 E11B1 bT+E&1

12 ATE11 E&1
21 +E&1

12 C T
1 C1E&1

21 +
(b+E&1

12 E11B1) BT
1 E11E&1

21 =0

The expressions with unknown variables [cT, c, E&1
21 , E&1

12 , E11 , E22 , E21 , E12]
and knowns [A, B1, B2 , C1, AT, BT

1 , BT
2 , C T

1]
cTc+(E21&E22E&1

12 E11) B2c+cTBT
2 (E12&E11E&1

21 E22)&E22 E&1
12 AT(E12&E11E&1

21 E22)&
E22E&1

12 C T
1 (c&C1E&1

21 E22)&(E21&E22E&1
12 E11) AE&1

21 E22+(E21&E22E&1
12 E11) B1BT

1 (E12&
E11E&1

21 E22)&cTC1E&1
22 E22=0

6.2.2. Step 2: The User Attacks

Now the reader must apply his expertise to the nontrivial polynomial
equations left undigested by the NCProcess1 command. A key observation
is that the first key polynomial equation contains b but not c and the
second key polynomial equation contains c but not b. In other words, b
and c appear in decoupled equations.

Observe that the first key polynomial from the above spreadsheet is
quadratic in b. We could complete the square and put the polynomial in
the form

(b++)(bT++T)+& (6.10)

where + and & are expressions involving C2 , C T
2 , B1 , BT

1 , A, AT, E &1
21 , E &1

12

and E11 . Since there are many unknowns in the problem, there is probably
excess freedom. Let us investigate what happens when we take b++=0.
This yields the polynomial equation

b=&E &1
12 C T

2 &E &1
12 E11B1 (6.11)

which we could add to the starting polynomial equations and proceed.
We can also complete the square for the expression in c and put that
expression in the form

(c+*)(cT+*T)+#. (6.12)

328 HELTON AND STANKUS

We also assume that c+*=0. This defines c by the following equation

c=&BT
2 E12+C1E &1

21 E22+BT
2 E11E &1

21 E22 . (6.13)

Since we have now solved for b and c, we can use these equations to solve
for bT and cT.

6.2.3. Step 3

The starting polynomial equations for this step will be the output from
the first call to NCProcess1 (above) as well as the four new equations that
we have just derived. We ran NCProcess1 for two iterations.27

Once again we go directly to the spreadsheet which NCProcess1 created.
There is no need to record all of it here, since at this stage we shall be
concerned only with the undigested polynomial equations. There are only
two undigested polynomial equations which are not banal.

The expressions with unknown variables [E11]
and knowns [A, B1, C1 , C2 , AT, BT

1 , C T
1 , C T

2]
E11B1C2 � E11A+ATE11+C T

1 C1&C T
2 C2&C T

2 BT
1 E11

The expressions with unknown variables [E&1
21 , E&1

12 , E11 , E22 , E21, E12]
and knowns [A, B1, B2 , C1, AT, BT

1 , BT
2 , C T

1]
E22E&1

12 AT(E12&E11E&1
21 E22)+(E21&E22E&1

12 E11) AE&1
21 E22&(E21&E22E&1

12 E11) B1BT
1 (E12&

E11E&1
21 E22)+(E21&E22 E&1

12 E11) B2BT
2 (E12&E11E&1

21 E22)&E22 E&1
12 C T

1 BT
2 (E12&E11E&1

21 E22)&
(E21&E22E&1

12 E11) B2C1E&1
21 E22=0

6.2.4. Step 4.

Now we analyze these two polynomial equations.
The first polynomial equation is an equation in E11 , which fortunately is

a Riccati�Lyapunov equation. Numerical methods for solving Riccati equa-
tions are common. For this reason assuming that a Riccati equation has a
solution is a socially acceptable necessary condition throughout control
engineering. Thus we can consider E11 to be known.

A first glance at the second equation reveals that the same products of
unknowns appear over and over. Also we can see that this equation is
symmetric. It would not take an experienced person long to realize that by
multiplying this equation on the left by E12E &1

22 and on the right by
E&1

22 E21 , we will have an equation in one unknown.

329``DISCOVERING'' FORMULAS

27 In addition, we bound iterations using the options DegreeCap � 6, DegreeSumCap � 9
which limit the degrees of polynomials occurring as the GBA runs. See Section 13.

Now we can replace E11&E12 E &1
22 E21 with a new variable X. This yields

&XA&ATX+XB2 C1+C T
1 BT

2 X&XB1BT
1 X+XB2 BT

2 X.

Observe that this is an equation in the one unknown X.

6.3. End Game

Now let us compare what we have found to the well known solution of
(HGRAIL). In that theory there are two Riccati equations due to Doyle,
Glover, Khargonekar and Francis. These are the DGKF X and Y
equations. One can read off that the E11 equation which we found is the
DGKF equation for Y&1, while the Riccati equation which we just
analyzed is the DGKF X equation.

Indeed what we have proved is that if (HGRAIL) has a solution with Eij

invertible and if b and c are given by formulas (6.11) and (6.13), then

(1) the DGKF X and Y&1 equations must have a solution;

(2) X and Y are self-adjoint;

(3) Y&1&X is invertible.

Now we turn to the converse. The straightforward converse of the above
italicized statement would be: If items (1), (2), and (3) above hold, then
(HGRAIL) has a solution with Eij invertible and b and c are given by
formulas (6.11) and (6.13). There is no reason to believe (and it is not the
case) that b and c must be given by the formulas (6.11) and (6.13). These
two formulas came about in Section 6.2.2 and were motivated by ``excess
freedom'' in the problem. The converse which we will attempt to prove
is:

Proposed Converse 6.14. If items (1), (2), and (3) above hold, then
(HGRAIL) has a solution with Eij invertible.

To obtain this proposed converse, we need a complete spreadsheet cor-
responding to the last stages of our analysis. The complete spreadsheet
is:

330 HELTON AND STANKUS

THE ORDER IS NOW THE FOLLOWING:
A<AT<B1<BT

1 <B2<BT
2<C1<C T

1 <C2<C T
2 <X<X&1<Y<Y&1<<E12<<E21<<E22<<

E T
12<<E T

21<<E T
22<<E11<<E T

11<<E&1
11 <<E&1T

11 <<E&1
12 <<E&1

21 <<E&1
22 <<E&1T

12 <<E&1T
21 <<

E&1T
22 <<b<<bT<<c<<cT<<a<<aT

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
[a, b, c, E11, E&1

11 , aT, bT, cT, E T
11, E T

12 , E T
21 , E T

22 , E&1T
11 , E&1T

12 , E&1T
21 , E&1T

22]
The corresponding rules are the following:
a � &E&1

12 ATE12+E&1
12 C T

1 BT
2 E12+E&1

12 C T
2 BT

1E12+E&1
12 E11B2 BT

2 E12&E&1
12 C T

1 C1E&1
21 E22&

E&1
12 E11B2 C1E&1

21 E22&E&1
12 C T

1 BT
2E11E&1

21 E&1
22 &E&1

12 E11B2BT
2 E11E&1

21 E22

b � &E&1
12 C T

2 &E&1
12 E11B1

c � &BT
2E12+C1E&1

21 E22+BT
2 E11E&1

21 E22

E11 � Y&1

E&1
11 � Y

aT � &E21AE&1
21 +E21B1C2 E&1

21 +E21B2C1E&1
21 +E21B2 BT

2 E11E&1
21 &E22E&1

12 C T
1 C1E&1

21 &
E22E&1

12 E11B2C1E&1
21 &E22 E&1

12 C T
1 BT

2 E11E&1
21 &E22E&1

12 E11B2BT
2 E11E&1

21

bT � &C2 E&1
21 &BT

1 E11E&1
21

cT � &E21B2+E22E&1
12 C T

1 +E22E&1
12 E11B2

E T
11 � E11 E T

12 � E21 E T
21 � E12 E T

22 � E22

E&1T
11 � E&1

11 E&1T
12 � E&1

21 E&1T
21 � E&1

12 E&1T
22 � E&1

22

The expressions with unknown variables []
and knowns [A, B1, B2 , C1, C2 , X, Y, X&1, Y&1, AT, BT

1 , BT
2 , C T

1 , C T
2]

XX&1 � 1
YY&1 � 1
X&1X � 1
Y&1Y � 1
Y&1B1C2 � Y&1A+ATY&1+C T

1 C1&C T
2 C2&C T

2 BT
1 Y&1

XB2BT
2 X � XA+ATX&XB2 C1&C T

1 BT
2X+XB1BT

1 X

USER CREATIONS APPEAR BELOW

E&1
11 � Y

E12E&1
22 E21 � E11&X

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
[E12 , E21 , E22 , E&1

12 , E&1
21 , E&1

22]

The expressions with unknown variables [E&1
12 , E12]

and knowns []
E12E&1

12 � 1
E&1

12 E12 � 1

The expressions with unknown variables [E&1
21 , E21]

and knowns []
E21E&1

21 � 1
E&1

21 E21 � 1

The expressions with unknown variables [E&1
22 , E22]

and knowns []
E22E&1

22 � 1
E&1

22 E22 � 1

The expressions with unknown variables [E&1
22 , E11, E21, E12]

and knowns [X]
� E12E&1

22 E21 � E11&X

331``DISCOVERING'' FORMULAS

In the spreadsheet, we use conventional X, Y&1 notation rather than
``discovered'' notation so that our arguments will be familiar to experts in
the field of control theory.

Now we use the above spreadsheet to verify the proposed converse. To
do this, we assume that matrices A, B1 , B2 , C1 , C2 , X and Y exist, that X
and Y are invertible, that X and Y are selfadjoint, that Y&1&X is invert-
ible and that the DGKF X and Y&1 equations hold. That is, the two
following polynomial equations hold.

Y&1B1C2=Y &1A+ATY&1+C T
1 C1&C T

2 C2&C T
2 BT

1 Y&1

XB2BT
2 X=XA+ATX&XB2C1&C T

1 BT
2 X+XB1BT

1 X

We wish to assign values for the matrices E12 , E21 , E22 , E11 , a, b and c
such that each of the equations on the above spreadsheet hold. If we can
do this, then each of the equations from the starting polynomial equations
from Section 6.1 will hold and the proposed converse will follow.

(1) Note that all of the equations in the []-Category of the above
spreadsheet hold since X and Y solve the DGKF equations and are both
invertible.

(2) Set E11 equal to the inverse of Y. This assignment is dictated by
the user selects. Note that E11=E T

11 follows since Y is self-adjoint.

(3) Let E12 and E21 be any invertible matrices such that E T
12=E21 . For

example, one could choose E12 and E21 to both be the identity matrix.

(4) Note that there is there is a user select E12E &1
22 E21=E11&X and

that E12 , E21 are invertible. Since Y&1&X is invertible and E11=Y&1,
E11&X is invertible. Therefore, we set E22=E &1

21 (E11&X)&1 E &1
21 . Since

ET
12=E21 , ET

11=E11 and XT=X, it follows that E22 is invertible and self-
adjoint.

(5) Since Eij has been set for i, j=1, 2, we can set a, b and c according
to their formulas at the top of the spreadsheet.

With the assignments of E12 , E21 , E22 , E11 , a, b, and c as above, it is easy
to verify by inspection that every polynomial equation on the spreadsheet
above holds.

We have proven the proposed converse and, therefore, have proven the
following approximation to the classical [DGKF] theorem.

Theorem 6.15. If (HGRAIL) has a solution with invertible Eij and b and
c are given by the formulas (6.11) and (6.13), then the DGKF X and Y&1

332 HELTON AND STANKUS

equations have solutions X and Y which are symmetric matrices with X, Y&1

and Y&1&X invertible. The DGKF X and Y&1 equations have solutions X
and Y which are symmetric matrices with X, Y&1 and Y &1&X invertible,
then (HGRAIL) has a solution with invertible Eij .

Note that we obtained this result with an equation in the one unknown
X and an equation with the one unknown E11=Y&1. From the strategy
point of view, the first spreadsheet featured an equation in the single
unknown b (and its transpose) and an equation in the single unknown c
(and its transpose) and so is the most complicated. For example, (6.10)
decomposes as

p=qT
1 q1+q2 (6.16)

where q1=b+E &1
12 C T

2 +E &1
12 E11B1 and q2 is a symmetric polynomial

which does not involve b. This forces us to say that the proof of the
necessary side of Theorem 6.15 was done with a 2-strategy.

A more aggressive way of selecting knowns and unknowns allows us to
obtain this same result with a symmetrized 1-strategy. In particular, one
would set a, b and c to be the only unknowns to obtain a first spreadsheet.
The first spreadsheet contains key equations like (6.16) which is a
symmetric 1-decomposition because q2 does not contain a, b or c. Once we
have solved for a, b and c, we turn to the next spreadsheet by declaring the
variables involving Eij (e.g., E11 , E &1

11 , ...) to be unknown. At this point,
the computer run is the same as Steps 2, 3 and 4 above.

7. MONOMIAL ORDERS

At the heart of the NCProcess1 and NCProcess2 commands is a GBA
and central to this is the notion of monomial order. The effect of the
SetKnowns and SetUnknowns commands is to prescribe a monomial
order. It is essential to set a monomial order before running NCProcess.
Indeed this is all that is required; one need not think about knowns and
unknowns.

In this section we give more thorough descriptions of the types of
monomial orders which are natural for these applications. They provided
more flexibility in attacking problems.

Many possible choices of ordering are possible. We will briefly discuss
three types of orderings: graded lex, pure lex and multigraded lex. The
discussion here gives a straightforward generalization of the discussion of
graded lex and pure lex monomial orders from commutative polynomial
rings to noncommutative polynomial rings. See [CLS]. See also
Appendix C.

333``DISCOVERING'' FORMULAS

Graded Lex (Notation: a<b<c<d). A graded lexicographic order on
monic monomials in variables, say a, b, c, ... compares two monic mono-
mials by first comparing their total degrees. If their total degrees are not
equal, then the monomial with the smaller total degree is considered
smaller in the graded lex order. If their total degrees are equal, then the
monomials are compared using a ``dictionary'' type order. To specify a
graded lex order, one needs to specify an order on the variables, denoted
a<b<c< } } } , from which this ``dictionary'' order is derived. For example,
if we use a graded lex order on monomials in the variables a and b such
that a<b, then the monomials of total degree �2 are ordered by

a<b<aa<ab<ba<bb.

More generally, for a<b<c< } } } and monic monomials M and N, we
say that

M is less than N (with respect to graded lex) if either the total
degree of M is less than the total degree of N or M comes before
N in the dictionary.

This type of order often works well when the main objective is not to
eliminate particular variables but primarily to reduce the degree of the
polynomial p&q in the polynomial equations p=q.

Pure Lex (Notation: a<<b<<c<<d). Pure lex order is a type of order
used to transform a collection of equations into a collection of polynomial
equations in triangular form, as described in Section 2.1. The pure lex order
induced by a, b, c, ... is denoted by a<<b<<c<< } } } (contrast this to the
notation for graded lex and multigraded lex). This notation is consistent
with [CLS].

For those unfamiliar with pure lex orders, it is instructive to note that,
in a pure lex order on monic monomials in a and b such that a<<b, any
monomial M1 containing b is higher in the order than any monomial M2

which does not contain b, even if M1 has a much higher degree than M2 .
Also two monic monomials containing b are ranked by first comparing the
number of occurrences of the variable b in the monomial. If that is not
enough to determine which is larger, a ``dictionary'' type order is used.

For example, if we use a pure lex graded lex order on monic monomials
in a and b such that a<<b, then the monic monomials of total degree �2
are ordered by

a<aa<b<ab<ba<bb.

Multigraded Lex (Notation: a<b<<c<d). Multigraded lex is a
combination of pure lex and graded lex. We defer the explanation of this

334 HELTON AND STANKUS

order until Appendix C. The notation for multigraded lex orders consists of
a list of variables separated by either < or << (e.g., a<b<<c<d,
a<<b<<c or a<b<c).28 If all of the separators are <, then the multi-
graded lex order is a graded lex order. If all of the separators are <<, then
the multigraded lex order is a pure lex order. We give one example.

Example 7.1. We consider a multigraded lex order on monic mono-
mials in the variables a, b, c and d which is denoted a<b<<c<d.

This order on the monic monomials of total degree �2 is

a<b<aa<ab<ba<bb<c<d<ac<bc<ca<cb

<ad<bd<da<db<cc<cd<dc<dd.

More generally the following statements hold:

(1) If M1 and M2 are monic monomials in a and b, then they are
ordered by the graded lex order a<b.

(2) If M1 and M2 are monic monomials in c and d, then they are
ordered by the graded lex order c<d.

(3) M1 and M2 are monic monomials in a and c (or in a and d or
in b and c or in b and d), then they are ordered by the pure lex order a<<c
(or a<<d or b<<c or b<<d).

Knowns and Unknowns. Much of this paper is phrased in terms of
knowns and unknowns. We use orders to put this distinction into a
Gro� bner Basis Algorithm. Obviously, one wants to solve for (or eliminate)
unknowns, not knowns. Thus we will always be using orders satisfying

knowns<<unknowns

and such that monic monomials in the knowns are ordered using a graded
lex order. Indeed, this property could be taken to be the formal definition
of known. In the notation of multigraded lex, the knowns are listed with
< between them and the unknowns are listed with a combination of <
and << between them.

In the examples in this paper, the monic monomials in the unknowns are
ordered using a pure lex order. In the notation of multigraded lex, this is
expressed by listing the unknowns with << between them.

We have found that one could use either a pure lex or certain
multigraded lex orders on the unknowns and obtain the same results. The
examples in this paper were initially done with a multigraded lex order on
the unknowns which was not a pure lex order.

335``DISCOVERING'' FORMULAS

28 This notation is a modification of the notation found in [CLS].

8. SUMMARY

Let us review the basic ideas. We start with knowns and unknowns and
a set C of polynomial equations. As a strategy proceeds, more and more
equations are digested by the user and placed in a set C$. Also, more and
more unknowns become knowns. Thus we ultimately have two classes of
knowns: original knowns K0 and user designated knowns KU .

Often prominent in the statement of a theorem is the subset CK of C$
consisting of equations involving only knowns K :=KU _ K0 .

Indeed many classical theorems (at least the ones we present here) have
the form:

The equations in C have a solution if and only if the equations in
CK have a solution.

Now the ``only if '' part of this is clear from the derivation using a
strategy, but proving the ``if '' part is a less precise process. Proving the ``if ''
part is the business of what we call the ``end game,'' which is the act of
using the last spreadsheet generated during a prestrategy to write down a
theorem and its proof. Clearly one of the first steps is to translate the
equations on the spreadsheet into palatable language. For example, if one
obtains the equation P2=P and P=P* and P # K, then one would say
that P is a projection. A slightly more complicated example would be if
E12 E &1

22 E21=Y&1&X where E12 , E21 , E22 and Y are invertible and E12=
ET

21 and E22 was self-adjoint. If Y&1 and X were in K, then one could say
that Y&1&X would have to be both symmetric and invertible.

When one performs the approach of the above paragraph to obtain the
``if '' part of the theorem, one tries to record enough necessary conditions
so that the conditions are also sufficient. Once such conditions (in the form
of polynomial equations) are selected from the spreadsheet,29 then one
assumes that each of these equations hold for certain unspecified values
of the knowns (those variables in K) and tries to find values for the
remaining variables such that each of the equations on the final spread-
sheet holds. If one can find values for these remaining variables, then, since
each of the equations of the final spreadsheet holds, each of the equations
on the initial spreadsheet holds and one has proven the desired ``if '' part
of the theorem. Fortunately, the spreadsheet often has a block triangular

336 HELTON AND STANKUS

29 If one does not find all of the necessary conditions that one needs at this point, it will,
of course, become clear when trying to prove the converse, because one will not be able to
continue with the proof after a certain point. Attempting to prove the converse when one has
found most of the necessary conditions will help in pointing out the additional necessary con-
ditions which are needed.

form which is amenable to backsolving. One of the benefits of putting the
equations in categories is that this reveals this triangular structure (see
Section 2.1).

These ``end game'' techniques are demonstrated in Section 3.4 and
Section 6.3.

9. APPENDIX TO PART I: MORE DETAILS ON
NCCOLLECTONVARIABLES

As described in Section 5, when performing computations, it is very
helpful to distinguish between different representations of a polynomial
equation. For example, the polynomials in (5.2) and (5.3) are equal, but
(5.3) is much nicer, since it makes it clear that the polynomial depends on
A, B, X+Y and Z rather than just on A, B, X, Y, and Z. For this reason,
it is helpful to have a way to compute such ``parenthesized'' representation
of a polynomial. One might then be interested in computing all such
``parenthesized'' representation of a polynomial.

The key to computing ``parenthesized'' representations of a polynomial is
the use of NCCollectOnVariables which has the NCAlgebra command
NCCollect at its core. Before discussing the NCCollect command, we
define a notion of homogeneous (noncommuting) polynomial.

Definition 9.1. Let p be a polynomial and V be a set of variables. p is
homogeneous in V if for every v # V, the number of occurrences of v is each
term of p is independent of the term.

Of course, xyzzT+xxT is homogeneous in [x, xT], xyzzT+xzy is
homogeneous in [y, z] and but xyzxT+xz is not homogeneous in [x, xT]
(since the number of xT is the first term is 1 and the number of xT is the
second term is 0).

When given a polynomial p and a set of variables V, NCCollect first
writes the polynomial p as a sum of polynomials which are homogeneous.
For each summand, NCCollect writes (to the extent possible) the poly-
nomial into a ``parenthesized'' form using the rules

c1 p1 v+c2 p1vp2= p1 v(c1+c2 p2)

c1 p1 vp3+c2 p1v= p1 v(c1 p3+c2)

c1 p3 vp2+c2vp2=(c1 p3+c2) vp2

c1vp2+c2 p1vp2=(c1+c2 p1) vp2

337``DISCOVERING'' FORMULAS

c1 p1vp3+c2 p1 vp2= p1v(c1 p3+c2 p2)

c1 p3vp2+c2 p1 vp2=(c1 p3+c2 p1) vp2

c1 v+c2 vp2=v(c1+c2 p2)

c1v+c2 p1v=(c1+c2 p1) v

where v is a variable in V, c1 , and c2 are scalars, and p1 , p2 , and p3 are
polynomials.

If none of the above rules apply to a V-homogeneous polynomial, then
we say that its only collected form is trivial. If a polynomial is a sum of
homogeneous polynomials whose only collected form is trivial, then we say
that this sums only collected form is trivial.

9.1. Collecting against a Set of Expressions

When given a polynomial p and a set of products of variables [q1 , ..., qn]
(where each qj is a product of variables), NCCollect begins by creating new
variables [v1 , ..., vn], transforms p by replacing instances of the polynomial
qj in p with vj , performs NCCollect as described in Section 9 and then
replaces vj with qj .

9.2. NCCollectOnVariables

A key concept in understanding the NCCollectOnVariables option for
NCProcess, which is abbreviated as NCCV, is the notion of a maximal
product of knowns within a monic monomial.

Definition 9.2. va va+1 } } } vb is a maximal product of knowns in
v1 } } } vn if

(1) 1�a�b�n;

(2) vj is a known for a� j�b;

(3) if a>1, then va&1 is unknown;

(4) if b<n, then vb+1 is unknown.

NCCollectOnVariables takes as input a polynomial p. On each term of p,
NCCollectOnVariables computes a list of maximal products of knowns.
NCCollectOnVariables then repeatedly applies NCCollect to transform p
into a parenthesized expressions with respect to the maximal products of
knowns. NCCollectOnVariables uses the maximal products of knowns with

338 HELTON AND STANKUS

the largest degree before using the maximal products of knowns with lower
degrees. For example, if A, B, C, D, E, F, and G are knowns and a, b, d, e,
and h are unknowns, then when NCCollectOnVariables is applied to
abABCd+De+FGhAC, it tries to collect with respect to [ABC] and then
collect with respect to [FG, AC] and then collect with respect to [D].

II. THEORY AND MORE DETAILS

10. BACKGROUND ON IDEALS AND GRO� BNER BASES

The Gro� bner Basis Algorithm requires that we have imposed an ordering
(a ``term order'') on the monic monomials in the ring of polynomials in
several variables x1 , ..., xn over a field K as in Section 1. Once a term order
is defined, one can define the notion of a leading term, leading monomial
and leading coefficient of a nonzero polynomial p. If p is a polynomial,
c0 # K"[0] and M0 is a monic monomial, then c0 M0 is the leading term
of p if c0M0 appears as a term of p and for every term cM of p (with
c # K"[0] and M a monic monomial), M0 is greater than or equal to M
in the term order. In this case, c0 is called the leading coefficient of p and
M0 is called the leading monomial of p. For a nonzero polynomial f, let
lt(f) denote the leading term of f (with respect to the given ordering), lc(f)
denote the leading coefficient of f and lm(f) denote the leading monomial
of f. Note that lt(f)=lc(f) lm(f).

10.1. The Reduction Process

A key operation in the theory of Gro� bner Basis is the idea of reducing
a polynomial p by a set of polynomials F. Once a term order is defined,
reducing a polynomial p by a set of polynomials F involves constructing a
polynomial p0 such that

(1) p& p0 lies in the ideal generated by F (so that p and p0 determine
the same cosets of K[x1 , ..., xn]�IF)

(2) the leading monomial of p0 is less than the leading monomial of p.

We now give details involving reducing a polynomial by a set of
polynomials.

Given a monomial order, let F=[f1 , ..., fk] be a set of polynomials.
Now let f be any polynomial. We say that f is reducible to g with respect
to F if there exists fi # F such that g= f &cufi v where c is a constant and

339``DISCOVERING'' FORMULAS

u, v are monomials chosen so that the leading term of cufiv coincides with
one of the terms of f. The effect is to replace a term of f with terms of lower
order. The polynomial p is irreducible with respect to F if the leading term
of f i does not divide the leading term of f for any fi # F.

A reduction step can be conceived of as a replacement LHS � RHS of a
term in f, which contains LHS as a factor, by a term or sum of terms of
lower order. If, for example, xx&1 � 1 is a replacement rule30 and a term
of f contains x x&1, then xx&1 can be replaced by 1. The description of the
reduction procedure in terms of replacement rules corresponds to the way
it is commonly implemented. The ``handedness'' of replacement rules is
determined by the term ordering. The LHS is always taken to be the lead-
ing term of the polynomial, while RHS is the negative of the sum of the
remaining terms (which are lower in the monomial order).

When one applies a list of rules F repeatedly until no further reduction
can occur to any polynomial p one obtains a normal form of p with respect
to F. A normal form of p with respect to F is irreducible with respect to F.

10.2. The Basis Algorithm

G is a Gro� bner Basis for an ideal I if G is a set of polynomials in I having
the property that a polynomial f is in I if and only if 0 is a normal form of
f with respect to G. This agrees with the definition in the commutative case,
but in the commutative case, a finite Gro� bner Basis exists for any ideal
and can be obtained by the Buchberger Algorithm applied to any set of
generators for the ideal. For ideals in a noncommutative polynomial ring,
it need not be true that an ideal has a finite Gro� bner Basis. An adaptation
of Buchberger's Algorithm to the case of noncommutative polynomial rings
is due to F. Mora [FMora].

We now discuss some of the particulars of the GBA given by [FMora].
Critical to a GBA is the construction of, from pairs of polynomials (f, g),
common multiples for the leading terms of f and g. Now we recall the
appropriate notion of common multiple.

Let S be the free semigroup generated by a finite alphabet A (i.e., the
collection of words in the letters of A). Let (m1 , m2) be an ordered pair of
elements of S. By a match of (m1 , m2) we mean a 4-tuple (l1 , r1 , l2 , r2) of
elements of S which satisfy one of the following conditions:

(1) l1=r1=1, m1=l2 m2r2 .

(2) l2=r2=1, m2=l1 m1r1 .

340 HELTON AND STANKUS

30 Recall that x&1 and x are two different indeterminates and that one needs to explicitly
add the equations xx&1=1 and x&1x=1.

(3) l1=r2=1, l2 {1, r1 {1, there is a w{1 with m1=l2 w, m2=wr1 .

(4) l2=r1=1, l1{1, r2 {1, there is a w{1 with m1=wr2 , m2=l1 w.

These conditions make l1 m1 r1=l2 m2r2 . This is a common multiple of
m1 and m2 which is minimal in some sense.

In the commutative case, the Basis Algorithm makes use of a kind of
resolvent of two polynomials called the S-Polynomial. S-Pol(f, g)=c2 u1 f1

&c1u2 f2 where c i=lc(fi) and where u i is chosen so that u i lm(f i) is
the least common multiple of lm(f1) and lm(f2) for i=1, 2. In the
noncommutative case, there are several such resolvents��one for each
match. If M is a 6-tuple (f1 , f2 , l1 , r1 , l2 , r2) where (l1 , r1 , l2 , r2) is a match
for (lm(f1), lm(f2)) and ci=lc(fi), then we set

S-Pol(M)=c2 l1 f1r1&c1 l2 f2r2 .

Example. Consider the polynomials

f1=aaba+ab;

f2=abaa+ba.

There are four matches for (f1 , f2)

1. (aba, 1, 1, aba). In this case the S-Polynomial is

(aba)(f1)&(f2)(aba)=&baaba+abaab.

2. (ab, 1, 1, ba). In this case the S-polynomial is

(ab)(f1)&(f2)(ba)=&baba+abab.

3. (1, baa, aab, 1). In this case the S-Polynomial is

(f1)(baa)&(aab)(f2)=abbaa&aabba.

4. (1, a, a, 1). In this case the S-Polynomial is

(f1)(a)&(a)(f2)=0.

The algorithm is iterative and starts with a finite set of polynomials G1 .
The kth step has available to it a set Gk such that the ideal generated by
G1 equals the ideal generated by Gk . The k th step of the algorithm creates
a set Gk+1 by setting it equal to the union of Gk and the set of all nonzero
reductions of S-Polynomials for all pairs in Gk . The process repeats as long
as there are S-Polynomials with nonzero reductions. In other words, the
process repeats until Gk=Gk+1 .

341``DISCOVERING'' FORMULAS

11. A GRO� BNER BASIS THEOREM ON ELIMINATION IDEALS

A classic theorem for commutative polynomial rings (Theorem 2 of
Chapter 3 Section 1 of [CLS]) says that if G is a Gro� bner Basis for an
ideal I with respect to certain types of orders (an order of elimination type)
and J is a certain type of ideal contained in I (an elimination ideal), then
G & J is a Gro� bner Basis for J. In this section we prove that this theorem
generalizes to noncommutative polynomial rings. We shall see that this
new theorem can help us solve systems of polynomial equations which
are in triangular form and implies that NCProcess (up to the vagaries
of stopping in a finite time and choosing the correct type of order)
eliminates variables as well as is theoretically possible.

We now define elimination ideals, a notion critical to this section.

Definition 11.1. Let I be an ideal of K[x1 , ..., xn] and 1� j�n. The
jth elimination ideal Ij is the ideal of K[xj+1 , ..., xn] defined by

Ij=I & K[xj+1 , ..., xn].

The NCProcess command generates output which is displayed as a list
of V-categories (see Section 2.2) and the V-categories are defined in such a
way that if one of the polynomials in a category is in the elimination ideal,
then the entire category is a subset of the elimination ideal.

It is helpful to be able to find a generating set (or even a Gro� bner Basis)
not only for I but also for the j th elimination ideals. If one has a Gro� bner
Basis with respect to certain types of monomial orders, then, if one considers
the subset of the Gro� bner Basis which lies in the j th elimination ideal, then
this set is itself a Gro� bner Basis and generates the j th elimination ideal.
This is the content of Theorem 11.3.

To layout the correspondence of the rest of this section to Chapter 3 of
[CLS], note that the definition of an elimination ideal (Section 1
Definition 1) an elimination order (Section 1 Exercise 5), an Elimination
Theorem (Section 1 Theorem 2) and an Extension Theorem (Section 1
Theorem 3) are given in [CLS]. We now give the corresponding
definitions, a corresponding Elimination theorem and discuss issues
involving extensions in the noncommuative case.

Definition 11.2 [CLS]. Let j and n be natural numbers such that
1� j�n. A monomial order is of j th elimination type provided that any
monic monomial involving x1 , ..., xj&1 or x j is greater than any monic
monomial of K[xj+1 , ..., xn].

In this section, we follow the ordering convention used in [CLS]. With
the definition of elimination order given above, xa>xb if 1�a� j<b�n.

342 HELTON AND STANKUS

For instance, x1>xn . In the discussions in the rest of the paper, we have
always taken x1<x2< } } } <xn .

If one considers a multigraded lex order (Section 7 and Appendix) under
which

x1>x2>x3> } } } >xn and xj>>x j+1 ,

then this multigraded lex order is of j th elimination type. Note that a pure
lex order x1>>x2>> } } } >>xn is of j th elimination type for any j such that
1� j�n.

The following theorem is the main result of this section and shows that
a Gro� bner Basis for an ideal I with respect to an j th elimination order
yields a Gro� bner Basis with respect to the j th elimination ideal.

Theorem 11.3. Let R=K[x1 , ..., xn], let o be a term order on the
monic monomials of R, let I be an ideal of R and let G be a Gro� bner Basis
of I with respect to o. If 1� j�n and o is of j th elimination type, then
G & K[xj+1 , ..., xn] is a Gro� bner Basis for I & K[x j+1 , ..., xn].

If a pure lex order is used, if one runs NCProcess until the GBA being
used by NCProcess generates a Gro� bner Basis and all of the shrinking (see
Section 12) parts of the NCProcess commands are turned off, then the
categories which this outputs can be used to determine generating sets
for the elimination ideals. More precisely, the union of the categories which
are subsets of the j th elimination ideal is a generating set for the j th
elimination ideal.

The comments of the last paragraph hold when a multigraded lex order
is used rather than a pure lex order and one only considers the j th elimi-
nation ideal only if the order is described by placing a ``<<'' between xj

and xj+1 .
We begin by proving the following lemma.

Lemma 11.4. If f is a nonzero polynomial in K[x1 , ..., xn], if o is a
monomial order, if o is of j th elimination type and if the leading monomial
of f with respect to o is in K[xj+1 , ..., xn], then f # K[x j+1 , ..., xn].

Proof. Let lm(f) denote the leading monomial of f with respect to the
order o.

Suppose c1 , ..., cs # K"[0] and m1 , ..., ms are monic monomials in
K[x1 , ..., xn] such that f =�s

r=1 crmr and m1 om2 o } } } oms . Suppose
there exists an r0 such that mr0

� K[xj+1 , ..., xn]. Definition 11.2 and the
assumption that lm(f) # K[xj+1 , ..., xn] imply that mr0

o lm(f). But
lm(f)omr0

since lm(f) is the leading monomial of f. But then mr0
omr0

343``DISCOVERING'' FORMULAS

which is a contradiction. Therefore, mr # K[x j+1 , ..., xn] for r=1, ..., s.
Therefore, f # K[xj+1 , ..., xn]. This completes the proof of Lemma 11.4.

We now move to the proof of Theorem 11.3.

Proof of Theorem 11.3. Throughout this proof, for any nonzero
polynomial p, lm(p) will denote the leading monomial of p with respect to
the order o.

Let f # I & K[xj+1 , ..., xn] be nonzero. Since f # I and G is a Gro� bner
Basis, f has a finite d-representation with respect to G [FMora]. That is,
there exist scalars c1 , ..., cs # K"[0], there exists f1 , ..., fs # G, and there
exist monic monomials l1 , ..., ls , r1 , ..., rs such that

f =c1l1 f1r1+ } } } +csls fsrs (11.5)

lm(f)=l1 lm(f1) r1 (11.6)

and

lm lm(fm) rm olm+1 lm(fm+1) rm+1 for m=1, ..., s&1. (11.7)

We wish to show that li , fi , ri # K[xj+1 , ..., xn] for 1�i�s. Since
f # K[xj+1 , ..., xn], its leading term lm(f) is in K[x j+1 , ..., xn]. There-
fore, (11.6) implies that l1 , r1 , lm(f1) # K[x j+1 , ..., xn]. An application of
Lemma 11.4 yields f1 # K[xj+1 , ..., xn]. For 1�i�s,

K[xj+1 , ..., xn] % lm(f)=l1 lm(f1) r1 oli lm(fi) ri (11.8)

Now, (11.8) implies that li , ri , lm(f i) # K[xj+1 , ..., xn]. Since o is of j th
elimination type, an application of Lemma 11.4 yields fi # K[xj+1 , ..., xn]
for 1�i�s. Thus, f has a d-representation in K[xj+1 , ..., xn] with respect
to G & K[xj+1 , ..., xn]. Since every element of I & K[x j+1 , ..., xn] has a
finite d-representation with respect to G & K[xj+1 , ..., xn] an application of
Proposition 2.2 of [FMora] proves that G & K[x j+1 , ..., xn] is a Gro� bner
Basis. The completes the proof of Theorem 11.3. K

Note that we have not analyzed what is called extendibility of solutions
in commutative theory [CLS]. The main theorem involving extendibility
of solutions can be viewed as giving sufficient conditions, in the
commutative case, as to when backsolving is possible. We now give a brief
description of these ideas.

Elimination ideals (and, therefore, Gro� bner Basis with respect to term
orders of elimination type) can be used to simplify the problem of finding
common zeros of sets of polynomial equations. In other words, these
elimination ideals can facilitate the process of backsolving. One process of

344 HELTON AND STANKUS

finding a common zero of the set of polynomials in an ideal I involves first
finding a common zero of the polynomials in a j th elimination ideal for j1

close to n. This common zero will only assign values to the variables
xj1+1 , ..., xn . One then tries to extend this common zero to a common zero
of the j2 -elimination ideal for j2< j1 . Extending the common zero consists
of trying to assign values to the variables x j2+1 , ..., xj . The procedure
repeats until one cannot extend a common zero (in which case one has to
backtrack and pick a different common zero in the previous steps if there
are any other choices) or until one finds a common zero of the entire ideal.

For the case of common zeros of commutative polynomials whose coef-
ficients are complex numbers, Chapter 3 Section 1 of [CLS] gives a
theorem which guarantees the extendibility of common zeros from one
elimination ideal to the next under certain conditions. The authors do not
know of any theorem of this type in the noncommutative case. The main
reason we have not looked into it ourselves is that in the examples we have
run (many besides those presented here), it was obvious that backsolving
was possible for any choice of solution at each stage. Possibly more
complicated theorems in systems or operator theory will require such a
theory. This remains to be seen.

12. FINDING A SMALL GENERATING SET FOR AN IDEAL

A principal part of the NCProcess commands is the use of the Gro� bner
Basis algorithm. A Gro� bner Basis can be infinite and even when a Gro� bner
Basis is finite, it can be very large. One often finds that there are many
polynomial equations which are generated which do not enhance our
understanding of the mathematics. We begin with an example.

Example 12.1. The GB generated by the set [PTP&TP, P2&P] is
the set [PT nP&T nP : n�1] _ [P2&P] regardless of the term order used.
No smaller GB exists.

Here just two polynomials equations generate infinitely many. One way
to view this example is that the computer discovers that if the range of P
is invariant for a linear transformation T, then it is invariant for T n for
every n�1. The GBA tries to generate this infinite set of polynomial equa-
tions and, at any time, has generated a finite subset of them. Since the
NCProcess commands are used in the discovery of theorems (as described
in Part I), it would not be helpful to display PT nP=T nP, for n in a large
set of natural numbers, on the spreadsheet, since these equations are
mathematically and conceptually redundant. Indeed, one would not choose
to state, either as a hypothesis or as a conclusion to a theorem, that the

345``DISCOVERING'' FORMULAS

range of P is invariant for Tn for all n�1, since the equivalent statement
that the range of P is invariant for T would suffice.

This introduces the next topic which is shrinking a set of polynomial
equations to eliminate redundancy. Our desire is to take the generated
basis and to remove mathematical redundancy from the generating set
without destroying the information which was gained while running
the GBA. Also we point out that our examples in Part I used shrinking
of the type described here heavily and that the undigested polynomial
equations in the spreadsheets survived the deleting of many polynomial
equations from a partial GB.

To be more precise, in many cases, we would like to compute a minimal
length generating set for an ideal (that is, given an ideal I, a minimal length
generating set for the ideal would be a set Y such that every generating set
for I has cardinality equal to or greater than the cardinality of Y).
Determining an algorithm for finding a minimal length generating set for
an ideal is an open problem for commutative polynomial rings and is
probably unsolvable in the noncommutative case.

We say that a set of polynomials X is a minimal generating set if no
proper subset of X generates IX . A more practical goal is to try to find,
given a finite set X of polynomials, a minimal generating subset of X (that
is, a subset Y of X which generates the same ideal which X generates and
which is a minimal generating set).

In the case of ideals of a commutative polynomial ring, it is well known
that every minimal generating subset of a given set of polynomials can be
found. In fact, one approach to finding such minimal generating subsets
would be to use an algorithm based upon using reduction and using a
finite number of runs of the Gro� bner Basis Algorithm. Since the Gro� bner
Basis Algorithm is guaranteed to finish in a finite amount of time, one can
compute minimal generating subsets.

In contrast to the case of commutative polynomial rings, for an ideal of
a noncommutative polynomial ring, there does not exist an algorithm
which can,31 given a finite set X of polynomials, construct every minimal
generating subset of X. We prove this assertion in the following lemma.

Lemma 12.2. There does not exist an algorithm which can, in every case,
given a finite set X of polynomials, construct every minimal generating subset
of X.

Proof. Suppose that one could write such an algorithm. Given a finite
set X and a polynomial p, one could use this hypothetical algorithm to find
a minimal generating subset Y of X. By using this hypothetical algorithm

346 HELTON AND STANKUS

31 In every case.

again, we can find a k�1 and find the minimal generating subsets
[Zn : n=1, ..., k] of Y _ [p]. Note that no Zn could be a proper subset of
Y. With this set up, p is a member of the ideal generated by X if and only
if one of the Zn equals Y. Therefore, if such a hypothetical algorithm
existed, then one could solve the membership problem for finitely generated
ideals of noncommutative polynomial rings. The membership problem
for noncommutative polynomial rings is known to be unsolvable
([TMora]). K

12.1. The Need to Consider Small Generating Sets

Lemma 12.2 shows that, for noncommutative polynomial rings, it is in
general algorithmically impossible to compute minimal generating subsets.
Therefore, we content ourselves with finding small generating subsets
rather than minimal generating subsets. We now show that even if we
could find minimal generating subsets, we would not necessarily want to
compute them.

In a strategy, it is often the case that equations with no unknowns
are the basic compatibility conditions for the problem being considered.
Thus some redundancy, redundancy which promotes the retaining of
equations with no unknowns, can be helpful. The next two example
illustrate this. The first example shows that it is not always desirable to find
a minimal generating set. The second example shows that, when seeking a
generating set, it is helpful to direct ones search so that one keeps all
equations which do not involve any unknowns. This is described further in
Section 12.7.

The following example shows that, when given a set X, one does not
always want the smallest subset of X which generates the same ideal.

Example 12.3. Consider the case of the spreadsheet following Eq. (3.3).
That spreadsheet contained the following polynomials.

P2
1&P1 P1AP1&P1 A m1n1&P1

n1m1&1 n2m2&1 m2 n2&1+m1n1

There is only one proper subset of the polynomials listed above which
generates the same ideal. That subset consists of the above list of polyno-
mials with P2

1&P1 removed. It would, however, be a tactical mistake to
remove this polynomial since it reveals important information about the
known P1 , namely that it is idempotent. This information can be derived,
of course, from the remaining equations, but it is preferable for it to be
shown explicitly.

347``DISCOVERING'' FORMULAS

In addition, there are cases when it is not advantageous to find an
arbitrary minimal generating set, but a specific minimal generating with
certain properties is desired. Consider the following example.

Example 12.4. Suppose that A and P are known and that m and n are
unknown. Let X be the set [PAP&AP, P&mn, nAmn&Amn, nm&1].
There are two minimal subsets of X which generate the same ideal as X.
These subsets are [PAP&AP, P&mn, nm&1] and [P&mn, nAm-
n&Amn, nm&1]. Clearly, the first minimal generating set is preferable to
the second since the first contains the polynomial PAP&AP which
involves only knowns.

12.2. Preview of Operations

Example 12.1 shows that, in some cases, we seek a minimal generating
set for an ideal; Example 12.3 shows that in some cases we prefer certain
minimal generating sets for an ideal to other minimal generating sets;
Example 12.4 shows that in some cases we prefer finding small generating
sets. The choice of how to shrink a generating set is further complicated by
the desire to have shrinking occur quickly on the computer.

The remainder of this section describes six different operations to convert
from a particular basis for an ideal to a smaller one. They differ in
approach, speed and functionality. We now give a brief description of each
of these six operations.

(1) SmallBasis can be used to find smaller generating sets and is
relatively fast. SmallBasis is described in Section 12.3. SmallBasis uses the
GBA heavily.

(2) ShrinkBasis is used to find all minimal generating subsets and can
be very slow. ShrinkBasis is often too slow to use in practice. ShrinkBasis
is described in Section 12.4. ShrinkBasis uses the GBA heavily.

(3) RemoveRedundant is used to find smaller generating sets and is
very fast. The RemoveRedundant operation is described in Section 12.6.
The RemoveRedundant operation requires the recording of information
during the previous run of the GBA and uses that information once the
run is completed. For this reason, the explanation of RemoveRedundant
requires some initial theoretical discussions which are in Section 12.5. The
run time of RemoveRedundant is very fast since it implements a graph
search and does not invoke a GBA.

(4, 5) The fourth and fifth operations are SmallBasisByCategory and
RemoveRedundantByCategory. These two operations find smaller subsets

348 HELTON AND STANKUS

while respecting the fact that retaining polynomials which do not involve
unknowns is desirable and they act on each category individually. These
last two operations are described in Section 12.7. These two operations use
SmallBasis and RemoveRedundant, respectively, heavily.

(6) The sixth operation is RemoveRedundantProtect. This command
combines the results of three RemoveRedundant runs and is very fast. This
command is used to prevent equations not involving unknowns from being
removed by polynomials which involve unknowns. Also, the command
prevents digested polynomials from being removed by polynomials which
are undigested. This command is described in Section 12.8.

Recall, for the remainder of the section, that the ideal in K[x1 , ..., xn]
generated by X/K[x1 , ..., xn] is denoted IX .

12.3. The SmallBasis Operation

One natural operation is called SmallBasis. We begin by describing
an idealized version of it. SmallBasis associates to a finite sequence
X=[p1 , ..., pm]/K[x1 , ..., xn], a subset Y of X such that pj � Y if and
only if pj # I[p1, ..., pj&1] , for each j=2, ..., m.

Note that SmallBasis(X) depends on the order of the pj 's in the sequence
X.

The reason that SmallBasis cannot be fully implemented on a computer
is that one cannot in general decide whether or not pj # I[p1, ..., pj&1] .

12.3.1. Approximation of the SmallBasis Operation

Our approach to approximating the SmallBasis operation is to replace
the test pj # I[p1, ..., pj&1] with the process of running the GBA with
[p1 , ..., pj&1] and some monomial order as input for a small number of
iterations and testing if the normal form of pj is zero with respect to the
output of the GBA.

As a final note, this approximation of SmallBasis has the property that:
If pj � SmallBasis([p1 , ..., pn]), then pj # I[p1, ..., pj&1] .

12.4. The ShrinkBasis Operation

The second idealized operation is called ShrinkBasis. For a set X=
[p1 , ..., pm]/K[x1 , ..., xn], ShrinkBasis associates to X every minimal
generating subset of X, that is, the collection of all subsets X0 such that
X0 generates the same ideal that X does and no proper subset of X0

generates the same ideal that X does. We will denote this collection by
ShrinkBasis(X).

349``DISCOVERING'' FORMULAS

One (very inefficient) way to implement ShrinkBasis(X) is by using
SmallBasis. Specifically, if we view X as a sequence, the idea is to form

[SmallBasis(_(X)) : _ is a permutation of X]. (12.5)

The result of ShrinkBasis(X) is the set of members of the set of (12.5) such
that no subset of it lies in (12.5).

A more efficient way to perform this computation is to determine
whether or not x lies in the ideal generated by X"[x] for each x # X.
ShrinkBasis(X) will be the collection containing the single set X if x is not
a member of IX"[x] for every x # X and otherwise it is the union of all sets
ShrinkBasis(X"[x]) such that x # X lies in the ideal generated by X"[x].
Of course, one can not determine whether or not an element x is in a
specified ideal and so one uses the GBA for a small number of iterations.

12.5. Gro� bner Graph: Background for the RemoveRedundant Operation

12.5.1. Gro� bner Basis Background

As discussed in Section 9, the principal computation which the Gro� bner
Basis Algorithm performs is the computation of an S-polynomial s from
two polynomials (say p1 and p2) and then the computation of this S-poly-
nomial's normal form (say r) using other polynomials (say, q1 , ..., ql). One
of the side effects of this type of computation is the fact that s lies in the
ideal generated by [p1 , p2 , q1 , ..., ql]. If this ideal membership relationship
is stored during the process of running the GBA and one wants to find a
smaller generating set for the output of the GBA, then it is helpful to use
these ideal membership relationships.

12.5.2. The Graph

We begin with a definition involving graphs. Let G=(V, E) be a graph
and v be a vertex of G. We say that the immediate ancestors of v are
members of the set T(v, G) of vertices from which there is an edge leading
to v (i.e., T(v, G)=[w # V : (w, v) # E]).

One way to graphically record the fact that a polynomial s lies in the
ideal generated by [p1 , p2 , q1 , ..., ql] is to create a graph whose vertices
are [s, p1 , p2 , q1 , ..., ql] and edges are [(p1 , s), (p2 , s), (q1 , s), ..., (ql , s)]
(each of the edges is directed toward s). By taking a finite union of graphs
of the type just described, one has a graph whose vertices are polynomials
and the following property holds:

Every vertex v of the graph has no immediate ancestors or lies in
the ideal generated by its immediate ancestors.

350 HELTON AND STANKUS

Since the GBA is based on generating S-polynomials, its flow can be
described as the construction of a graph with the above property and this
graph will be directed and acyclic. Our implementation of the GBA
actually constructs this graph and this graph is used in Section 12.6. Also,
note that if v is a vertex, then v is a starting polynomial equation for the
run if and only if it has no immediate ancestors.

We now lay these observations into an abstract framework in the next
section.

12.5.3. Definition of a Gro� bner Graph

We now shift our discussion from referring to S-polynomials to using
graph theory. We begin by stating the following definition in which we
define a Gro� bner graph to encapsulate the observations of Section 12.5.2.

Definition 12.6. Let G=(V, E) be a graph such that V/K[x1 , ..., xn].
We say that G is Gro� bner graph if G is a directed acyclic graph and for
every v # V, either T(v, G) is the empty set or v lies in the ideal generated
by T(v, G).

Definition 12.7. Let G=(V, E) be a graph and v be a vertex of G. We
will say that v is a starting vertex if T(v, G) is the empty set.

The following proposition follows easily from the previous two definitions
and mathematical induction. We omit the proof.

Proposition 12.8. Let G=(V, E) be a Gro� bner graph, V be a finite set
and v be a vertex of G. Let V0 be the set of starting vertices of G. Every
element of V lies in the ideal generated by V0 .

Remark 12.9. The hypothesis of Proposition 12.8 can be strengthened.
One can replace the hypothesis that V be a finite set with the hypothesis
that every element of V has only finitely many ancestors.

If one takes a subgraph G0=(V0 , E0) of a Gro� bner graph G=(V, E)
such that

if v is a vertex of the graph G0 and v is not a starting vertex of G0 ,
then T(v, G0)=T(v, G)

then G0 is a Gro� bner graph. Other subgraphs of a Gro� bner graph may
be Gro� bner, but the above mentioned subgraphs can be seen to be
Gro� bner from purely graph-theoretic arguments. We call these subgraphs
subGro� bner and formalize this with the following definition.

351``DISCOVERING'' FORMULAS

Definition 12.10. A graph G=(V, E) will be called a subGro� bner
graph with respect to a Gro� bner graph G� =(V� , E�) if G is a subgraph of G�
and for every v # V, either v is a starting vertex of G or T(v, G)=T(v, G�).

Note that if one is given a Gro� bner graph G� =(V� , E�) and a set of
vertices V0 /V� , then there is a smallest graph G=(V, E) such that V0 /V
and G is subGro� bner with respect to G� .

If G1=(V1 , E1) and G2=(V2 , E2) are graphs, then we let G1 & G2

denote the graph (V1 & V2 , E1 & E2) and let G1 _ G2 denote the graph
(V1 _ V2 , E1 _ E2).

Lemma 12.11. Let G be a Gro� bner graph. If G1=(V1 , E1) and
G2=(V2 , E2) are subGro� bner with respect to G, then G1 _ G2 is subGro� bner
with respect to G and S(G1 _ G2)=(S(G1) _ (V2"V1)) & (S(G2) _
(V1"V2)) where S(H) denotes the set of starting vertices of H for any
Gro� bner graph H.

Proof. For ease of reference, let X=S(G1 _ G2), Y1=S(G1) _ (V2"V1)
and Y2=S(G2) _ (V1 "V2). We wish to show that X=Y1 & Y2 . Since
X/V1 _ V2 , Y1 /V1 _ V2 and Y2 /V1 _ V2 , it suffices to show that v # X
if and only if v # Y1 & Y2 under the conditions that v # V1 & V2 , v # V1"V2

or v # V2 "V1 .
If v # V1 & V2 , then v # Y1 if and only if v # S(G1), v # Y2 if and only if

v # S(G2) and T(v, G1 _ G2)=T(v, G1) _ T(v, G2). Therefore, v # X if and
only if v # S(G1) & S(G2) which occurs if and only if v # Y1 & Y2 .

If v # V1 "V2 , then v # Y1 if and only if v # S(G2), v # Y2 and T(v, G1 _ G2)
=T(v, G1). Therefore, v # X if and only if v # S(G1) which occurs if and
only if v # Y1 & Y2 .

If v # V2 "V1 , then v # Y1 , v # Y2 if and only if v # S(G2) and T(v, G1 _ G2)
=T(v, G2). Therefore, v # X if and only if v # S(G2) which occurs if and
only if v # Y1 & Y2 .

In summary, S(G1 _ G2)=(S(G1) _ (V2 "V1)) & (S(G2) _ (V1"V2)).
Let v be a vertex of G1 _ G2 which is not a starting vertex. Therefore,

v � (S(G1) _ (V2"V1)) & (S(G2) _ (V1"V2)). Without loss of generality,
assume that v � S(G1) _ (V2 "V1). But then v # (V1 _ V2)"(V2 "V1)/
(V1 _ V2)"V2 /V1 and v � S(G1). Therefore, T(v, G)=T(v, G1) and so

T(v, G1 _ G2)�T(v, G)=T(v, G1)�T(v, G1 _ G2).

Therefore, T(v,G1 _ G2)=T(v,G). This completes the proof of Lemma12.11. K

The following lemma follows trivially from the definition of immediate
ancestor, the definition starting vertex (Definition 12.7) and the definition
of subGro� bner graph (Definition 12.10).

352 HELTON AND STANKUS

Lemma 12.12. Let G be a Gro� bner graph. If G1=(V1 , E1) and
G2=(V2 , E2) are subGro� bner with respect to G, then G1 & G2 is subGro� bner
with respect to G.

The following technical lemma will be used in the proof of Proposition 12.14.

Lemma 12.13. Let G=(V, E) be a Gro� bner graph, V0 be a finite set,
V0 /V and for each v # V0 , let

Fv=[H : His subGro� bner with respect to G, v is a vertex of H

and every starting vertex of H is in V0"[v]].

If Hv=(Vv , Ev) is an element of Fv such that card(H)�card(Hv) for each
H # Fv , then Fw is empty for every starting vertex w of Hv .

Proof. Suppose, for the purpose of proof by contradiction, that there
exists a starting vertex w of Hv such that Fw is not empty. Since Fw is
not empty, there exists K=(GK , EK) which is subGro� bner with respect
to G such that v is a vertex of K and every starting vertex of K is a mem-
ber of V0"[v]. By Lemma 12.11, Hv _ K is subGro� bner with respect to G

and Hv _ K # Fw . By the choice of Hv , the fact that Hv is a subgraph of
Hv _ K and the fact that Hv _ K # Fv , the graph Hv _ K equals the
graph Hv and so K must be a subgraph of Hv . But then, since K # Fw , w
is a starting vertex of Hv and w is a vertex of K, w is a member of V0"[w]
which is a contradiction. Thus Fw is empty for every starting vertex of w
of Hv . This completes the proof of Lemma 12.13. K

12.6. The RemoveRedundant Operation

The third idealized operation which we will consider is called
RemoveRedundant and is implementable. RemoveRedundant takes a
Gro� bner graph G=(V, E) (with a finite set V) and a set V0 /V and
returns the set X/V0 which is determined by the condition that v # X if
and only if, using the notation of Lemma 12.13, Fw is the empty set.

The justification of the use of Remove Redundant requires the following
proposition.

Proposition 12.14. Let G=(V, E) be a Gro� bner graph, V be a finite
set, V0 /V and X be the set which is generated by RemoveRedundant when
it is applied to G and V0 . The ideal generated by V0 equals the ideal
generated by X.

353``DISCOVERING'' FORMULAS

Proof. For each v # V0 , let Fv be defined as in Lemma 12.13. Since
X�V0 , IX �IV0

. To show that IV0
�IX , it suffices to show that v # IX for

v # V0"X. Let v # V0 "X. Since v � X, Fv is not the empty set. Let Hv

be as in Lemma 12.13. Fw is empty for each starting vertex w of Hv . By
Proposition 12.8, v lies in the ideal generated by the starting vertices of Hv

and so v lies in the ideal generated by X. This completes the proof of
Proposition 12.14. K

RemoveRedundant can be a very fast operation since it requires only the
searching of graphs (which is fast in comparison to GBA which is what the
previous two idealized operations used).

12.7. Respect for Categories

Each of the above three operations, SmallBasis, ShrinkBasis and
RemoveRedundant, is used to create a subset of the output of the GBA.
While the output of these operations does generate the starting polynomial
equations of the GBA run, they might not contain some particular polyno-
mial equation which the ``user feels is valuable'' because a ``shrinking''
operation removed it. For example, it is possible that any of the above
three operations introduced in this section will eliminate an entire category.
Thus we need variations on these operations which reduce the chance of
eliminating interesting polynomial equations.

12.7.1. Idealized Shrinking by Category

A protection against removing valuable polynomial equations is to not
use the fact that the polynomial equations from a few categories may imply
equations from a different category. This includes the case when two
equations involving unknowns yield an equation involving only knowns.
Certainly, if NCProcess finds an equation involving knowns, then this
equation should be retained.

Recall that a spreadsheet consists32 of

(1) Polynomial equations which solve for a variable.

(2) Polynomial equations which do not involve any unknowns.

(3) User selected and user created polynomial equations.

(4) Undigested polynomials.

The equations in (1), (2), and (3) above were referred to as digested
equations. These items were displayed in terms of a list of smaller sets of

354 HELTON AND STANKUS

32 See Section 2.2.1.

equations called categories.33 This division of a set of polynomial equations
into categories suggests the following possible ways to shrink a set of
polynomial equations while preserving important equations.

I. Let C1 , ..., Cl be the categories. The simplest way is to replace
Cj=[pj : 1� j�k1] with a minimal set [q j : 1� j�k2] such that the p j 's
and the qj 's generate the same ideal.

II. The most drastic way to shrink is to pick an ordering CO on
categories C1<C2< } } } <Cl of undigested polynomial equations (for
example, the one induced by the ordering O underlying the run) and
output the subset X0 /D and X j /Cj defined to satisfy

(1) A minimal generating set for the digested polynomials D. Call
it X0 .

(2) A minimal set of the form X1 _ X0 which is a generating set for
the ideal generated by the union of the digested polynomials D and the
category C1 .

(3) A minimal set of the form X2 _ X1 _ X0 which is a generating
set for the ideal generated by the union of the digested polynomial D and
the categories C1 and C2 .

(4) etc.
Here D is the set of digested polynomials.

III. An intermediate course which is less sensitive to ordering is to
output the subset X0 /D and X j /Cj defined to satisfy

(1) A minimal generating set for the digested polynomials D. Call
it X0 .

(2) A minimal set of the form X1 _ X0 which is a generating set for
the ideal generated by the union of the digested polynomials D and the
category C1 .

(3) A minimal set of she form X2 _ X0 which is a generating set for
the ideal generated by the union of the digested polynomials D and the
category C2 .

(4) etc.

Here D is the set of digested polynomials.

12.7.2. Practical Shrinking by Category

If one uses the approximation to the idealized operation SmallBasis
(see Section 12.3.1) to find small generating sets (rather than minimal gene-
rating sets) for II in Section 12.7.1, then one obtains a SmallBasis operation

355``DISCOVERING'' FORMULAS

33 See Section 2.2.3.

which respects the order of the categories. This SmallBasis operation is
used in the NCProcess commands. Since the SmallBasis command runs a
GBA, SmallBasis requires an iteration parameter to indicate at most how
many iterations the GBA will run for.

If one uses the approximation to the idealized operation SmallBasis
(see Section 12.3.1) to find small generating sets (rather than minimal
generating sets) for III in Section 12.7.1, then one obtains the ``Small Basis
By Category'' operation. The ``Small Basis By Category'' uses two iteration
parameters. The first iteration parameter specifies how many iterations
should be used in SmallBasis for III item 1 (in Section 12.7.1). The second
iteration parameter specifies how many iterations should be used in
SmallBasis for III items 2, 3, and 4 (in Section 12.7.1).

If one uses the RemoveRedundant operation (see Section 12.6) to find
small generating sets (rather than minimal generating sets) for III in
Section 12.7.1, then one obtains the ``Remove Redundant By Category''
operation.

12.8. RemoveRedundantProtected

The command RemoveRedundantProtected combines the results of three
Remove Redundant runs. This command is used to prevent equations not
involving unknowns from being removed by polynomials which involve
unknowns and to prevent digested polynomials from being removed
by polynomials which are undigested. The first step is to compute
RemoveRedundant on only the polynomials which do not involve knowns.
The second step is to compute RemoveRedundant on the polynomials
which are digested. The third step is to compute RemoveRedundant on all
of the polynomials. The result of using RemoveRedundantProtected is the
union of the results of the three RemoveRedundant runs.

13. SPEEDING UP RUNS

While this section is called ``Speeding up runs,'' which would be of
interest to a practitioner, this section suggests open questions which might
be of interest to the theorist.

13.1. DegreeCap and DegreeSumCap

One way to reduce the run time for the NCProcess commands is to use
the options capping the degree of the polynomials that are produced in the
course of running the NCProcess commands.

356 HELTON AND STANKUS

This is valuable since the user will ordinarily know that a polynomial of
a very high degree will not be useful to him and so there is no reason to
produce it. It is not the time that it takes to produce a large polynomial
that is the primary factor. Rather it is the reduction algorithms that will
get bogged down trying to remove it. Degree caps prevent the algorithm
from ever producing polynomials over a certain degree, or combining
polynomials over a certain degree, and the user will still be left with a
generating set for the ideal generated by the input equations. There are two
different options associated with degree caps. For instance,

DegreeCap � 8

would prevent a polynomial of degree 8 or higher from combining with a
polynomial of higher degree.

DegreeSumCap � 10

would prevent two polynomials whose degrees add up to 10 or more from
combining. Degree caps could prevent an important relation from being
created, so when there is a lack of progress, raising the degree caps as well
as the iteration number would be the next step.

WE URGE USE OF DEGREE CAPS. THEY SAVE A LOT OF
TIME.

13.2. Monomial Orders vs Run Time

The command SetUnknowns[x1 , ..., xs] imposes a pure lex order

x1<<x2<< } } } <<xs

on monomials in the unknowns x1 , ..., xs . In the examples of this paper, we
did each of our experiments with a multigraded lex order. We found that
this did not effect the answer. In the commutative case, a typical GBA runs
faster with a graded lex order than a pure lex order. Thus, in practice, one
might be advised to set a graded lex order on the unknowns using the
command SetUnknowns[[x1 , ..., xs]].

14. DETAILS OF NCPROCESS

The following section gives pseudocode for the NCProcess1 and
NCProcess2 commands.

This pseudocode uses the function NCMakeGB which implements a
Gro� bner Basis Algorithm which returns partial GB's which are reduced. In

357``DISCOVERING'' FORMULAS

particular, running the function NCMakeGB for 0 iterations on a set F
does not compute any S-polynomials, but does produce a set G which is
reduced (see discussion following Lemma 12.2). G will be called a reduced
form of F.

14.1. NCProcess1 Command

The input to NCProcess1 is a set of starting equations start, a number
of iterations n for the GBA and a collection of user selects.

The steps taken by NCProcess1 are:

I. Preparation for the main call to NCMakeGB

(1) Run the GBA on the equations in start which do not involve
any unknown variables together with the user selects for at most n+1
iterations. Let A denote this partial GB.

(2) Shrink A using the RemoveRedundantProtected operation.
Call this shrunken set B.

II. The main call to NCMakeGB

(3) Run NCMakeGB with the input B together with start for at
most n iterations. In this NCMakeGB run, S-polynomials between two
elements of the partial GB of A are not computed. Let C denote this partial
GB.

III. Shrinking the partial GB

(4) Shrink C using the RemoveRedundantProtected operation.
Call this shrunken set D.

(5) Let Dk be the set of polynomials in D which do not involve
any unknowns. Let Du=D"Dk . Let Eu be a set of the normal forms of the
elements of Du with respect to Dk . Let E=Dk _ Eu .

(6) Let F be the union of E and the user selects. Let G be a
reduced form of F (see the beginning of Section 14).

(7) Shrink G by SmallBasisByCategory using iteration parameters
n+1 and n+2 (see Section 12.7.2). Call this shrunken set H.

IV. Attempt Decompose

(8) Construct the collected forms (as described in Section 9) of the
polynomials in H.

358 HELTON AND STANKUS

V. Displaying the results

(9) For elements of H, if the polynomial's only collected form is
trivial (see discussion following Definition 9.1), then display the rule corre-
sponding to the polynomial, otherwise display the collected form of the
polynomial. This is the step in which the ``spreadsheets'' of the results of
this paper are constructed.

VI. Return a three tuple to the user for future use

(10) Return the triple (A, H0 , H1) to the user where A is from item
1 above, H0 is the set of polynomials in H which are digested and H1 is
the set of polynomials in H which are undigested.

14.2. NCProcess2 Command

The input to NCProcess2 is a set of starting equations start, a number
of iterations n for SmallBasis and a collection of user selects.

The steps taken by NCProcess2 are:

I. Shrinking the input equations

(1) Shrink start using the RemoveRedundantProtected operation.
Call this shrunken set D.

(2) Let Dk be the set of polynomials in D which do not involve
any unknowns. Let Du=D"Dk . Let Eu be a set of the normal forms of the
elements of Du with respect to Dk . Let E=Dk _ Eu .

(3) Let F be the union of E and the user selects. Let G be a
reduced form of F. (see the beginning of Section 14).

(4) Shrink G by SmallBasis. Set H equal to the result of the
shrinking.

II. The ``Attempt Decompose'' ``Displaying the results'' and ``Return
a three tuple to the user for future use'' as in Section 14.1.

APPENDIX A. ADJOINTS

In Section 1.2.3, we used the notation q(a1 , ..., ar , x1 , ..., xs)* in conjunc-
tion with problems involving an algebra which possessed an involution,
w � w*. We now make this notion precise.

We start by assuming that there is an involution on the coefficients, say
t # K � t� # K.

359``DISCOVERING'' FORMULAS

By relabelling the knowns and unknowns if necessary, let us suppose
that

(1) The polynomial q depends upon the knowns a1 , ..., ar0
and upon

the unknowns x1 , ..., xs0
where r0�r and s0�s.

(2) The polynomial q does not depend on the knowns ar0+1 , ..., ar

and does not depend on the unknowns xs0+1 , ..., xs .

Let us also suppose that there is an injective map _1 from [1, ..., r0] to
[1, ..., r] and an injective map _2 from [1, ..., s0] to [1, ..., s] where r0�r
and s0�s.

We now make the assumption which corresponds to the problem involving
the algebra with involution:

If the mathematical problem we are trying to investigate involves
elements of an algebra A with involution, say w � w*, and we
substitute Ai # I for ai and Xj # I for xj for i=1, ..., r and for
j=1, ..., s, then

Ai*=A_1(i) for i=1, ..., r0 and X j*=X_2(j) for j=1, ..., s0 .

There is a unique operation * from K[a1 , ..., ar0
, x1 , ..., xs0

] to K[a1 , ..., ar ,
x1 , ..., xs] such that the following four conditions hold:

(1) * is additive (i.e., if p, q # K[a1 , ..., ar0
, x1 , ..., xs0

], then (p+q)*
= p*+q*).

(2) if p, q # K[a1 , ..., ar0
, x1 , ..., xs0

], then (pq)*=q*p*.

(3) a1*=a_1(i) for i=1, ..., r0 .

(4) xj*=x_2(j) for j=1, ..., s0 .

APPENDIX B. EXAMPLE OF DISCOVERING

Example B.1. Suppose you are working with matrices a, b, c etc. If an
NCProcess command discovers that ab=bc and, at that point, you realize
that it is reasonable to assume that no eigenvalue of a is an eigenvalue of
c, then b must be zero from an analytic argument.34 Therefore, one can

360 HELTON AND STANKUS

34 In fact even if one realized from the beginning of the computation that a and c have no
common eigenvalues, there is no way to express this hypothesis using polynomial equations.
In fact, a complete analytic argument which showed that b=0 would consist of an algebraic
derivation of the identity ab=bc followed by the use of the hypothesis that a and c have no
common eigenvalues. One would not in general know in advance that ab=bc and so it would
be premature to add ``b=0'' to the collection of polynomial equations at the beginning of the
computation.

add the polynomial equation b=0 to the collection of polynomial
equations and continue. As research progressed, one would add more and
more analytic observations at the points where it became clear what those
observations were.

The syllogism corresponding to the above type of argument would go as
follow.

Fact B.2. If (whatever hypothesis) , then ab=bc.

Fact B.3. If a, b and c are matrices, no eigenvalue of a is an eigenvalue
of c and ab=bc, then b=0.

Fact B.4. If (whatever hypothesis) and b=0, then (desired conclusion).

Conclusion B.5. If (whatever hypothesis) , then (desired conclusion).

Fact B.2 would be seen by using the algorithms in this paper. Fact B.3
is an observation from analysis. Fact B.4 would be seen by using the
algorithms in this paper. Conclusion B.5 is a tautological conclusion of the
Facts B.2, B.3, and B.4.

APPENDIX C. FORMAL DESCRIPTIONS OF PURE LEX
AND MULTIGRADED LEX

C.1. An ordering on Nn

We begin by giving the definition of pure lex order on Nn given in
Section 2.2 of [CLS]. This order will play a central role in defining pure
lex and multilex orders on the monic monomials of K[x1 , ..., xn].

Definition C.6 [CLS]. Pure lex on Nn. Let :=(a1 , ..., an) # Nn and
;=(b1 , ..., bn) # Nn. We say that : is greater than ; if, in the vector
difference :&; # Zn, the left-most nonzero entry is positive.

C.2. Formal Description of Pure Lex

For a monic monomial M and a variable v, let occ(M, v) be the number
of occurrences of v in M. (For example, occ(abcdc, a)=1, occ(abcdc, b)=1,
occ(abcdc, c)=2, occ(abcdc, d)=1 and occ(abcdc, e)=0.)

Let M and N be monic monomials in the variables x1 , ..., xn . M is less
than N with respect to the pure lex order x1<<x2<< } } } <<xn if one of the
following two conditions holds.

(1) (occ(M, x1), ..., occ(M, xn))<(occ(N, x1), ..., occ(N, xn))

(2) (occ(M, x1), ..., occ(M, xn))=(occ(N, x1), ..., occ(N, xn)) and M is
less than N with respect to the graded lex order x1<x2< } } } <xn .

361``DISCOVERING'' FORMULAS

C.3. Formal Description of Multigraded Lex

To specify a multigraded lex order on monic monomials in the variables
x1 , ..., xn such that xi<x j if 1�i� j�n, then one needs to specify a subset
of [1, ..., n&1]. If M and N are monic monomials in the variables
x1 , ..., xn , then M is less than N with respect to the multigraded lex order
if one of the following two conditions hold:

(1) (occ(M, V1), ..., occ(M, Vl))<(occ(N, V1), ..., occ(N, Vl))

(2) (occ(M, V1), ..., occ(M, Vl))=(occ(N, V1), ..., occ(N, Vl)) and M
is less than N with respect to the graded lex order x1< } } } <xn

where

(a) Vk=[xj : aj&1<k�aj] (we set a&1=0 and al+1=n) for
1� j�l

(b) occ(M, V) is the sum of occ(M, v) for all v # V.

To denote the above order, we write down the sequence of characters

x1 s1 x2s2 } } } sn&1xn

where sj is ``<<'' if j is one of the a's and sj is ``<'' otherwise.
Note that if the collection of subsets is the empty set, then the multi-

graded lex order is graded lex and if the collection of subsets is
[1, 2, ..., n&1], then the multigraded lex order is a pure lex order.

As another example, a multigraded lex order for monic monomials in
a, b, c, d and e such that a<b<c<d<e can be specified by specifying the
set [2, 4]. This multigraded lex order would be denoted a<b<c<d<<e.

ACKNOWLEDGMENTS

The authors thank Kurt Schneider and Stan Yoshinobu who wrote some of the
Mathematica software and contributed heavily to the working of examples in this paper. In
particular, they did substantial parts of the examples in Sections 6 and 3. Kurt Schneider did
much of the work for the example in Section 6 and Stan Yoshinobu did much of the work
in the example in Section 4.1. Victor Shih and Mike Moore contributed to the C++ coding
behind the NCProcess command. We thank Johan Kaashoek, Nicholas Young, and Hugo
Woerderman for providing problems and comments on our computer generated solutions.
Johan Kaashoek deserves special thanks for detailed and valuable help. We also thank Roger
Germundsson for helpful discussions involving commutative Gro� bner Basis.

REFERENCES

[BGK] H. Bart, I. Gohberg, and M. A. Kaashoek, ``Minimal Factorization of Matrix
and Operator Functions,'' Birkha� user, Basel, 1979.

362 HELTON AND STANKUS

[BJLW] W. W. Barrett, C. R. Johnson, M. E. Lundquist, and H. Woerderman,
Completing a block diagonal matrix with a partially prescribed inverse, Linear
Algebra Appl. 223�224 (1995), 73�87.

[Ch] S. C. Chou, ``Mechanical Geometry Theorem Proving,'' D. Reidel Publishing
Company, Dordrecht, The Netherlands, 1988.

[CLS] D. Cox, J. Little, and D. O'Shea, ``Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra,''
Undergrad. Texts Math., Springer-Verlag, Berlin�New York, 1992.

[DGKF] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, State�space
solutions to standard H2 and H� control problems, IEEE Trans. Automata
Control 34 (1989), 831�847.

[FMora] F. Mora, ``Groebner Bases for Non-commutative Polynomial Rings,'' Lecture
Notes in Comput. Sci., Vol. 229, pp. 353�362, Springer-Verlag, Berlin�New
York, 1986.

[FaFeGr] D. R. Farkas, C. D. Feustel, and E. L. Green, Synergy in the theories of
Gro� bner bases and path algebras, Canad. J. Math. 45(4) (1993), 727�739.

[HSW] J. W. Helton, M. Stankus, and J. J. Wavrik, Computer simplification of
engineering formulas, IEEE Trans. Automat. Control 43 (1998), 302�314.

[HW] J. W. Helton and J. J. Wavrik, Rules for computing simplifications of the
formulas in operator model theory and linear systems, Oper. Theory Adv. Appl.
73 (1994), 325�354.

[NCA] J. W. Helton, R. L. Miller, and M. Stankus, ``NCAlgebra: A Mathematica
Package for Doing Non-Commuting Algebra,'' available from the web site
http:��math.ucsd.edu�tncalg.

[NCGBDoc] J. W. Helton and M. Stankus, ``Non-Commutative Gro� bner Basis Package,''
available from ncalg�ucsd.edu.

[TMora] T. Mora, An introduction to commutative and noncommutative Gro� bner
Bases, Theor. Comput. Sci. 134 (1994), 131�173.

[Wu1] Wu Wen-tsun, On the decision problem and the mechanization of theorems in
elementary geometries, Scientia Sinica 21 (1978), 159�172; Re-published in
``Automated Theorem Proving: After 25 Years,'' Contemporary Mathematics,
Vol. 29, pp. 213�234, American Mathematics Society, Providence, Rhode
Island, 1984.

[Wu2] Wu Wen-tsun, Toward mechanization of geometry��Some comments on
Hilbert's ``Gru� ndlagen der Geometrie,'' Acta Math. Scientia 2 (1982), 125�138.

[Y] N. Young, ``An Introduction to Hilbert Space,'' Cambridge Math. Textbooks,
Cambridge Univ. Press, Cambridge, UK, 1988.

363``DISCOVERING'' FORMULAS

	I. STRATEGIES AND APPLICATIONS
	1. INTRODUCTION
	2. PRESTRATEGY
	3. EXAMPLE: THE BART-GOHBERG-KAASHOEK-VAN DOOREN THEOREM
	4. EXAMPLES: MATRIX COMPLETION PROBLEMS
	5. STRATEGIES AND MOTIVATED UNKNOWNS
	6. EXAMPLE: SOLVING THE H* CONTROL PROBLEM
	7. MONOMIAL ORDERS
	8. SUMMARY
	9. APPENDIX TO PART I: MORE DETAILS ON NCCOLLECTONVARIABLES
	II. THEORY AND MORE DETAILS
	10. BACKGROUND ON IDEALS AND GRÖBNER BASES
	11. A GRÖBNER BASIS THEOREM ON ELIMINATION IDEALS
	12. FINDING A SMALL GENERATING SET FOR AN IDEAL
	13. SPEEDING UP RUNS
	14. DETAILS OF NCPROCESS
	APPENDIX A. ADJOINTS
	APPENDIX B. EXAMPLE OF DISCOVERING
	APPENDIX C. FORMAL DESCRIPTIONS OF PURE LEX AND MULTIGRADED LEX
	ACKNOWLEDGMENTS
	REFERENCES

