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Abstract 

An analytical study, strongly aided by computer algebra packages diffgrob2 by Mansfield and rif by Reid, is made of 
the 3+l-coupled nonlinear &hi-&linger (CNLS) system i~,+V21y+(~ly~2 + /@I’) rY = 0, i@,+V2@+(~S(2 + ]@I*) @ = 0. 
This system describes transverse effects in nonlinear optical systems. It also arises in the study of the transmission of coupled 
wave packets and “optical solitons”, in nonlinear optical fibres. 

First we apply Lie’s method for calculating the classical Lie algebra of vector fields generating symmetries that leave 
invariant the set of solutions of the CNLS system. The large linear classical determining system of PDE for the Lie algebra 
is automatically generated and reduced to a standard form by the rif algorithm, then solved, yielding a l$dimensional 
classical Lie invariance algebra. 

A generalization of Lie’s classical method, called the nonclassical method of Bluman and Cole, is applied to the CNLS 
system. This method involves identifying nonclassical vector fields which leave invariant the joint solution set of the CNLS 
system and a certain additional system, called the invariant surface condition. In the generic case the system of determining 
equations has 856 PDE, is nonlinear and considerably more complicated than the linear classical system of determining 
equations whose solutions it possesses as a subset. Very few calculations of this magnitude have been attempted due to the 
necessity to treat cases, expression explosion and until recent times the dearth of mathematically rigorous algorithms for 
nonlinear systems. 

The application of packages diffgrob2 and rif leads to the explicit solution of the nonclassical determining system 
in eleven cases. Action of the classical group on the nonclassical vector fields considerably simplifies one of these cases. 
We identify the reduced form of the CNLS system in each case. Many of the cases yield new results which apply equally 
to a generalized coupled nonlinear Schriidinger system in which Jly/* + /@I* may be replaced by an arbitrary function of 
Ipyi* + /@I’. Coupling matrices in 51(2, C) feature prominently in this family of reductions. @ 1998 Elsevier Science B.V. 
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1. Introduction 

In this paper we are concerned with the 3+1-dimensional coupled nonlinear Schrijdinger (CNLS) system 

ify, + V*p + ( IpI2 + I@]‘) p = 0, 

i@, + V2Qs + (IY]* + I@]‘) @ = 0, (1.1) 

where 

and 9 and Q, are complex-valued functions of x, y, z and t. Below we discuss various subcases of this equation 
which have been of interest in the areas of propagation of pulses in optical fibres and transverse effects in 
nonlinear optical systems [ 3,56,57,62,63,76,8 I]. They have been of particular interest also in the field of 
“optical solitons” [ 1,4,37,38]. 

In recent years there have been many studies of the propagation of pulses in nonlinear optical fibres. In a 
sir&e mode qkical fibte,, the non’rrneat S&rii&mger equation 

i9, + $bxl + 1$12$ = 0 (1.2) 

governs the pulse propagation in a polarization-preserving, nonlinear optical tibre with cubic “Kerr-type” 
nonlinearity. Typically in optical applications t and x are replaced with z and r. The nonlinear Schrodinger 
equation ( 1.2) is a well-known completely integrable equation solvable by inverse scattering [ 861 which 
possesses soliton solutions. Since solitons can propagate without dispersion, it has been proposed that they be 
used in long-distance optical communication systems. 

For a nonlinear optical fibre with birefringence, the evolution of two polarization envelopes is governed by 
a system of coupled nonlinear Schrodinger equations which in nondimensional form are 

([56], see also [80,81]), where * denotes complex conjugation. Here (I/ and r$ denote the pulse envelopes 
along the orthogonal fast and slow birefringence axes, T is the normalised time, and 5 the normahsed spatial 
distance along the fibre axis. The coefficients (Y and /3 represent the strength of the nonlinear coupling, which 
by symmetry arguments satisfy a+/3 = 1. The parameters K, S and 0 are the phase velocity, group velocity and 
nonlinear birefringence coefficients, respectively (for further details, see, for example, [4] and the references 
therein). 

There have been a number of studies of the 1+1-dimensional coupled nonlinear Schrodinger equations 

ih i- fix.\- + u (l@12 + ~14”) * = 0 3 
kb + +xx + u (4$12 + 144”) 4 = 0 1 (1.3) 

where (+ = f. 1 and LY is a constant. This equation can be derived from Maxwell’s equations (cf. [ 49,57,62,76] ) 
and exact solutions of (1.3) are discussed in [57,62,63]. The integrability of the system (1.3) has been 
discussed by Radhakrishnan, Sahadevan and Lakshmanan [67] (see also [6,77] ) who show that the system 
( 1.3) satisfies the Painleve test due to Weiss, Tabor & Carnevale [ 831 only if LY = 1. In this case ( 1.3) was 
shown to be solvable by inverse scattering by Manakov 1481 and Zakharov and Schulman J85J. Some recent 
studies of soliton solutions of ( 1.3) with a = 1 include [45,65,66]. 
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Typically solitary wave and one soliton solutions of PDE arise from classical symmetry reductions as 
travelling wave solutions, while N soliton solutions arise from classical reductions corresponding to generalized 
(Lie Backlund) symmetries. We discuss symmetry reductions in the next section and nonclassical reductions in 
the one that follows. In this paper we find a rich supply of nonclassical reductions. Determination of properties 
of exact solutions arising from these reductions, and whether any correspond to solitary wave solutions or 
solitons not obtainable by the classical methods, is an important problem for future work. 

1. I. Symmetry reductions 

Increasingly, fully nonlinear qualitative, exact analytic and asymptotic methods are used to explore the range 
of phenomena possessed by solutions of nonlinear equations. Unfortunately, mathematical techniques applicable 
to wide classes of nonlinear differential equations are few. One such method, the use of classical Lie symmetries 
to find canonical forms of equations, coordinates in which scaling similarities exist, and reductions and special 
exact solutions, is increasingly popular. Computer algebra relieves the researcher from the excessive calculations 
involved in obtaining Lie symmetries of an equation in the initial stages of its investigation. Exact solutions 
in terms of familiar special functions are more simply analysed for qualitative behaviours than large numerical 
data sets. Moreover, the effects of varying parameters can be more cheaply investigated. 

Much effort has been expended on the use of adaptive grid methods for differential equations which are 
invariant under the action of a symmetry group. Numerical methods which do not reflect the symmetry 
structures of the partial differential equations they are approximating can exhibit poor performance in the 
long-term behaviour of the methods or in the computation of singularities. The reason is that solutions invariant 
under a symmetry often act as global attractors for more general solutions, with a variety of initial data, and 
accurately reflect the intermediate asymptotic behaviour after the initial effects have died down and before 
boundary effects become important [ 51. Numerical methods which compute the natural variables governing the 
evolution of the solution, such as adaptive time-stepping on a moving mesh, can be more effective than the 
standard methods. 

Exact solutions are useful not only in the design of numerical code but also in their testing. Exact solutions 
for nonlinear equations are rare, and methods which can generate families of them are not only increasingly 
popular, but increasingly sought. 

If the Lie algebra of symmetries leaving a PDE (or system) invariant has been identified, then it is possible 
to seek the subset of its solutions invariant under a member of its Lie algebra. The classical vector field 
vanishes on these solutions, and this yields an auxiliary first order PDE or system called the Invariant Surface 
Condition (ISC). Integration of the IX and substitution into the original PDE yields its reduced form under the 
given vector field. Such symmetry reductions, which are generally more analytically tractable than the original 
differential equation, have been used extensively in applications. 

Gagnon [ 291 studied symmetry reductions of the 2+ 1 -dimensional coupled nonlinear Schrodinger equations, 

where (+ = *l and LY is a constant. Gagnon also obtained some exact and approximate solutions. Parker [62] 
has a discussion of symmetry reductions of the associated 1+1-dimensional system. The model is of particular 
interest in the field of transverse effects in nonlinear optical systems (cf. [ 31 and the references therein). 
Recently Sciarrino and Winternitz [78] studied Lie symmetries of the vector nonlinear Schr&$nger equation 

where 4 is either a two or three component complex vector. 
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In a series of papers, Gagnon and Winternitz [ 30,32-361 (see also [ 28,311) studied symmetry reductions 
of the 3+ 1 -dimensional nonlinear Schrodinger equation 

i$t + Gxx + cCIyr + h + lG12ti = 0. (1.4) 

This system arises in the Landau-Ginzburg model of phase transitions [ 241 and in nonlinear optics. It also 
arises in the propagation of slowly varying electromagnetic wave envelopes in a plasma. 

1.2. Nonclassical reductions 

It has been recognised for some time that similarity solutions obtainable by classical Lie symmetries do 
not give the full range of possible invariant solutions. There are now many studies in the literature that seek 
to generalise classical Lie symmetry analysis, and the finding of new exact solutions to nonlinear equations 
in particular. A sampler of such methods with physically significant examples has been given by Olver and 
Vorob’ev [ 441, Chapter 11. 

In this article we are particularly interested in the so-called Nonclassical Method of reduction due to Bluman 
and Cole [ 91. Interest in the method rekindled in 1989 when it was realised that the catalogue of new exact 
solutions to the Boussinesq equation found by the Direct Method of Clarkson and Kruskal [ 201 could also 
be obtained by the Nonclassical Method [46]. It has now been shown that the Nonclassical Method is more 
general than the Direct Method [ 601. Many authors have successfully used the method to obtain new, exact 
and interesting solutions to equations of mathematical and physical interest, and we refer the reader to the 
reviews [ 19,21,27]. 

The nonclassical method, in contrast to Lie’s classical method, seeks so-called nonclassical vector fields 
which leave invariant the joint solution set of the original PDE and its invariant surface condition. Naturally 
any classical vector field is also a nonclassical vector field, since classical vector fields leave the IX invariant. 
However, there are many examples of genuine nonclassical vector fields which do not leave the entire solution 
set of the original PDE invariant. Just as in the classical method, one can obtain reduced solutions of the 
original PDE. For genuine nonclassical vector fields these generally cannot be obtained by Lie’s classical 
method. Further discussion of the method is given in Section 3. 

One of our motivations for seeking nonclassical reductions of ( 1.1) is that Clarkson [ 181 had demonstrated 
that the 3+ l-dimensional nonlinear Schrodinger equation ( 1.4) possesses symmetry reductions that are not 
obtainable using the classical Lie method. 

1.3. Computer algebra packages 

The calculations in this paper made considerable use of computer algebra packages written by the authors 
which analyse overdetermined systems of nonlinear differential equations. Indeed, the results given here would 
not have been possible without the use of computer algebra. For the two main nonclassical cases, systems of 
856 and 238 nonlinear differential equations for the infinitesimals needed to be solved. The packages used, rif 
by Wittkopf and dif f grob2 by Mansfield, seek integrability and compatibility conditions of overdetermined 
systems in a systematic manner. The output is a system equivalent to the input, in that the analytic solutions are 
the same, but which is either in a reduced involutive form or a differential Griibner basis respectively, subject 
to the restrictions of the available theory. 

Algorithms to complete systems to involutive form were developed by Janet, Riquier, Vessiot, Cartan and 
others, beginning a century ago (a modern explanation can be seen in [79] ). The so-called Formal Theory of 
Differential Systems of Spencer and co-authors grew out of such considerations. Modern work following on 
from the ideas of Cartan can be seen in [ 121. Recent authors have adapted advances in the analysis of nonlinear 
algebraic systems, especially the theory of Grijbner bases [7] and the algorithm to obtain a Grobner basis due 
to Buchberger [ 131, to differential systems; see for example [ 11,15,47,54,61]. There have been a variety of 
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adaptations, as there is more than one possible way of viewing a differential system as an algebraic system. 
Some ideas are more practical than others, some suitable only for particular applications or for particular types 
of systems, some of purely theoretical interest. There are many open problems. However, the best future results 
in the development of algorithms will come from testing the limits of those that we have, in applications such 
as the present one. 

The utility of casting a system into an involutive or similar equivalent form is well known. The initial 
application, due to Riquier, was for obtaining formal series solutions which could be obtained coherently and 
which converged. Applications of Riquier’s theorem to symmetries of differential equations have been given 
in [ 68-701. The classical algorithms have been modernised, improved and implemented in the MAPLE package 
standardform [ 721. 

Reid et al. [73] also give an algorithmic approach to nonlinear systems which incorporates aspects from 
both geometric and algebraic approaches (see [74] for a theoretical exposition). This approach has been 
implemented by Wittkopf in his MAPLE package rif. 

The calculations for a differential Grobner basis can be seen to occur in these classical algorithms, albeit 
cast in a different form, and the theoretical advantages of a Griibner basis for various applications can often 
be carried over to differential systems. For example, by adapting lexicographic term orderings in algebraic 
Grobner basis theory, systematic eliminations can be achieved. Thus, one can answer questions such as “what 
are the equations, implied by the input system, for a given subset of the dependent variables?‘, or, “are there 
any equations, implied by the input system, in which derivatives with respect to just one of the independent 
variables appear?’ Such questions can be answered definitively for linear systems, The results for nonlinear 
systems, obtainable by the algorithms implemented in the MAPLE package diffgrob2 used here, are given 
in [ 221 and discussed in [50,54]. With an elimination term ordering, the output of the algorithm is called 
a triangulation of the system, as it is reminiscent of the triangulation or echelon form of a matrix. And the 
output can be solved in much the same way; from the bottom up. For examples of what can be achieved using 
our differential Grobner bases, we refer the reader to [50-531. In addition, for systems of PDE with a finite 
number of parameters in their general solutions, elimination orderings can reduce the integration of the system 
to the integration of ODE. Further, algorithms can be given for finding all rational solutions when the input 
systems are linear and have rational function coefficients [ 7 11. 

The packages used in this paper followed two different philosophies. The rif algorithm and its predecessor 
standard-form are based on an automatic philosophy. While dif f grob2 can be used automatically, especially 
on linear systems, complex nonlinear systems are better analysed interactively. The difficulty of analysing large 
or complex systems should not be underestimated, and both approaches have their advantages and disadvantages. 
We stress that although both packages implement algorithms, the algorithms allow for many choices at each 
stage. The theorems governing the properties of the output are independent of these choices, but efficiency, 
expression swell and memory use are not independent. Thus, the development of heuristics to guide the choices 
is an important open problem. 

Using dif f grob2 on a highly nonlinear system, typically one seeks at first, interactively, simple integrability 
conditions, These usually lead to substantial simplification of the analysis of the remaining equations. Semi- 
algorithmic methods for seeking such conditions which have worked in practice are discussed in the manual. 
Automatic procedures are best invoked on simple subsystems and the results used to simplify the remaining 
equations. The choice of term ordering may be crucial in controlling memory swell; experimenting with the 
term ordering is easily done in diffgrob2. If an integrability condition is obtained which factors, then each 
factor leads to a separate branch of the solution set. The automatic procedures in dif f grob2 have an option 
which allows one to choose the desired factor of every condition obtained. A simple exposition of the theoretical 
principles underpinning the algorithms, which must be followed to guide interactive use of the package, can be 
found in [ 531. 

Judicious interactive integration of some, but not all, simple subsystems en route may yield substantial 
simplification. We warn that the introduction of functions of integration generally increases the number of 
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dependent variables. It can also change the type of functions in the system, from functions easily handled 
by campucec algebra, s&t as qalynamial tkctians, to ones which ace flat, Ear exam&, cambinatiam af 
tr$onometric and root functions. 

The rif and standardform algorithms employ a primarily automatic approach. Integration is generally 
not used and the package has a number of automatic strategies for picking out simple subsystems. For example 
the greedy strategy attempts to reduce the entire system at once, and can often lead to memory explosion. The 
conservative option reduces the current subsystem, together with what it views as the simplest equation of the 
rest of the system, and continues until the whole system is in rif or standard form. One disadvantage of such 
an automatic philosophy is that its criteria for a simple equation may be too rigid. For example, conditions may 
lze missed which wauld be easily recagnized by an exqeciemed (ruman as a key ca subslancially simplifyyiwg the 
system. 

The plan of the paper is as follows. 
In Section 2 we give the classical symmetries of the CNLS system ( 1 .l). In Section 3 we discuss the 

automatic generation of the determining equations for nonclassical vector fields and the action of the classical 
symmetry group on these vector fields. The nonlinearity of the determining system leads to the necessity to 
treat cases. For the generic case, T = 1, Section 4 gives the solution of the determining equations and the 
corresponding reduced farms of tie CNLS system. The determrining equations for the case r = 0 are integrated 
in Section 5, and the corresponding ISCs are integrated in Section 6. The resulting reduced forms of the CNLS 
system are given in Section 7. We conclude with a discussion in Section 8. 

2. Classical symmetries 

In order to apply the Lie algorithm to obtain symmetries of ( 1.1 ), the equations comprising the system need 
to be analytic functions of the independent and dependent variables and derivative terms. One possibility is to 
write the system in terms of @, P and their formal complex conjugates @* and P’ as 

iP,+V2P+(P!P*+@@*)P=0, 

-iP,* + V2P* + (PP* + @@*) P* = 0, 

i@,+V’@+(PP* +@@*)@=O, 

-i@T + V2@* + (!PP* + @@*) @* = 0. 

A, : U,+V*Q+R*Q=O, 

A?: Qt-V’U-R*U=O, 

A3 : V,+V2S+R*S=0, 

A4 : S,-V*V-R2V=0, (2.1) 

with ‘R’ = lJ* + Q2 + V2 + S*. Classical Lie theory is an analytic theory and all quantities can be regarded 
&T C”~T5p~X, kddkg &p&W an+ k-~kphti wihiik~ TStxse, he qeG5nr (2.;‘; kc mwii gatxa? &a~ &T 
SySem ( 5. I ) , which it yie<S as Phe spfXia{ case wbele U’, Q, sr’ and S Be real. One may lake me view lnar fj, 
Q, V and S should be real, given real independent variables. However, in this article we consider all variables 
to be complex. The reason is that for a particular application, the system to be studied may actually only be 
( 1.1) after a change of variable, in which case the associated reality condition will be different. 
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To apply the classical method to the system ( 1. l), we consider the one-parameter Lie group of infinitesimal 
transformations in (x, U) = (x, y, z, t, U, Q, Y S) given by 

x=x+EZ,(X,U) +O(c2>, u=lJ+qbl(X,u)+O(E2), 

j7=4’+~52(x,U)+W~), !~=Q+E~~(x,U)+U(E~), 

z = z + +.$3(X, U) + O(E2) , i;; = v + +3(X, U) + O(e2) , 

t=t+Er(X,U) +O(e2), s= ss qh(X,U) + O(E2>, 

where E is the group parameter. The corresponding classical vector field which generates the flow of the 
transformation is 

The conditions that this is a classical symmetry vector field are obtained by requiring that the prolongation of 
the vector field leaves invariant the set 

S, ={U(x),Q(x),V(x),S(x) :A1 =0,A2=0,A3=0,A4=O} 

of solutions of the system (2. I ). 

(2.2) 

Lie’s algorithm [ 10,591 yields a linear system of overdetermined PDE for the infinitesimals &;(x, U), i = 
1,2,3, T(X, U) and 4.,(x, U), j = 1,2,3,4. It has been implemented in many computer packages [40]. The 
calculations in this section were carried out in MAPLE V Release 5, on a 333 MHZ Pentium II PC running under 
Linux. When time derivatives in (2.1) were chosen as the terms to be substituted in the prolongation, Hickman’s 
program Symmetry [ 411 automatically generated a raw classical determining system for the system (2.1) . This 
system of 1888 linear PDE was generated in about 16 seconds using about 9 MB of RAM. When second 
order derivatives in x were chosen as the terms to be substituted in the prolongation, Symmetry automatically 
generated an equivalent raw determining system of 1144 PDE in about 8 seconds, using about 5 MB of RAM. 
Many programs, such as Hickman’s, are not only able to produce raw (unsimplified) determining systems, but 
are also able to carry out simplijkations during the production of the system. This can result in significantly 
smaller determining systems, and significantly less use of RAM. Indeed Alan Head’s remarkable Mu-Math 
program Lie [ 391, using such strategies, was able to perform large symmetry calculations on vintage PCs with 
tiny memories in the late 1980’s. The rif algorithm [73] reduced the classical determining system of 1144 
equations to standard form in about 20 seconds and 4 MB of RAM. (The corresponding statistics for the 
equivalent system of 1888 equations were 40 seconds and 6 MB of RAM.) Application of the initial-data 
program [ 691 to the standard form obtained, showed that the Lie group of symmetries of the system (2.1) was 
15-dimensional. Then the program commutation~elations [ 68,701 was used to determine the commutation 
relations of the symmetry algebra given in Fig. 1. 

The above information was obtained without integrating the determining equations. We then explicitly ob- 
tained the generators as follows. The Taylor algorithm [72] was applied to the standard form with the given 
initial data to expand the infinitesimals 51, 52, 53, 7, $1, 42, 4s and 44 to order two in Taylor series about an 
arbitrary point (x0, Ue). Expansion to order three yielded no additional terms. Since the expansion was done 
about an arbitrary point this meant that the expansion to order two gave the exact form of the infinitesimals. 
Choosing convenient (in fact mostly zero) values for the coordinates of the arbitrary point (x0, U”) gave the 
following exact form of the infinitesimal generators: 

Cl = a, 1 c5 = ?v , C8 = dZ , Cl0 = 3, 9 
C3=za,-xa,, ‘L4 = ya, - nay , Cl=za,-y&, 

& =t& - ~Qxc% + ixCJaQ - $x&+ ;vxas, 
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ICl.f2I = iCIZ - $flJ. If,.fqI =-c*. If,.&1 = -cs. I~I.~lll =-f,. 

[f2,f?l= -cq. [Cz.C41= -fe. lf2. Cl01 = -c, lCz.f1,l=f*. 

ICJ. c41 = -c,. I~?.~71 =c4. ic3.&31= -f,. If?. fpl = -c*. 

I&. Csl = -L, If+.&1 = -cz. l&.f,l= -fc,. 

[Ls,f,l= f.c,* - ff,?. Ifs.f,l =-Lx. Ih.flI I = -fr 

Ito. C,l = -f,, icn. flOl = -c, . I-c6.-ci,l =Ln. 

[C7.CI(I = -f5. lf7. Lo1 = -Le. 

I& c91 = f& - f&. ICH.L,,I = -Lx. 

Ifs. f,ol = -f* ILu.L,,l =I&. 

I~IO. Cl, I = -2L,o. I.ci2.~IZl =c,5. ILIZ. Cl51 = -f13. 

WI1.Ll41 = -f,y. IfI3. fl5I = zc,* + 2.cj.t. l~M.fISI = -c,q. 

Fig. I. Nonvanishing commutation relations for CNLS system. 

& = td, - iQy& + $JaQ - $syav + ivyas, 
C9 = ta, - #au + $uaQ - $zav + kvza,, 
&I =-~a, -y+2a, -2ta,+ua,+Qa,+va,+sa,, 
c12 = -Qau + uaQ , &4 = sav - vas , 

cl3 = -vaU - sap + uav + Qas, 

cl5 = -sa” + vaQ - QaV + Uas. 

Our example calculation above is typical of calculations for classical symmetries of differential equations, 
especially for systems not containing parameters or arbitrary functions. Such calculations are now largely 
automatic, and as above, much of the information can be obtained without integration heuristics. 

Having determined the infinitesimals, the symmetry variables for the reduced equations are found by solving 
the invariant surface conditions 

*I -51ux+52u~+53uz +ru,-525, =o, 

*,~--IQI+~~Q~+~~Q~+TQ,-~~=O, 
*3--51~+~2V~+53V7.+rVf-~3=0, 

*4 = 61 s, + 52sy + 53sz + TS, - (64 = 0. (2.3) 

Several packages are now available which include heuristics to integrate the determining equations; an excellent 
survey article by Hereman gives the details of what is currently available [40] (see also [44], Chapter 13). 
For equations containing parameters, the package diffgrob2 and rif can be used to find the special values 
of the parameters for which additional symmetries exist [ 53,691. For equations containing arbitrary functions, 
so that a classification problem needs to be solved, there are several ways to proceed, but the most efficient 
appears to be via the use of the equivalence group. We refer the reader to [ 43,47,52]. 

As far as the authors are aware, the only computer algebra package which can integrate first order partial 
differential equations, that is, invariant surface conditions, in a form suitable for use in a reduction calculation, 
is the REDUCE package crack, written by Wolf and Brand [84]. 
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3. Nonclassical reduction method 

Bluman and Cole [9], in their study of symmetry reductions of the linear heat equation, proposed the 
so-called “nonclassical method of group-invariant solutions”. This technique is also known as the “method of 
conditional symmetries” (cf. [ 46]), This method involves considerably more algebra and associated calculations 
than the linear classical Lie method since the associated determining equations are an overdetermined, nonlinear 
system. This has led some to question the feasibility of the method. Further, the associated vector fields arising 
from the nonclassical method do not form a vector space, still less a Lie algebra, since the invariant surface 
conditions (2.3) depend upon the particular reduction. 

In the nonclassical method it is only required that the subset of Sh given by 

S,., = {U(x),Q(x), V(x),S(x) : A1 = 0,A2 = 0,A3 = 0,A4 = 0, rl/] = 0, q2 = 0, 453 = 0, e4 = O}, 

is invariant under the transformation generated by the vector field 

This yields a nonlinear system of determining equations for the nonclassical infinitesimals (1,&, . . . ,& Here 
S, is as defined in (2.2) and 91 = 0, fi2 = 0, I& = 0 and $4 = 0 are the invariant surface conditions (2.3). 

As we showed in [ 231, the standard procedure for applying the nonclassical method (e.g., as described 
in [46] ), can create difficulties, particularly when implemented in symbolic manipulation programs. These 
difficulties often arise for equations such as (1 .l) which require the use of differential consequences of the 
invariant surface conditions (2.3). In [ 231 an algorithm was proposed for calculating the determining equations 
associated with the nonclassical method which avoids these difficulties, and we use that algorithm here. Further 
we showed how the MACSYMA package symmgrp.max [ 171, which was written to calculate the determining 
equations for the classical method, can be adapted to calculate the determining equations for the nonclassical 
method. 

This algorithm proceeds by reducing the system (2.1) with respect to the invariant surface conditions (2.3), 
and then applying the classical Lie algorithm to the result. In order to minimise expression swell and keep 
the subsequent calculations tractable, one considers various cases separately. The generic case, Case 1, occurs 
when the component 7 in the nonclassical vectorfield is nonzero: 7 # 0. Since the form of the ISC (2.3) 
is unchanged when multiplied by a nonzero function, there is no loss in setting 7 = 1, and the number of 
dependent variables is profitably reduced by one. Elimination of LJ,, Q,, V, and S, from (2.1) using (2.3) and 
then application of Lie’s classical algorithm on the reduced system yields the determining equations for the 
nonclassical infinitesimals. The calculations for Case 1 and the reduction obtained is described in Section 4. 
If 7 = 0 there is no loss in setting one of the [; = 1. Thus in Case 2 we choose 7 = 0 and 63 = 1. All 
derivatives of functions with respect to z are eliminated from (2.1) using (2.3) until no z-derivatives appear, 
Lie’s classical algorithm is then applied to the reduced system to yield the nonclassical determining system for 
Case 2. That system has two fewer dependent variables than the classical determining system and is smaller but 
more nonlinear than that for Case 1. The nonlinearity of the system means that there will be several solution 
branches caused by obtaining integrability conditions that factor, as well as the singular cases obtained by 
setting separants and leading coefficients to zero. Here we obtain solution branches [I,~ # 0 and t1,r = 0. 
The solution branch 51,~ = 0 has three sub-branches given by 61 = 0, 1 + 6: f 0 and 1 + r: = 0. This last 
sub-branch splits into three cases, 62 = 0, 1 - .$ # 0 and 1 - <i = 0. The calculation and exposition of the 
various cases can be tedious, and does not always lead to genuinely different reductions. In this article we 
present the calculations for the generic subcase 51,~ # 0, and the singular subcase ,$,,X = 0, l + ,$ # 0 and 
&,,,. # 0. This leads to ten separate reduction families. For Case 2 reductions, the variable t is automatically 
one of the similarity variables. 
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Because permutations of the independent variables X, y and z leave (2.1) invariant, the case .$i = 52 = 0 is 
equivalent to Case 3, which is 7 = 63 = 0 and & = 1. We do not attempt this case here, nor do we consider 
Case 4, which would be r = 5s = & = 0 and 51 = 1. The determining equations for these highly singular cases 
are typically intractable [ 581. 

Two classical reduction solutions are said to be equivalent if one can be obtained from the other by the action 
of some member g in its classical symmetry group. Equivalently, the classical vector field i? of one reduction 
solution is obtained from the vector field of the other reduction solution v by the adjoint action of g: V = g-lug. 
Thus we can simplify the presentation of classical reduction solutions, and their corresponding vector fields, by 
choosing just one representative from each equivalence (or so-called conjugacy) class. This use of the action 
of the classical group to remove unnecessary parameters is well established and has been shown to be effective 
in applications, for example by Patera, Winternitz and Zassenhaus [ 641. 

In integrating the determining equations for nonclassical reductions, it has been observed on several occasions 
that certain constants of integration are, in the reduction equations obtained at the end of the process, removable 
by the action of the classical Lie group. The ability to remove such constants in the integration process of 
the determining equations themselves would lead to a considerable simplification of the calculations involved. 
Further, the integration of the ISCs would be much simpler. Vorob’ev [ 821, Section 4, gives a proof that the 
determining equations for nonclassical infinitesimals of a system inherits its classical symmetries. The proof 
uses the notations of the formal theory of differential systems. A simpler discussion can be found in [44], 
Section 1 1.3.4, where it is shown that a classical symmetry acting on a nonclassical vector field by its adjoint 
action yields a nonclassical vector held. We fruitfully apply this result in Section 4. Our understanding of the 
result is as follows. 

The adjoint action of one vector field on another is given by 

e -““we”L’ = w+Lw,ulu+L,w,ol,“l~+,Liw,“,,~l,“l~+ . . . . 

Let u and w respectively be classical and nonclassical vector fields of a nondegenerate locally solvable system 
of PDE A = 0. Let 3 be the (sufficiently) prolonged jet space locus of A = 0. Let Z be the (sufficiently 
prolonged) locus of the Invariant Surface Condition (ISC) of w. 

Since e“ is a classical symmetry then-locally e”F = F. Since e”’ is a nonclassical vector field we have both 
e”Z = Z and ew (F n 1) = 3 n Z. Let Z = e-7. Then 

e-l’eweu? = e-l’ewz = e-“‘Z = y 

so f is the ISC for e-“ewe’. Also 

e -Ueweu e”3 n eV5? = ePew (F n Z) . 

Since e”’ (3 n 1) = 3 n 1, we have 

e -‘ewe” =e-“‘(3nT2) =e-v3ne-“Z=3nT. 

Consequently both e-“e”‘e”(3 il z) = 3 n ? and e-“eweo? = ?, so e-“ewe” is a nonclassical vector field of 
A = 0. 

4. Nonclassical reductions, Case 1: T = I 

The nonclassical determining equations for the case r = 1 were automatically generated using the MAPLE 
program [41] using the algorithm described in [ 231. As in Section 2, the calculations in this section were 
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carried out in MAPLE V Release 5, on a 333 MHZ Pentium II PC running under Linux. Hickman’s MAPLE 
program Symmetry [41] automatically generated a raw nonlinear nonclassical determining system of 856 PDE 
in about 8 seconds using about 5 MB of RAM. 

An incomplete run of the rif algorithm [73] showed that the system contained a simple subsystem of single 
term equations. Specifically this subsystem consisted of a system with all second order partial derivatives of 
41, 42, 4s and $4 with respect to n, y, z and t, equal to zero. Thus by simple integration 

(4.1) 

where G,jk = G,,k (x, y. z, t) and Gj = Gj ( X, y, z, t) are functions of integration. 
Wittkopf’s rif algorithm was then applied to the system resulting from substitution of (4.1) into the 

determining system. Using its automatic case splitting option, in about 120 seconds and 4 MB of RAM, his 
algorithm yielded 4 cases. Each case was in rif-form and one was inconsistent. The initial-data algorithm 
was applied to the remaining three cases. The exact forms of the classical symmetries were substituted into the 
rif-forms to determine the number of parameters in the subclass of classical symmetries which satisfied each 
case. If this was the same as the number calculated by the initial-data algorithm, then the case was rejected 
as not yielding a genuinely nonclassical vector field. On this basis only one of the three consistent cases was 
identified as being genuinely nonclassical. For that case the initial-data algorithm yielded 9 parameters, 
whereas the subclass of classical solutions only contained 8 parameters. The rif-form for this case is given in 
Fig. 2. We mention that it is possible to determine whether a case is genuinely nonclassical without integration. 
Instead of substitution of the exact classical solutions used above, reduction of the rif -form of the nonclassical 
system with respect to the rif-form of the classical determining system is used. 

The leading nonlinear subsystem in the rif-form consisted of the single equation Gi, + Gi2 = 0 together 
with the pivot condition n = G41 + G32 $ 0. The last condition is equivalent to Gdi $ 0, since Gs.2 = Gdi 
occurs in the rif-form. The ranking used in the reduction was graded first by total order of derivative, then 
lexicographically by derivative (a, + a,. + a, + a, + du > dQ + & + 3s) and finally lexicographically on 
dependent variable (61 + 62 + 63 + r >- GII % G12 F G13 2- Cl4 + GZI + . . . + G24 h- G31 b- . . t G34 k- 
GP, >- ,.. t GM + G, + G2 + G3 >- G4). 

4.1. Integration of the determining equations 

There are two cases: G4i - iG42 = 0 and G4i + iG 42 = 0. Since the solution set of the determining system 
depends on finitely many parameters, we know that if a ranking of lexicographic type [ 16,751 is used, then the 
rif -form is guaranteed to contain a parameterized ODE [ 54,7 11. Recursively applying this procedure reduces 
the integration of the system to the integration of ODES. We used MAPLE’s dsolve, to solve these ODES. This 
easily led to the following exact solution for the case G4i - iG42 = 0: 

51 = 
2bl t - x - ibe 

52 = 
2b2t - y - ib7 

b5-2t ’ b5 - 2t ’ 

53 = 
2bg - z - ibs 

b5-2t ’ 
r= 1, 

41 = 
U - Q(blx + bzy + b3z + b4) 

b5 - 2t 
+(V-iS)e’“, 

d2 = Q + U(hx + bzy + hz + 64) 
bs -2t 

-i(V-iS)eiH, 
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$3 = 
V - S(hx ; y2: hz + b4) _ (u _ ip) ei,, , 

5 

44 = 
S + V(b1.x + b2y + b3z + 64) 

b5 - 2t 
+ i( U - iQ) eiH , 

where 

b5 - 2t 

B = ii [(be + iblb5)* + (b7 + ibzbj)* + (bg + ibjb5)*] , 

C = ih + s + bl (b6 + iblb5) + bz(b7 + ib2b5) + b3(b8 + ib3b.5) , 

and B, C, b,, b2,. . . ,b9 are complex constants. The case GUI + iG42 = 0 is treated similarly. 
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4.2. Simplijication of the vector field and integration of the characteristic equations 

For convenience we multiply the vector field whose components are given above by (b5 - 2t). This yields 
an equivalent nonclassical vector field, 

where the infinitesimals 41, etc., are given above. Using the explicit expressions for the classical Lie symmetries 
Ck in Section 2, the vector field w can be written in the form 

w=u+n, 

where II is a classical vector field and 

u = Cl1 - ibeLl - ib& - ib& + bpC10 + 2blC2 + 2bz& + 2b3C9 + bd(C12 - L,,) , 

n = exp( iH)N , 

n/=(V-iS)(&--ia,) -(r/-&?)(a”-ids). 

We know from Section 3 that the action of the classical group on w will produce another nonclassical vector 
field. We will use the classical group action to remove parameters and simplify w. Since w has a large classical 
part u, which depends on most of the parameters, we first simplified 11 with respect to the classical group. 

Theorem 1. Under the adjoint action of the classical group of the CNLS system the vector field u is equivalent 
to the vector field Ct 1. 

Thus effectively the troublesome parameters bl , bl, . . . , bg can be set to zero. 

Proofi To prove this result one applies appropriate adjoint actions using the iterated commutator formula and 
the commutation relations in Fig. 1. Application of the adjoint action of time translation effectively sets b5 to 
zero. Then application of spatial translations effectively sets be, 67 and bs to zero. A slightly more complicated 
calculation based on applying the adjoint action of Gz puts bl = 0. Similarly, application of the adjoint actions 
of Cb and &, respectively, enables us to take b2 = 0 and b3 = 0. Now u has the form l,t + b4(C12 - L14). 
Application of the action of & transforms u to the form Ct t + b4( fZt2 - lt4) + cy&, for some nonzero (Y. From 
Fig. I, [C?;, fZt ] = -i(Ct2 - 6t4), and [ [&, ICI 1, Ct 1 = 0. This implies that the application of the appropriate 
action of Lt to u can transform it to Ctt + LY& + /?Ct. The terms in Ct , C2 can be removed by applying spatial 
translations, and this completes the proof. cl 

The above calculations were easily and quickly accomplished by hand. Application of the the same adjoint 
actions to the full nonclassical vector field w yields the following result: 

Theorem 2. Under the adjoint action of the classical group of the CNLS system the vector field w = u + n is 
equivalent to the vector field W = ~!Ztt + ii where ii = at-‘i2 exp {i(x2 + y2 + z,*)/(&)}N. 

To prove this result the same classical group actions are applied in the same sequence as in the proof of 
Theorem 1. Simple computations show that there are functions fj such that [N, Cj] = fjN, for j = 1,2,. . , IS. 
From Section 3, we know that nonclassical vector fields are mapped to nonclassical vector fields under the 
action of the classical group. Together with [N,L,i] = fjN this fact enables the proof of Theorem 2 to be 
easily completed without explicitly computing the exact form of the adjoint actions, or the fi. 
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Effectively, Theorem 2 means that we can set bi, . . . , bs to zero. Redefinition of bg yields the constant a in 
the theorem. Note that iT is a classical vector field when a = 0. 

Integrating the characteristic equations for z yields the similarity variables, 

/ 112 z]=xt ( z2 = y/t’12, z3 = z/t’12 $ 

and the form of the reduced solutions, 

Ir-(x, y, z, t) = t -“2B3(Z19Z27Z3) -4at-1exp(~i~2)B2(Zl,Z2,Z3), 

P* (x, y, z, t) = t -“2Bl(Zl,z2~z3), 

@(x, y, z, I) = r- “2B4(zl > z2,23) + 4at-‘exp(~X2)Bi(z~,z2.z3), 

rp” (x, y, z, f) = t -“2B2(zl,z2~z3), 

where J2 = Z: + ~22 + z:, Cp = (I + iQ, @* = U - iQ, P = V + iS and II/’ = V - is. 
The above results correspond to the case G4i - iG42 = 0. The case G4i + iG42 = 0 is obtained from the above 

results by applying the symmetry of the system (2.1) under conjugation, P H P*, P* H P, @ H @* and 
@* H @. 

Finally substitution of the above expressions into the CNLS system yields the reduced form, 

KBI = -ii (1 + M) BI , KB2=-ii(l+M)Bz, 

ICBj= ii(l +M)Bj, KB,=ii(l +M)Bq, 

where K = a:, + a7”, + a:, + Bi B3 + B2B4 and M = ZI d,, + z] d,, + z] d,, . Note that a does not appear explicitly in 
the reduced equations so the functions Bj for a $0 are the same as those for the classical case a = 0. Thus the 
form of the reduced solutions for !P, W*, @ and @* above can be regarded as a map from classical solutions 
to nonclassical solutions. 

Consider the obvious reality condition for the CNLS system where a = 0, and * denotes complex conjugation 
and x, y, Z, t are real. Then B; = BI and Bz = B2. The case a $0 is not consistent with this obvious reality 
condition. However, the nonclassical reductions above for a $0 are still potentially of use in applications where 
the CNLS system does not have the obvious reality condition (such as after a change of variables). 

The N + l-dimensional CNLS system admits the classical scaling symmetry 

N 

Csclll = - C ~,,a., - 2t6’, + lJ& + Q~Q + V&I + 53s. 
,j=l 

We have checked that the vector field 

Csccl~ + at’2-N’i2exp 

{ 1 

p&f Jv 
j=l 

is a genuine nonclassical vector field for the N + l-dimensional CNLS system, for N = 1,2,3,4. When N = 3 
it yields the nonclassical vector field studied in this section. We conjecture that it is a genuine nonclassical 
vector field for general N. For N = 1,3,4, the corresponding reduced solutions take the same form as above, 
except that t-’ in the expressions for @ and P is replaced with t(1-N)/2/( N - 2). 

5. Nonclassical infinitesimals, Case 2: T = 0, & j0 

Setting 53 = 1, without loss of generality, the invariant surface conditions (2.3) simplify to 
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!clU,? + 52q + u, = 41 T 

&Qx+i%Q.s+Q,=d2v 

61 vx + 52 y,. + v, = 43 , 

~I& + 62S.v + s, = q14 . (5.1) 

Analogous to the procedure in the generic case, we use (5.1) to eliminate all z-derivatives. Thus U,, , Q,, , Vzz 
and S,,, and other z derivatives are eliminated from ( 1 .I), and the classical Lie algorithm is applied to the 
resulting system. 

The calculations in Sections 5, 6 and 7 were carried out using MAPLE V, Release 4, on a Silicon Graphics 
Workstation operating under IRIX Release 5.3, with 48 MB of RAM and a 33 MHZ IP12 Processor. The 
calculations were done in an interactive fashion, making extensive use of dif fgrob2. Most terminated in 
seconds or minutes, and required several MB of RAM. The MACSYMA package symmgrp.max [ 171 was used 
to create the determining system. It contained 238 determining equations in 6 dependent and 8 independent 
variables. As in the generic case, a subsystem of single term equations was simply integrated to give 41, . . . , $4 
as in (4.1) . A second subsystem of two term linear equations were solved by dif f grob2 [ 50,5 11. The system 
(4.1) immediately simplified to 

5.1. Generic case 51,~ f 0 

Inserting (5.1) into the remaining equations yielded a number of nonlinear equations for 5, and &. Calcu- 
lating integrability conditions on this subsystem yielded a system, given [t,x # 0, which was solved easily to 
give 

51 = 
z + k3(l)Y + k4(t) -k1(t)z - k3(t)x+ k5(t> 

k,(t)y + k2(t) - x ’ 
52 = 

h(t)y+k2(t) --x . 

Substituting these into the remaining equations yielded several first order linear equations for the G;j, which 
were solved using the method of characteristics to yield 

Cl2 = 
w2(5l>Y*t) 

kl (t)v + k2(t) - x 
+; f$y++, 

( 

G3 = 
Wl3(51> Y3 t> 

G4 = 
w4(51, Yt f) 

h(t)y+k2(t) --x7 kl(t)y+k2(t) --x’ 

G34 = 
W34(519Y?t) 

kl (t)r + h(t) - x 
+f(f$+~-q.$y+~)), 

where the wii are arbitrary functions of their arguments. Calculating further integrability conditions yielded 

dk, 
0, 

dk3 
0, 

d2k2 d2k4 
dt= dt= yp= 0, -=o, dt2 
ks = k, k4 + k3k2 > Wij,.v = Wi,j,t = 0 3 

and four other nonlinear equations in the w;,i. Integration of this system gave 
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2 - 
w;q - W]2 - Cl 9 w:* + w:3 + $4 = c2 , 

w3cw34 + w2) = c3 v Wl4CW34 + 92) = c4> (5.2) 

where the c; are constants of integration. Applying MAPLE’s Grijbner basis package to (5.2) yielded a quartic 
for ~34 with coefficients in terms of the cj’s and then ~12, wts, wt4 in terms of ~34. Thus the w;j are constants 
unless the quartic is identically zero. Performing another Griibner basis calculation on the coefficients of the 
quartic showed that ct = c:, = 0, c: + ci = 0 is the exceptional case. Thus we obtain two cases with [I,~~ # 0: 

Case I: The Wi, are all constant, and 

Case II: ~34 = -wt2 and wT2 + wy3 + wf4 = 0. 

In Case I, there are no further equations to solve. We now restrict ourselves to Case II. A differential Grobner 
basis calculation with the remaining equations shows that the W;j are proportional to each other and satisfy the 
following ordinary differential equation: 

[( I + k;)(; - 2k,k& + 1 + k;] $ + [2( 1 + k;)& - 2k, k3] g = 0. 
I 

There are four solution branches of (5.3) depending on the values of kl and k3. 

Case IIa: If 1 + k: + kz f 0 and 1 + k: # 0, then 

Case IIb: If 1 + ki + k: = 0 and kl # +i, then 

w = (1 + k;) p;I + kl/k3) + ff2’ 

Case 11~: If kl = fi and k3 # 0, then 

w = a] In (F2ik&i + 1 + k:) + a~. 

Case IId: If kl = If-ri and k3 = 0, then 

w=c2y1(, +a2. 

5.2. Singular case: ~$1.~ = 0, 1 + 6: # 0, & # 0 

Inserting (5.1) and &I,+ = 0 into the determining equations yields [i 
Assuming that & SO, then this subsystem has solution 

52= 55Ct)x-t z -th(f) 

s(t) -Y ' 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

St (t), and a subsystem for 52. 

(5.8) 

where h(t) and g(t) are arbitrary functions. A set of linear first order equations for the G;j are also obtained. 
An integrability condition of that system implies that 6 r,r = 0. The system can then be solved by the method of 
characteristics to yield 

G12 = 
w2(62,t) 

+;($-52$Y), 
W13(t2tt) 

g(t) - Y 
G3 = 

s(t) -Y ' 

G4 = 
Wl4('t2~t) 

G34 = 
W34('$2~t) 

g(t) -Y ' g(t) - Y 
+gg-d$Y), 
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where the Wi, are arbitrary functions of their arguments. Substituting these into the remaining equations yields 

equations of ‘the type 

~~14,,(g(f) - y)2 = (wl4(wl2 + %4))(, I 

where the subscripts denote partial derivatives. Using this equation and the form for e2 above shows that 
~14,~ = 0. The same argument applied to the remaining Wij shows that they depend only on e2. Using this fact 
in the remaining equations yields 

d2g o d2h 
z= ’ yp= 0 

and a set of four equations which are easily integrated to yield the same system (5.2) as obtained before. 
Following the same reasoning as in Section 5.1 yields that the W;j are all constants, unless w12 + wj4 = 0 and 
w:2 + w:3 + w f4 = 0. Using w12 + ~3.4 = 0 in the previous equations yields 

wI;‘2( 1 + 6: + 5:) + 2w;2<2 + 2w,4w’13 - 2ww1;4 = 0 1 

w{>( 1 + sf + 6,‘) + 2wi3e2 + 2w12wi4 - 2w~w;~ = 0, 

wY,( 1 + s: + s;> + 2w;4r2 + 2w,3w;2 - 2w,2w;3 = 0, 

where ’ = d/d[2. One obvious nonconstant solution is that the wlj are all proportional, so that 

w1.j = y,j arctan 
( ) J& ’ 

(5.9) 

together with $ + $ + r: = 0. (Recall all variables are complex.) Attempting to show that this is the only 
nonconstant solution for the W1.j using integrability conditions leads to tremendous expression swell. Instead, 
we write (~~2, ~1.1, w14) as a vector u and the system in terms of the vectors o”, u’ and v’ x u. Then JY~* = 0, 
implies that Y’ .u = 0. Using the identity (v’ x v) x v = --u’~v/~ + (u’ .u)u shows that the system can be written 
as (( 1 + 6: + 6,“)~’ x u)’ = 0. The result that the w1.j are proportional is easily obtained. 

In summary, for 1 + 6: # 0 and &A # 0 we obtain two further cases: 

Case III: the Wij are all constant, and 

Case IV: ~34 = -w12, wT2 + wy3 + wy4 = 0 and the w;,j are of the form (5.9) 

The case &1 = 0 implies 51 = 0. This a subcase of Case 3 which is not attempted in this paper (see the 
discussion in Section 3). 

6. Integration of the invariant surface conditions, Case 2, T = 0 

6.1. Generic case 61,~ # 0 

Using the infinitesimals obtained in Section 5, the invariant surface conditions can be written in the form 
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(6.1) 

where K; = dki/dr is a constant, and the y; are the constants of proportionality between the w;~. In Case I, 
w( 6, ) = 1, while in Case II, yi = -y4 and yi + yi + yi = 0. 

Set 

K=[ji;2ii), Jo=[;; 0, ;). 

In all cases [K, Jo] = 0. In Case II, yi = -74, and defining J; for i = 1, 2, 3 by K=yl Jl +y2J2+ y3J3 yields 

[J,,Jzl =2J1, [Jz, Jxl = 2J, , [Jj,J,l =2J2, 

and thus K is an element of a 4 x 4 representation of 51(2, C). The condition y: + yz + 7: = 0 implies that 
K2 = 0. 

The right-hand side of (6.1) can be written in terms of sl(2, C) and Jo. In particular the right-hand side of 
(6.1) is given by 

+; k y:t; k2 (YI + 7’4) + K4 - 6, K2 Jo = &A + @Jo, 
I 

which defines A E 51(2, C) (in Case II, A = K), where 

WC&) 
a,1 = k,?, - x + k2 ’ 

g = Case I, 

Case II. 
(6.2) 

We have deliberately used primed LY and p variables as they are shortly to be integrated. Thus the right-hand 
side of (6.1) is of the form of a sum of an element A in a 4 x 4 representation of sl(2, C) and Jo. In addition 
A2 = ~~1~ where ~~ = - [a( yi - ~4)~ + yz + y:] and [A, Jo] = 0. 

The system is solved by the method of characteristics. It does not decouple, but is linear. Let CT = (U, Q, v S)‘r 
and set X = x - k2, Y = y, Z = z + k4. This amounts to using classical symmetries to set k2 and k4 to zero. 
The characteristic system of equations (6.1) is the system of ODES, 

dX dY dZ 
%=,“+“‘:1 dh=-k,Z-k3X, ==k,Y-X, 

2x= ’ 
dA = (k,Y-X) (ct’A+p’Jo)U. 

Invariants of the first four equations are 

t, x1 =k,X+Y-k3Z, x2 = x2 + Y2 + z2. 

The third and fifth equations can be combined to yield 

(6.3) 

(6.4) 



478 

dU 
- = a’A + @Jo. 
dZ 
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In each of the cases, one writes (Y’ and 0’ as a function of (2, xi, ~2, t), and integrates them with respect to 
Z, with the x; and t regarded as constants, to obtain 

U = exp(cYA) exp(PJo)u, (6.5) 

where 

d 
dzff=ff’, -& p = p’ . (6.6) 

We now calculate LY and /3 in Case I and the four subcases of Case II. The integration of (y’ leads naturally to 
four subcases of Case I, detailed below. 

Case Ia: ~(61) = 1, p = 1 + k: + ki # 0, 1 + kf # 0. In this case, from (6.4) we have (ktY - X)2 = 
( 1 + k:) (~2 - X:/P) - &Z + k3XI/p)2. Eliminating X using k,X + Y = x1 + k3Z yields an expression for 
Y in terms of Z, xi and ~2. Hence we obtain the identity 

k3YfZ klk3 
-+ 

&xl +@ 
--=l+k; k,Y-X (1 + k:) dC 1 + k:)(xz - X:/P) - AZ + k3xl/pU)2 ’ 

From this expression we can integrate LY’ and 0’ with respect to Z regarding x1 and x2 as constants as required. 
Thus 

(Y = $ arcsin , 

(71 + Y4) 
P= 2 

K4Z K2X f&l 
n+2-2+2(l+k;)X” 

CaseIb:w(~t)=l,,u=l+k~+k~=O,l+k~ # 0.1nthiscase,wehave(ktY-X)2=-x~-kk:x2-2X,k3Z 
and 

k3Y+Z= k3x1 
-+ 
1 +k: 

$&(k,Y-X). 
I 

Using these expressions gives 

k,Y-X K2 

Q=-k3X17 
P= ;cr, +y41a+ 

2(1 + k;) 
(k,Y - X) + K4k32; K2k1 z . 

3 

Case Ic: ~$51) = 1, k3 # 0, 1 + k: = 0. In this case, we have kl Y - X = kl ( klX + Y) = k, (xl + k3Z). 
Eliminating X2 from 

x2 + Y2 = x2 - z2 ( (kly - JO2 = --(xl + k3Z)2, 

gives 

y=’ x2-z2 

2 XI + k3Z 
+ $(x1 + k3.Z). 

Thus 51 = (k3Y + Z)/(klY - X) can be obtained in terms of Z, XI and ~2, to yield 
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ff= log (Xl + k3Z) 
hk3 
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P= icyI + y4)(Y + 4K4Z - &Cl +k;)Z - 
x: - k:x2 

4k&(x, + k3Z) 

Hence 

-k,Z Cy=- 
XI ’ 

p=;(y,+y4)a+;K4z+$. 

We now turn our attention to Case II. Recall Case II has yt + y4 = 0, and A2 = 0. 

CaseIIa:~=1+k~+k~#O,l+k~ #O.WewritektY-Xandttintermsof 
Qse la. The fIJJJCiJDn w jn the expressjon 1 b-2) for d js of hc form /5,4), BEDCE 

Z, the x; and t as for 

p- ““2” “;x / Kaki 
2( 1 + k:)” ’ 

Case IIb: ,U = 1 + ky + k$ = 0, k3 # 0. We write kl Y - X and &t in terms of Z, the xi and t as for Case Ib. 
Ttie rbnctibn w iii rde expression (‘cKfj rbr (~“1s orrule r&m (%r)‘. &nce 

x: - k:xz 2 
(XI + WI2 ’ 

Using the infinitesimals obtained in Section 5.2, the ISCs can be written as 
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(6.7) 

Here .$I is a constant, & is given by (5.8), ~2 = dh/dt and K4 = dg/dt are constants, and the y; are the constants 
of proportionality between the wi,i. In Case III, ~(52) = 1 while in Case IV, ~1 = -y4 and 7: + ri + r! = 0. 

Following the argument in the previous subsection, setting 

x=x, Y= K4t + Kfj -y. z = Z + K2t + KS, (6.8) 

where the pi are constants, the invariants of (6.7) are ~1 = X/&l - 2 and x2 = (51X + Z) 2 -t ( 1 + t:)Y2. We 
note again in this singular case, 51 is a constant. Then the solution of (6.7) giving the reduction in this case 
is (6.5), (6.6), where now 

P’ = $(<rl + 7’4@ + K2 - K452) . 

As before, we need to write (Y’ and p’ in terms of Z and the x;, and then integrate with respect to Z to obtain 
the final form of (6.5). From (6.8) we have 

y= \/x2 - (=$x1 + (1 +r:m2 

J-g . 

Further, we can write 

5* = Jm (5:x1 + (1 +s:,q 
Jx2 - t!f:x, + t1+5$w ’ 

Case III: Since w( 62) = 1, 

ff = d&arcsm . (9) P = ;(rl + y4)a + ;K2Z - ;K4Y. 

Case rV: In this case ye + y4 = 0 and ~(62) is given by (5.9). We obtain 

a=jj(arctan(T))2, p+-!$ 

7. The reduced equations, Case 2 

Let U = ( UO, Qo, Vi, SO)~ where UO,, Qo, Vi, SO are functions of ~1, ~2, t and cy and p are as calculated in the 
previous section. Substituting 

CT = exp( aA) exp( PJO) u 

into (2.1)) we obtain the sought-for reduction equation with u as the dependent variable. 
Since [A, JO] = 0, the exponentials of A and JO commute. 
In Cases I and III, setting ~14 = i (71 - 74) gives 
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and with K = 
2 J-Y14 -7': -Y: We have exp(cyA) = K-'Sinh(KCY)A+COSh(KCY)14. In Cases II and IV, A* = 0 

implies that 

w(aA) = I + aA. 

Further, e~n{,BJ~,i is a rotation matrix 

i 

cos(p) sin(P) 0 

ewWJo> = 
-sin(p) cos(p) 0 

0 0 
0 0 

In matrix notation, the system (2.1) becomes 

-JoU, + V2U + R2U = 0 

-&JuMu = -(arAJo - PA4)Mu - JoM (,y,,ru,, + ,y2,t~X2 + ur) . 

ITO caicmate $%,7: we note mar 

V2Mu = (V2ruA + V2pJo) Mu + ((K*VCX Va - VP. VP) I4 + 2Va. VPAJo) Mu 

+2M (Va. V,uAux, + Va V,y2AuX2 + VP. Vx, Jou,, + V/3. V,y2Joux2) 

+M (VXI . VXIU,,., + 2Vx1 . vx~u~,~z + vm . Vx2ux2xz + v2,y,ux, + v~~~u,,) . 

A simple calculation yields R’ E Ui + Q,” + Vi + $ in all cases. Thus R2 is invariant and we can replace 
R? in Cf.{, by any funchon Of /E' and SbB ohcain a reabction. In parhdar, we may have a saturation term 
R2/( 1 + ‘R’) instead of a cubic nonlinearity in (1.1). 

Setting 

ZI. Generic case i=;,x f 0 

Recall the new independent variables are xl = kt X + Y - ks.Z and x2 = X2 + Y2 + Z2 where x = x + k2( t), 
Y = y, 2 = z $ ~t4 (t) and kl , k3 are COnStank Ifl case r, A2 = ~~(4 Where K2 = - ($ (yl - y4) 2 + yz + $1. In 

Case II, A2 = 0, that is ~~ = 7: + ri + 7: = 0 and yI = -y4. 
The template for the reduction is 
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0 = -Jout + I+,., + 4x1+,~~ + 4x2~~~~~ 

+ (‘=‘a. VXIA + (2VP. VXI - XI.,) Jo) uxl + (2Va. Vx2A + (2VP. V,yz - x2,,) Jo + 6) ux> 

+ (V*aA + V*pJo - ( ~~,-~V~.VP)AJ~+K*VCU.V~~+P~-VJP.VP+R*)U, 

where we have used p = 1 + kf + k: and 

02x1 = 0, Vf,y2=6, VXI.VXI =pu, 

v/y1 .77x2 = 2XI 3 Vx2 . Vx2 = 4x2. 

Since k2 = K2t + ~5, k4 = tc4t + ~6 where the K; are constants, we have 

XI,, = -klm - km, ~2,~ = -2K2X + 2K4Z. 

Case Ia: p = 1 + kf + k: f 0, 1 + kf # 0. Using the form for a and p obtained in the previous section, but 
now regarding the x; as functions of X, Y, 2 and t, the reduced form of the CNLS system is 

O= -Jou, + puxlx, 
chb 

+ 4x1~~~~~ -i- 4x2~~~~~ + - Joux, + 
2&l 

1 +k; 2 1 fk, XI Joux> + 6~~2 

(Yl + Y4) ,wk: 
~- 

2(PX2 XT> 

AJo + 4K; - (7’1 + 7’4>* + K; + K: 

- 4~x2 - xi 4 4(1 + k;) 

Making the change of coordinates p = ,ux2 - x:, cr = XI, the reduction becomes 

0= -Jou, + p(ug, - 411,) + 
K2klP 1 Job 

(” 2;y4) AJo + 
K; - &‘I + Y4)* 

P 

Using Table (7.1), the reduction can be written in the 2 x 2 form, 

+82vo,, - % 
( 

YI (~2 + iy3) 

(72 - iy3) -Y1 > 
v+ : $0 + w + lP12V 9 

where the 8, are constants. This is almost the l-t-l-dimensional nonlinear Schrijdinger equation, except for two 
terms, both with a singularity at p = 0, and one with a coupling matrix in ~((2, C). 

It is interesting to note that, in the notation of (6.3), 

p=/.bx*-x:= (3’+ (3’+ (g2, 

which is the infinitesimal arc length along the solutions of the characteristics of the ISC. 

Case Ib: ,u = 1 + kf + kz = 0, 1 + k: + 0. The reduced CNLS system is 

0 = - Jout + 4x1 ux,xl + 4x2uxzx2 + 
2kl &xl 
~ Jouxl + 6ux2 1 +k: 
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Case Ic: k3 # 0, 1 + k: = 0 (so p* = k:) . The reduced CNLS system is 
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0 = -Jout + k;u,,,, + 4x1~~~~~ + 4x2~~~~~ + 
m(k; - 1) 

2kr Jou,, 

+K~~~~)J~)u,:+(~~.~‘~~+~~~)‘+R~)u. 

Case Id: k3 = 0, 1 + ki = 0. The reduced CNLS system is 

O= -Jou, +4x1+,~~ + 4x2~~~~~ + ki Jou,, + K2(X: - X2) Jouxz + $2 

+ + Jo 

2x1 
Y I  $1Y4 

Xl 

AJo - &i + ‘yi:,:::l+@) u. 

I 

We now list the reductions for Case II. Recall that A2 = 0 in this case. 

Case IIa: p = 1 + k: + k: # 0, 1 + k: # 0. The reduced CNLS system is 

0 = -JOW + PU,,,, + 4x111~~~~ + 4x2~~~~~ + * Jou,, + B Jouxz 
1 + k: I 

+6u,, + 
2P K; + K; 

A+4- 
&k: 

PX2 - x: 4(1 -t k:) 

Case IIb: p = 1 + kf + kz = 0, k3 # 0. The reduced CNLS system is 

0 = -Jou, + 4x1 uxlx2 + 4x2~~~~~ - ?- A+, - ~ 2kl K2xI 

+6ux2+ &A+ (~)AJo:~+Ry)u. 

Jouxs 

Case 11~: k3 # 0, 1 + kf = 0 (so ,G* = kz). The reduced CNLS system is 

0 = -Jour + k;u,, x, +~xIu,,~~ +4x2~~2~2 + ;h2(1 -!&Jo%, +6u,, 

+ ~2xdk: - 1) J u + 2kt k3 
k;k, 0 x2 x: - k:x2 

Case IId: kn = 0, 1 + k: = 0. The reduced CNLS system is 

o= -Jout + ~,Y’Iu~,~~ + 4x2~ ~2x2 + (hK4 + h~dlou~, + 6ux2 

tK2X: - x2 -JouXz+ klxl -~A+%J~+$+R*)~. 

7.2. Singular case ~$1,~ = 0, 1 + 6: f 0, & # 0 

Recall the new independent variables are XI = X/et - Z and x2 = (6,X+ Z)* + ( 1 +,$) Y2 where X = ,x, Y = 
K4f+K6-y1 Z = z +Kzf+Kg and et iS a COnStant. In CaSc III, A2 = ~~14 where K* = - [icy1 - ~4)~ + ys + y:] 

In Case IV, A2 = 0, that is, K* = ry + yz + r: = 0 and yi = 94. 
The template for the reduction is 



484 E.L. Mansfield et al. /Computer Physics Communicarions I15 (1998) 460-488 

0 = -Jc,ut + 1 +c: 
- u,y,,y, + 4( 1 + r:)x2u**** 

6: 
+(X’~?YIA+(~WVXI -x,,r)Jo)~~, 

+ (2Va. Vx2A + (2VP. Vx2 - x2,1) Jo + 4( 1 + 6:)) u,yz 

+ (V2aA + V2pJo - ( cu,-2Va4’~)AJo+~2Vcr~V~+~t-V~~V~+R2)u. 

Case III: ~~ # 0. The reduced CNLS system is 

1 +s: 
0=-Jou,+- 

6: 
u,y,,y, + 4( 1 + 5:LY2ux*,y2 + 4( 1 + s:,u,, 

~AJo+XI-‘Y14=:1’2+~+R2)U. 

x2 

Case IV: ~~ = 0, yi + y4 = 0. The reduced CNLS system is 

* +.; 0=-JOU,+T 
6 

UXIX, + 4( 1 + 5:)X2ux*x* + 4( * + 43% + 

8. Conclusion 

This paper is a contribution to computer-aided algorithmic analysis of large nonlinear systems. We apply 
a certain nonlinear generalization of Lie’s linear method for finding infinitesimal symmetries of PDE to a 
generalization of the CNLS system (2.1) . The resulting large nonlinear systems of determining equations for 
nonclassical symmetries were analysed with considerable assistance from the software packages dif f grob and 
rif. Many genuinely new nonclassical symmetries were obtained. We found the corresponding reduced forms 
of the CNLS system. Our results show that the CNLS system is a rich source of such reductions. 

Setting 

U= (U,Q,W>‘, Jo = 
-10 0 0 

the system (2.1) can be written as 

-JoU, + V2U + R2U = 0, 

where R2 = 1pj2 + /@12. For the 7 = 0 reductions, it is convenient to use this notation due to the prominent 
appearance in the reduction equations of coupling matrices in a 4 x 4 representation of a[( 2, Cc). The 7 = 0 case 
detailed in this article yields a remarkable structure for the system of ISCs obtained as a result of solving for 
the nonclassical infinitesimals, and in the consequent reductions. We investigated ten separate solution families 
for the ISCs, yielding ten separate families of reductions. Remarkably in the 7 = 0 case, the expression R2 is 
an invariant, and the similarity variables obtained will also reduce equations of the form 

-JoU, + V2U + F(R2)U = 0 

for F arbitrary. In particular, one may take 

(8.1) 
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which is the saturated form of the system. The further reduction of our reductions to systems of ordinary 
differential equations and their solutions will be examined elsewhere. 

In this paper we analysed the determining system for nonclassical symmetries in the variables U, Q, XS 
where p = U + iQ, @ = V + is. Alternatively and equivalently we could have analysed the systems in terms 
of Ic: ly*, @, @*, regarding these as independent analytic variables. We believe that this may have led to some 
simplification of the calculations in the generic case. 

It is an important and open problem not addressed in this paper to determine whether any of the nonclassical 
reductions yield solutions of the CNLS system (1 .I) with physically significant properties. Such properties 
include being well-behaved globally, for example bounded without singularities and possessing suitable de- 
cay properties. Perturbations of such well-behaved solutions can be used to investigate interesting physical 
applications and typically involve a combination of analytic, numeric and symbolic techniques. 

Lie’s linear method has been successfully applied to many physically significant equations, and their sym- 
metries and corresponding symmetry reduced equations have been determined. It might be expected that Lie’s 
classical method becomes dramatically more difficult to apply as the number of independent and dependent 
variables increase. Indeed the determining systems for such high dimensional problems often contain thousands 
of PDE. Yet partly because of the linearity and sparsity, computer algebra packages have been able to explicitly 
solve many such systems. 

While there has been significant progress and widely available software for the automatic analysis of linear 
overdetermined systems of PDE, few packages are available for nonlinear systems, and only limited automatic 
calculations have been done. These packages are still in the relatively early stages of development. The 
determining systems for the CNLS system were large and we believe provide a good test for the feasibility 
of the algorithms underpinning our packages. Despite the attendant case-splitting, we were able to use our 
computer algebra packages to carry out a significant portion of the analysis of these systems. 

Currently, there is no algorithmic method known that simplifies the integration of the nonclassical infinites- 
imals, by exploiting known invariance properties of the original system of PDE. We mention the following 
approach to this important open problem. Extending the results of Lisle [ 471 and Fels and Olver [ 25,261, it 
should be possible to reformulate the nonclassical determining equations in terms of a moving frame which is 
invariant under the classical group. Theoretically, calculations in this frame should simplify the integration of 
the nonclassical determining equations, and we are exploring this possibility. Consider a family of differential 
equations with unspecified functions of the dependent variables in it, for example, heat equations with nonlinear 
diffusivity K(u). An equivalence group of the family is a group of point transformations which preserves the 
family. Lisle [47] showed that use of a moving frame invariant under such an equivalence group, could lead to 
substantial simplification of the problem of integrating classical determining equations. Again we are exploring 
the possibility of extending such methods to the nonclassical case. 
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