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Uq(sl(2)) Satisfies a Bernstein Duality
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It is well known that in some cases the functor Extµ
R(−, R) defines a duality between

module categories. In earlier papers we studied when this duality can be represented by

a bimodule and have characterized when this happens. In this paper, using some com-

putational methods of noncommutative Gröbner bases in the construction of projective
resolutions of irreducible finite-dimensional representations, we show new examples of

algebras satisfying this property.
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Introduction

Let R be a K-algebra over a field K. In the particular case of an enveloping algebra of
a finite-dimensional solvable Lie algebra a local duality was studied by G. Barou and
M. P. Malliavin in Barou and Malliavin (1985). Later this duality was extended to a
wide class of algebras by the authors (see, Gómez et al., 1996; Jara and Jódar, 2000).
Algebras in this class satisfy certain properties: Auslander–Gorenstein condition, they
are Cohen–Macaulay, idim(R) = GKdim(R) and in addition they have the strong second
layer condition. We refer to Gómez et al. (1996) and Jara and Jódar (2000) as basic papers
on this theory where appear many examples of algebras satisfying all these properties.

Local dualities defined by R0, the underlying R-bimodule of the dual coalgebra R0, are
characterized as those such that, for any cofinite prime ideal P of R, the K-dimension
of R/P and its image by the duality are equal. See Proposition (1.17) in Jara and Jódar
(2000). Later, applying this study to the Bernstein duality, i.e. the duality defined by
Extµ

R(−, R), being µ = idim(R) = GKdim(R), we show that in many examples R0 defines
the Bernstein duality. See Section 2 in Jara and Jódar (2000).

The aim of this work is to extend the number of examples in which the Bernstein
duality may be defined by R0. In this case we study the algebra Uq(sl(2)), being q a root
of unity (in the case in which q is not a root of unity the algebra Uq(sl(2)) does not
satisfy the strong second layer condition). Therefore first we classify the finite dimen-
sional irreducible representations M of Uq(sl(2)), after that we study what homological
properties satisfies Uq(sl(2)) to finally study the dimension of Extµ

Uq(sl(2))(M,Uq(sl(2))).
The paper is divided into three sections. The first two sections include the necessary

background. In Section 1 we show some properties of Uq(sl(2)) and deal with the finite
dimensional irreducible representations of Uq(sl(2)); our main references are Kassel’s
and Jantzen’s books, where we address the readers to get complete proofs of the results
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in this section. In section two we study homological properties of Uq(sl(2)); it satisfies
the Auslander–Gorenstein condition, it is Cohen–Macaulay and injective and Gelfand–
Kirillov dimensions are well known. In addition Uq(sl(2)) satisfies the strong second
layer condition.

The most relevant contribution of the paper appears in Section 3. In this section we
show an example in which noncommutative Gröbner bases techniques are applied to solve
some problems in noncommutative algebras.

Our goal in this section is to compute the vector space dimension of Extµ
R(R/P,R), for

any cofinite prime ideal P of R = Uq(sl(2)), as we did in Jara and Jódar (2000) with R =
Cq[X1, . . . , Xn] the quantum polynomial ring. Otherwise, in the case of R = Uq(sl(2))
we follow a different approach to the problem because a description of finite dimensional
irreducible representations is available. Therefore a simple way to get the dimension
of Extµ

R(R/P,R) is to compute the dimension of Extµ
R(V,R), for any irreducible finite

dimensional representation V of R. We devote this section to perform this computation.
A final word with respect to the used techniques: it is well known that Uq(sl(2)) is the
quotient, by a regular element, of a noncommutative polynomial algebra S. Hence we
may do the computation with noncommutative Gröbner bases in the noncommutative
polynomial algebra and after that we translate the results on ExtS(−, S) to Uq(sl(2)) via
Rees’ theorem.

Finally, we would like to thank one of the referees for pointing out an alternative
approach by showing the equality Extµ

R(K, R) ' K using some Hopf algebra results.

1. Irreducible Finite Dimensional Representations of Uq(sl(2))Uq(sl(2))Uq(sl(2))

definitions and notation

Let q ∈ C a dth primitive root of unity nonzero element such that q2 6= 1. We define

e =

{
d if d is odd and
d/2 if d is even.

For any integer number n we define

[n] =
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1.

Therefore we have

[n] = 0 if and only if n ≡ 0 mod e.

Also we may define the factorial and binomial coefficients. Let 0 ≤ k ≤ n be an integer
number, we define

[0]! = 1,

[k]! = [1][2] · · · [k]

and [
n
k

]
=

[n]!
[k]![n− k]!

.

We define the C-algebra Uq(sl(2)) as the C-algebra generated by variables E, F , K,
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K−1 satisfying the relationships

KK−1 = K−1K = 1,
KEK−1 = q2E,
KFK−1 = q−2F,

[E,F ] = K−K−1

q−q−1 .

Before computing the irreducible finite dimensional representations of Uq(sl(2)) we
point out some general results on the commutativity of elements in Uq(sl(2)).

Lemma 1.1. (Kassel, 1995) Let r ≥ 0 and s ∈ Z integer numbers, then the following
statements hold.

(1) ErKs = q−2rsKsEr, F rKs = q2rsKsF r

(2) [E,F r] = [r]F r−1 q−(r−1)K−qr−1K−1

q−q−1 = [r] qr−1K−q−(r−1)K−1

q−q−1 F r−1

(3) [Er, F ] = [r] q−(r−1)K−qr−1K−1

q−q−1 Er−1 = [r]Er−1 qr−1K−q−(r−1)K−1

q−q−1 .

Proposition 1.1. (Kassel, 1995) (1) {EiF jKl}i,j∈N;l∈Z is a basis of Uq(sl(2)) as
vector space over C.

(2) The graded algebra Gr(Uq(sl(2)) is associative with generators E, F , K, K−1 sat-
isfying the conditions

K K−1 = K−1 K = 1,

K E K−1 = q2 E,

K F K−1 = q−2 F ,
E F = F E

(3) Uq(sl(2)) is a noetherian C-algebra without non-zero zero divisors.

In this section we classify finite dimensional irreducible representations of Uq(sl(2))
showing that there is a upper bound on its dimension and that there are two different
classes of irreducible representations: the first one consists of irreducible representations
of dimension <e (they are similar to irreducible representations of Uq(sl(2)) if q is not a
root of unity), and the second one that consists of irreducible representations of dimension
equal to e, which are new and completely different of representations of Uq(sl(2)) if q is
not a root of unity.

We give now the theorems about the classification of finite dimensional irreducible
representations of Uq(sl(2)) and the necessary notions to apply this study in the third
section. The reader can consult proofs and related topics either in Jantzen (1996) or
Kassel (1995) books.

irreducible representations of dimension <e

Let V be a Uq(sl(2))-module. For any complex number λ we define V λ = {x ∈ V : Kx =
λx}. If V λ 6= 0 we say V λ is a weight space and λ is a weight of V ; elements in V λ are
called weight vectors.

Let V be a Uq(sl(2))-module and λ be a complex number. An element x ∈ V such that
Ex = 0 and Kx = λx is called a highest weight vector and λ is called a highest weight
of V .
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A Uq(sl(2))-module is a weight module if it is generated by the weight subspaces of V
and it is called a highest weight module of weight λ if it is generated by a highest weight
vector of weight λ.

The first result we need is the following one

Proposition 1.2. Let V be a nonzero Uq(sl(2))-module of dimension <e, then V con-
tains a highest weight vector.

The second result is technical and we need it to apply in third section.

Proposition 1.3. Let v be a highest weight vector of weight λ and let v0 = v and
vp = F pv for any p > 0, then we have the following relationships:

Kvp = λq−2pvp;

Evp = [p]
λq−(p−1) − λ−1qp−1

q − q−1
;

Fvp = vp+1.

Now we may state the main theorem

Theorem 1.1. (1) Let V be a Uq(sl(2))-module of dimension <e generated by a highest
weight vector v of weight λ, then the following assertions hold:

(a) λ = εqn, for ε = ±1 and n satisfying dim(V ) = n + 1;
(b) If we define vp = F pv, then vp = 0 if p > n and the set {v = v0, v1, . . . , vn} is

a C-basis of V ;
(c) The operator K acting on V is diagonal and it has n + 1 different eigenvalues

{εqn, εqn−2, . . . , εq−n+2, εq−n};
(d) Any other highest weight vector in V is an scalar multiple of v and it has weight

λ;
(e) V is a simple Uq(sl(2))-module.

(2) Any simple Uq(sl(2))-module of dimension <e is generated by a highest weight vector
and two simple Uq(sl(2))-modules generated by highest weight vector with the same
weight are isomorphic.

As a consequence, for any integral number n (0 ≤ n ≤ e− 2) there is, up to isomor-
phism, only one simple Uq(sl(2))-module of dimension n + 1; it is generated by a highest
weight vector of weight λ = εqn. If we write Vε,n for this simple module, using relation-
ships given in Proposition 1.3, a C-basis of V is {v0, . . . , vn} and the action of Uq(sl(2))
is given by the formulae

Kvp = λq−2pvp if 0 ≤ p ≤ n;
Evp+1 = [p + 1]λq−p−λ−1qp

q−q−1 vp if 0 ≤ p ≤ n− 1;
Ev0 = 0;
Fvp = vp+1 if 0 ≤ p ≤ n− 1;
Fvn = 0,

where λ = εqn and ε = ±1.
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irreducible representations of dimension >e

In this subsection we show that e is a upper bound for the dimension of irreducible
finite dimensional representations of Uq(sl(2)). This result is a direct consequence of two
facts: (1) the center of Uq(sl(2)) is too big in Uq(sl(2)), in fact, it is generated by Ee,
F e, Ke, K−e and the quantum Casimir element Cq, see next section, and (2) any central
element acts as the multiplication by an scalar on any finite dimensional irreducible
representation. Combining these two facts one has.

Theorem 1.2. There are not simple Uq(sl(2))-modules of dimension >e.

irreducible representations of dimension e

To classify all irreducible representations of dimension e first we show a good descrip-
tion of any simple Uq(sl(2))-module of dimension e.

Proposition 1.4. Let V be a simple Uq(sl(2))-module of dimension e, then there is a
basis {v0, . . . , ve−1} and elements a, b ∈ C and λ ∈ C \ {0} satisfying

Kvp = λq−2pvp if p = 0, . . . , e− 1;
Fvp = vp+1 if p = 0, . . . , e− 2;
Fve−1 = bv0;
Ev0 = ave−1;
Evp+1 =

(
λq−p−λ−1qp

q−q−1 + ab
)
vp if p = 0, . . . , e− 2.

In order to get a complete catalog of simple modules we only need to find conditions
on a, b and λ to get simple Uq(sl(2))-modules. To simplify we will denote by V (λ, a, b)
the module described in the above Proposition, then we have the theorem

Theorem 1.3. Any simple Uq(sl(2))-module of dimension e is of one of the following
types:

(1) V (λ, a, b) where a ∈ C and λ, b ∈ C \ {0};
(2) V (λ, a, 0) where a ∈ C and λ ∈ C \ {0}, λ 6= ±qn for any n ∈ {0, . . . , e− 2}.

2. Homological Properties of Uq(sl(2))Uq(sl(2))Uq(sl(2))

We will relate in this section homological properties of Uq(sl(2)). Some of them may
be known, but, by completeness, we include the proof of all of them.

strong second layer condition

In order to introduce the strong second layer condition let us remember Jategaonkar’s
Main Lemma. First we start with a noetherian ring and with the definition of an affiliate
series of a right R-module M , it is a sequence 0 = M0 ⊆ M1 $ · · · $ Mn = M of
submodules together with an ordered set of prime ideals {P1, . . . , Pn} such that each
Pi is a maximal annihilator prime of Mi/Mi−1 and Mi/Mi−1 = AnnMi/Mi−1(Pi). The
Jategaonkar’s Main Lemma studies the behaviour of affiliated series of length two.
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Theorem 2.1. (Goodearl and Warfield, 1989) Let R be a noetherian ring and let
M be a right R-module with an affiliated series 0 $ U $ M and affiliated prime ideals
{P,Q}, such that U is essential in M . Let M ′ be a submodule of M , properly containing
U , such that the ideal I = AnnR(M ′) is maximal among annihilators of submodules of
M properly containing U . Then exactly one of the following two alternatives occurs:

(1) Q $ P and M ′Q = 0. In this case, M ′ and M ′/U are faithful torsion R/Q-modules;
(2) Q ; P and J = Q∩P/I is a linking bimodule between Q and P . In this case, if U is

torsionfree as right R/P -module, then M ′/U is torsion free as a right R/Q-module.

A noetherian ring R satisfies the (right) strong second layer condition if, given the
hypothesis in the above theorem, conclusion (1) never occurs. In a similar way we define
(left) strong second layer condition and strong second layer condition which is left and
right strong second layer conditions. We refer to Goodearl and Warfield (1989) or Bell
(1988) for non-defined terms in this subsection.

With this background we may now establish the result:

Proposition 2.1. Uq(sl(2)) satisfies the strong second layer condition.

Proof. First of all we need to compute the center of Uq(sl(2)). It is generated by Ee,
F e, Ke, K−e and the quantum Casimir element Cq = EF + Kq−1+K−1q

(q−q−1)2 . The proof of
this result appears in De Concini–Kac’s paper (de Concini and Kac, 1990). After that
Uq(sl(2)) is finitely generated as left and right module over its center, and Letzter’s
theorem (see, Letzter, 1990), gives us that Uq(sl(2)) satisfies the strong second layer
condition. 2

Auslander–regular condition

Let R be a noetherian ring. An R-module M satisfies the Auslander condition if for
any n ≥ 0 and any submodule N ⊆ Extn

R(M,R) we have jR(N) ≥ n, being jR(N) the
grade of N , which is defined

jR(N) = inf{i: Exti
R(N,R) 6= 0} ∈ N ∪ {∞}.

The ring R satisfies the Auslander–Gorenstein condition (resp. Auslander–regular con-
dition) if any finitely generated R-module satisfies the Auslander condition and R has
finite left and right injective dimension (resp. finite global dimension).

Our main goal in this subsection is to prove the following result.

Lemma 2.1. Uq(sl(2)) satisfies the Auslander–regular condition.

Proof. We will use that Uq(sl(2)) is an iterated Ore extension, indeed

Uq(sl(2)) = C[K, K−1][F ;σ1][E;σ2, δ]

where
σ1: C[K, K−1] −→ C[K, K−1]

is an automorphism defined by σ1(K) = q2K,

σ2: C[K, K−1][F ;σ1] −→ C[K, K−1][F ;σ1]
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is an automorphism defined by σ2(F iKj) = q−2jF iKj for any i ∈ N and any j ∈ Z,
and finally

δ: C[K, K−1][F ;σ1] −→ C[K, K−1][F ;σ1]

is an σ2-derivation is defined by δ(F ) = K−K−1

q−q−1 and δ(K) = 0. Now we only need to
apply (Li and van Oystaeyen, 1996, Theorem III.3.4.6) which asserts that if R is an
Auslander-regular ring, σ an automorphism and δ an σ-derivation, then R[X;σ, δ] and
R[X, X−1;σ] are Auslander regular. 2

global dimension

In order to compute the global dimension of Uq(sl(2)), as it is an iterated Ore extension,
we may use those results which relate global dimension in Ore extensions. Thus it is well
known that the global dimension of C[K, K−1][F, σ1] is 2 (see, McConnell and Robson,
1987, Theorem 7.5.3). And the same theorem gives us that gldim(Uq(sl(2))) is either 2
or 3. Thus we have a simple method to discriminate between these two values: it consists
in looking for an R-module M such that Ext3R(M,N) 6= 0; we will find many of them in
the last section of this paper. Thus we have

Lemma 2.2. gldim(Uq(sl(2))) = 3.

Gelfand–Kirillov dimension

In the particular case we are studying Uq(sl(2)) is an algebra extension of its center
C := C[Ee, F e,Ke,K−e, Cq] finitely generated as C-module, hence GKdim(Uq(sl(2))) =
GKdim(C). Therefore the problem of computing the Gelfand–Kirillov dimension is re-
duced to the commutative case and the solution is easy: GKdim(Uq(sl(2))) = 3.

Let us now consider the general case, i.e. q is not necessarily a root of unity. Then
we consider the filtration {Rn}n whose generating subspace has {E,F, K,K−1} as basis.
We know by PBW theorem that the set of monomials {FαEβKγ : α, β ∈ N, γ ∈ Z} is a
C-basis of Uq(sl(2)). The number of such monomials in Rn can be counted as α, β ≤ n
and |γ| ≤ n. Then we have GKdim(Uq(sl(2))) = 3.

Lemma 2.3. GKdim(Uq(sl(2))) = 3.

Cohen–Macaulay condition

The algebra Uq(sl(2)) can be described as a quotient of the algebra S generated by
elements E, F , K and H satisfying the relationships

HK = KH
KE = q2EK HE = q−2EH
KF = q−2FK HF = q2FH
[E,F ] = K−H

q−q−1

by the ideal I = (HK − 1). Recall that HK − 1 is a regular central element of S. Indeed
it is central as commutes with E and F . On the other hand it is easy to prove that the
set {Fα1Eα2Kα3Hα4 : α1, α2, α3, α4 ∈ N} is a C-basis of S by a simple PBW argument,
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hence given an element s =
∑

α λαFα1Eα2Kα3Hα4 ∈ S if (HK − 1)s = 0 then we have
the identity ∑

α

λαFα1Eα2Kα3+1Hα4+1 =
∑
α

λαFα1Eα2Kα3Hα4

and as a consequence λα1α2α3+1α4+1 = λα1α2α3α4 , for any α, and we have all coefficients
are equal zero, hence s = 0 and (HK − 1) is regular.

It is also easy, from the above PBW arguments, to prove that GKdim(S) = 4. On
the other hand, as gldim(Uq(sl(2))) = 3 and HK − 1 is a regular central element of S
such that Uq(sl(2)) = S/(HK − 1), then gldim(S) ≥ 4. Now as S is an iterated Ore
extension as Uq(sl(2)) was, the same arguments show gldim(S) is either 3 or 4. Therefore
we obtain gldim(S) = 4. It is also easy to prove that S is Auslander-regular using iterated
Ore extension arguments.

Now we are interesting in showing that S satisfies the Cohen–Macaulay condition,
i.e. GKdim(S) ∈ N and for every finitely generated S-module M we have jS(M) +
GKdim(M) = GKdim(S).

To do that we consider Levasseur and Stafford (1993, Lemma) and apply it twice to
the chain of Ore extensions with graduation of the base ring as it is indicated

A := C[K, H];
{An}n;
An = C(Kα3Hα4 : α3 + α4 = n);

B := C[K, H][E;σ1];
σ1(Kα3Hα4) = q−2α3+2α4Kα3Hα4 ;
{Bn}n;
Bn = C(Eα2Kα3Hα4 : α2 + α3 + α4 = n);

S = C[K, H][E;σ1][F ;σ2, δ];
σ2(Eα2Kα3Hα4) = q2α3−2α4Eα2Kα3Hα4 ;
δ(E) = H−K

q−q−1 , δ(K) = δ(H) = 0

Thus S is Cohen–Macaulay.

Lemma 2.4. Uq(sl(2)) is Cohen–Macaulay.

Proof. We may also apply the third part in Levasseur and Stafford (1993, Lemma) to
obtain that the quotient S/(HK − 1) = Uq(sl(2)) is Cohen–Macaulay. 2

3. Bernstein Duality in Uq(sl(2))Uq(sl(2))Uq(sl(2))

Our main aim is to compare C-dimensions of Ext3R(R/P,R) and R/P for any cofinite
prime ideal P of R = Uq(sl(2)) and see that they are equal, being GKdim(Uq(sl(2)))
= gldim(Uq(sl(2))) = 3. To do that it is enough study the same property for any finite
dimensional simple Uq(sl(2))-module M and prove that dimC(M) = dimC(Ext3Uq(sl(2))

(M,Uq(sl(2)))) as there is a bijection between finite dimensional simple Uq(sl(2))-modules
and cofinite prime ideals of Uq(sl(2)) by setting the image of M equals to Ann(M).

To perform this study we only need to consider any finite dimensional simple Uq(sl(2))-
module M and compute Ext3Uq(sl(2))(M,Uq(sl(2))). We do that using the description of
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these modules given in Section 1 and some computational techniques of non-commutative
Gröbner bases developed in Jara (1999) (see also, Bueso et al., 1998).

Let us consider the algebra S as defined before Lemma 2.4. We rewrite the generators
by setting

X1 := E; X2 := F ; X3 := K; X4 := H

and consider the lexicographical order with X1 < X2 < X3 < X4. Then the relations of
S appear as

X2X1 = X1X2 −
1

q − q−1
X3 +

1
q − q−1

X4

X3X1 = q2X1X3

X4X1 = q−2X1X4

X3X2 = q−2X2X3

X4X2 = q2X2X4

X4X3 = X3X4

and Uq(sl(2)) ∼= S/(X3X4 − 1). Let us call f := X3X4 − 1.
Let M be a finite dimensional simple Uq(sl(2))-module, we may consider it as S-module

by the obvious change ring. As fM = 0 and f is a central regular element of S, by Rees’
theorem we have

Extn
S(M,S) ∼= Extn−1

S/Sf (M,S/Sf) = Extn−1
Uq(sl(2))(M,Uq(sl(2))) n ≥ 2.

Thus in our case we obtain

Ext3Uq(sl(2))(M,Uq(sl(2))) ∼= Ext4S(M,S).

Then the problem is compute the C-dimension of Ext4S(M,S).

simple modules of dimension <e

Let us consider M = Vε,n a simple Uq(sl(2))-module of dimension n+1 < e. In this case
M is isomorphic to a quotient of Uq(sl(2)), in fact M is isomorphic to Uq(sl(2))/Uq(sl(2))
(E,Fn+1,K − λ). Hence M is isomorphic to

S/S(X1, X
n+1
2 , X3 − λ, X3X4 − 1)

as S-module. We have S(X3 − λ, X3X4 − 1) = S(X3 − λ, X4 − λ−1) as the relationships
hold

X4 − λ−1 = −λ−1X4(X3 − λ) + λ−1(X3X4 − 1); and

X3X4 − 1 = λ−1(X3 − λ) + λ(X4 − λ−1) + (X3 − λ)(X4 − λ−1).

Then M is a S-module isomorphic to S/S(X1, X
n+1
2 , X3 − λ, X4 − λ−1).

To compute Ext4S(M,S) we consider the Gröbner bases theory on the ring S as it
appears in Jara (1999). A Gröbner basis if I = S(X1, X

n+1
2 , X3 − λ, X4 − λ−1) is

G = {G1 := X1, G2 := Xn+1
2 , G3 := X3 − λ, G4 := X4 − λ−1}.

Let us define a free presentation ϕ1: S4 → I of I by setting ϕ1(ei) = Gi, i = 1, . . . , 4. In
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order to compute the kernel of ϕ we need to compute the semisyzygies S(Gi, Gj), i < j,
and divide them with respect to the Gröbner basis G.

S(G1, G2) = Xn+1
2 G1 −X1G2 = −[n + 1]

q−n

q − q−1
Xn

2 G3 + [n + 1]
qn

q − q−1
Xn

2 G4;

S(G1, G3) = q−2X3G1 −X1G3 = λG1;

S(G1, G4) = q2X4G1 −X1G4 = λ−1G1;

S(G2, G3) = q2(n+1)X3G2 −Xn+1
2 G3 = λG2;

S(G2, G4) = q−2(n+1)X4G2 −Xn+1
2 G4 = λ−1G2;

S(G3, G4) = X4G3 −X3G4 = λ−1G3 − λG4.

If S(Gi, Gj) = CijGi − CjiGj =
∑

h QijhGh, where Cij , Cji are coefficients in S and
define sij = Cijei − Cjiej −

∑
h Qijheh, then it is well known that the set {sij : 1 ≤ i <

j ≤ 4} is a system of generators of Ker(ϕ1); in fact it is a Gröbner basis with respect to
a particular monomial order. See Jara (1999) for details.

Let us define

H1 := s12 =
(

Xn+1
2 ,−X1, [n + 1]

q−n

q − q−1
Xn

2 ,−[n + 1]
qn

q − q−1
Xn

2

)
;

H2 := s13 = (q−2X3 − λ, 0,−X1, 0);

H3 := s14 = (q2X4 − λ−1, 0, 0,−X1);

H4 := s23 = (0, q2(n+1)X3 − λ,−Xn+1
2 , 0);

H5 := s24 = (0, q−2(n+1)X4 − λ−1, 0,−Xn+1
2 );

H6 := s34 = (0, 0, X4 − λ−1,−X3 + λ).

With this notation H = {H1,H2,H3,H4,H5,H6} is a Gröbner basis of Ker(ϕ1) and
we may build a free presentation ϕ2: S6 → Ker(ϕ1) of Ker(ϕ1) by setting ϕ2(ei) =
Hi, i = 1, . . . , 6. To compute the kernel of ϕ2 first we need to compute the minimum
common multiple Xij of Hi and Hj , i < j. Second we consider those which are non-zero.
In that case

X12 = Xn+1
2 X3; X23 = X3X4

X13 = Xn+1
2 X4; X45 = X3X4.

As a consequence Ker(ϕ2) has four generators. They can be described as

I1 := s12 =
(

q2(n+1)X3 − λq2,−q2Xn+1
2 , 0, q2X1, 0,−q2[n + 1]

qn

q − q−1
Xn

2

)
;

I2 := s13 =
(

q−2(n+1)X4 − λ−1q−2, 0,−q−2Xn+1
2 , 0, q−2X1,

− q−2[n + 1]
q−n

q − q−1
Xn

2

)
;

I3 := s23 = (0, q2X4 − λ−1,−q−2X3 + λ, 0, 0, X1);

I4 := s45 = (0, 0, 0, q−2(n+1)X4 − λ−1,−q2(n+1)X3 + λ, Xn+1
2 ).

Again we obtain that I = {I1, I2, I3, I4} is a Gröbner basis of Ker(ϕ2) with respect
to a particular monomial order. Hence we may continue the process and define a free
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presentation ϕ3: S4 → Ker(ϕ2) of Ker(ϕ2) by setting ϕ3(ei) = Ii, i = 1, . . . , 4. The
kernel of ϕ3 can be computed with the same technique. First we compute the non-zero
minimum common multiples Xij of Ii and Ij , i < j. The only one is X12 = X3X4. Hence
the only generator of Ker(ϕ3) is

J := s12 = (q−2(n+1)X4 − λ−1q−2,−q2(n+1)X3 + λq2, Xn+1
2 ,−X1)

and J = {J} is a Gröbner basis of Ker(ϕ3).
Putting together all the information, we obtain a free resolution of S/I building as

follows:

Ker(ϕ3) - S4 - S6 - S4 - S - S/I

@
@

@
@

@
ϕ3

R

@
@

@
@

@
ϕ2

R

@
@

@
@

@
ϕ1

R
Ker(ϕ2)

6

Ker(ϕ1)

6

I

6

To compute Ext4S(S/I, S) we use the isomorphism

Ext4S(S/I, S) ∼= Ext1S(Ker(ϕ2), S)

and the free presentation

0 −→ Ker(ϕ3)
ν−→ S4 ϕ3−→ Ker(ϕ2) −→ 0.

Then we have a long exact sequence

· · · −→ HomS(S4, S) ν∗−→ HomS(Ker(ϕ3), S) −→ Ext1S(Ker(ϕ2), S) −→ 0 · · ·

and we obtain

Ext1S(Ker(ϕ2), S) ∼=
HomS(Ker(ϕ3), S)

Im(ν∗)

∼=
S

(q−2(n+1)X4 − λ−1q−2,−q2(n+1)X3 + λq2, Xn+1
2 ,−X1)S

.

As a consequence the C-dimension is n + 1.

simple modules of dimension e

If M is a finite dimensional simple Uq(sl(2))-module of dimension e, then either M =
V (λ, a, b) with a ∈ C and b, λ ∈ C \ {0} or M = V (λ, a, 0) with a ∈ C and λ ∈ C \ {0},
λ 6= ±qn for any n ∈ {0, 1, . . . , e− 2}.

In the first case M is isomorphic to Uq(sl(2))/Uq(sl(2))(E − aF e−1, F e − b, K − λ).
Hence M is isomorphic to the quotient S/S(X1− aXe−1

2 , Xe
2 − b, X3− λ, X4− λ−1). Let

us call I = S(X1−aXe−1
2 , Xe

2−b, X3−λ, X4−λ−1). After developing similar calculations
that in the previous example we obtain an isomorphism

Ext4S(S/I, S) ∼=
S

(X4 − λ−1q−2,−X3 + λq2, Xe
2 − b,−X1 + aXe−1

2 )S
.

Hence its C-dimension is e.
In the second case M ∼= Uq(sl(2))/Uq(sl(2))(E − aF e−1, F e,K − λ) and M is isomor-

phic to S/S(X1 − aXe−1
2 , Xe

2 , X3 − λ, X4 − λ−1) as S-module. If we call I = S(X1 −
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aXe−1
2 , Xe

2 , X3−λ, X4−λ−1) and developing similar calculations than in the former case
we obtain an isomorphism

Ext4S(S/I, S) ∼=
S

(X4 − λ−1q−2,−X3 + λq2, Xe
2 ,−X1 + aXe−1

2 )S
.

Hence its C-dimension is e.
We have proved the following theorem.

Theorem 3.1. Let M be a finite dimensional simple Uq(sl(2))-module, then

dimC(M) = dimC(Ext3Uq(sl(2))(M,Uq(sl(2)))).

As a consequence we have

Corollary 3.1. Let P be a cofinite prime ideal of Uq(sl(2)), then

dimC(Uq(sl(2))/P ) = dimC(Ext3Uq(sl(2))(Uq(sl(2))/P,Uq(sl(2)))).

Remark. We have in addition that a minimal injective resolution of Uq(sl(2)) has last
point E3

∼= Uq(sl(2))◦ and it is the direct sum of injective hulls of Uq(sl(2))/P , being P
a cofinite prime ideal of Uq(sl(2)), i.e.

Uq(sl(2))◦ ∼= ⊕{E(Uq(sl(2))/P ): P ⊆ Uq(sl(2)) cofinite and prime}.
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