
EL“EVIER 

IN SIMULATION 

Mathematics and Computers in Simulation 42 (1996) 323-332 

Involution approach to investigating polynomial systems 

A.Yu. Zharkov, Yu.A. Blinkov * 

Saratov University, 410071 Saratov, Russia 

Abstract 

An involution approach to solving systems of polynomial equations is proposed. A notion of involutive polynomial system 
is introduced and an algorithm for its construction is presented. The relation between involutive systems and GrGbner bases 
is clarified, and some advantages of the involution approach are discussed. 
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1. Introduction 

In this paper we propose a new algorithmic approach to solving algebraic systems based on the concepts 
and results of the formal theory of partial differential equations, see [1,2] and references therein. The 
modern formal theory gives a foundation of the constructive methods of PDE analysis going back to the 
pioneering works of Riquier [3] and Janet [4]. Using these methods, it is possible in a finite number of steps 
(differentiations and eliminations of derivatives) either to establish an incompatibility of a given system of 
PDEs or to transform it into the involutive form that gives complete information on the formal solutions. 

Applying the results of [ 1.21 to the systems of algebraic equations we use a well-known formal analogy 
between polynomials and linear homogeneous PDEs with constant coefficients and with one unknown 
function. That is, unknown function is interpreted as unity, differentiation-as multiplication by variable; 
addition, subtraction and multiplication by coefficients are left unchanged; e.g., instead of uxXX + 2u,, = 
0, u XXYY - 3u = 0 one writes x3 + 2y2 = 0, x*y* - 3 = 0. The analogy is also valid for the solution 
spaces [2]. For example, if the general solution of the PDE-system depends on N arbitrary constants and does 
not contain arbitrary functions then the corresponding system of polynomials generates a zero-dimensional 
ideal with N roots. 

We give a formulation of Janet’s method in the modern way restricting ourselves with algebraic systems. 
We introduce a notion of Janet normal form and formulate the involution conditions in terms of it. Then 
we describe an algorithm for transformation of a given polynomial system to be the involutive form and 
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clarify the relation between the involutive system and the Griibner basis [5]. Some possible advantages of 
the involution approach are also discussed. 

2. Basic definitions 

Throughout this paper we use the notations: 
K arbitrary zero characteristic field 
a, b elements of K 
K[xl . . . , x,] polynomial ring over K 

.f, g, h, P polynomials from K [XI, . . , x,! ] 

F, G, H, P finite subsets in K [xl, . . . , x,~] 
M, v, w, s terms in polynomials (without coefficients from K) 

de&u) total degree of u 
cf(f3 u) coefficient of u in f 
ZdeaZ( F) ideal generated by F 
Let <T be the admissible term ordering and let variables be ordered as x1 <T x2 <T . . . <T x,]. We 
denote by It(f) the leading term in j’ w.r.t. <T; /c(f) the leading coefficient in f, i.e. c.f(f, Ir(f)); and 
red(f) = f -/c(f). It(f). 

Definition 1. (Pommaret [ 11). Variable x; is multiplicative for the term u if its index i is not greater than the 
index of the lowest variable in ~1. Otherwise, x; is non-multiplicative for u (symbolically, Xi E Nonmult (u)). 

Definition 2. Class of a term is the index of its lowest variable. Class of a polynorriiul is the class of its 
leading term. 

Denote u . v by u x v if all variables in u are multiplicative for u of if v = 1. Write also g . u = g x u if 
It(g). u = k(g) x u. 

Definition 3. Term u is called a Janet divisor for the term w if there exists a term u such that w = u x v 
(symbolically u 1 J W). 

The following properties of Janet divisors are obvious: 
(1) if U[JV and V(JW then UlJW (transitivity); 

(2) if UlJW and ZIlJW then U~JV or V(JU; 

(3) if -(u~Jv) then VW, s, ~(u x WlJV x s). 

Definition 4. Polynomial f is reduced to h modulo G in rhe sense of Janet if there exists g E G and u such 
that It(g) . u = It(g) x u, a = cf(f, lr(g) x u) # 0 and 11 = f’ - a . g x u. Polynomial f is given in the 
Janet normalform modulo G if for each term in .f’ there are no Janet divisors in {It(g) jg E G}. Polynomial 
h is a Janet reduced form of f modulo G (symbolically h = NFJ( f, G)) if there exists a chain of Janet 
reductions from f to h and h is given in the Janet normal form modulo G. 

In contrast to a Janet normal form, we denote by N F (f, G) usual normal form of f modulo G. An 
algorithm for computing N FJ may be obtained from one for N F [5] replacing usual division of terms by 
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a Janet division. 

Example 1. Let G = {xy}, f = x2y +xy* ,x >T y. Then NFJ(f. G) = x2y # NF(f, G) = 0. 

Definition 5. G is autoreduced (in the sense of Janet) if 

Vg, cd E G, g # g’. -(lf(diJ&?‘)h 

Proposition 1. If G is autoreduced then for any term u there exists no more than one Janet divisor in 
{It(g) I g E Cl. 

Proof. This is an immediate consequence of Definition 5 and property (2) of Janet divisors. 0 

Denote by Autoreduce (F) a function that for given F computes G which is autoreduced and Ideal(F) = 
Ideal(G). An algorithm Autoreduce may be obtained from the well-known algorithm Reduce All [S] 
replacing usual N F by N FJ. 

Denote by M(G) a set of finite sums 

C gi x Caijuij i .i 
It is obvious that h = N FJ(~, G) implies (f - h) E M(G). 

Theorem 1. rfG is autoreduced and f E M(G) then N FJ (f, G) = Of or any sequence of Janet reductions. 

Proof. First let us prove that for It(f) there exists a Janet divisor in {It(g) 1 g E G} and it is unique. By 
definition of M(G), 

f = C Zt(gi) X C UijU;j + red(gi) . Caijuij , 
i i j 1 (1) 

where the like terms are not assumed to be collected. 
Find a maximal term (w.r.t. <T) in the r.h.s. of (1). Evidently, it is the greatest of the maxima over each 

square bracket in (1). From Vj, It (gi) x uij >T lt(red(gi) . Uij) it follows that the maximum over each 
bracket is maxj{It (gi) x uij] = It (gi) x Ui where ui = maxj uij and the maximal term in the r.h.s. of (1) 
is w = maxi{lt(g;) x Ui}. Since G is autoreduced, we have Vi # k, -(lt(gi)jJft(gk)). Hence, by property 
(2) of Janet divisors, Vi # k, lt(gi) x u; # It&k) x Vk. It means that there exists a unique maximum 
w = It&) x v, in {It(gi) x vi). Since all other terms in the r.h.s. of (1) are less than w, we conclude 
that It (.f) = w E It (gm) x 21,. We have proven that It(f) has a unique Janet divisor It (gm). Our next step 
is to prove that N FJ (f, G) = 0 for any sequence of Janet reductions. Assume that there exists a chain of 
Janet reductions such that NFJ(f, G) = h # 0 and force a contradiction. Since h is in Janet normal form 
modulo G, term It(h) has no Janet divisors in (It(g) I g E G}. On the other hand, from f E M(G) and 
h = N FJ( f, G) we have h E M(G) and as proved above there exists g E G such that lt(g)lJlt(h). We 
come to a contradiction. Hence, NFJ( f, G) = 0. 0 
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Theorem 2. (Uniqueness of a Janet normal form). Z’G is uutoreduced und h 1, h2 are Janet normal forms 
off modulo G then hl = h2. 

Proof. Since hl E NFJ(hl, G), h2 = NFJ(h2, G), for each term of hl - h2 there are no Janet divisors in 
{It(g) ) g E G). Therefore 

NFJ(hl - h2, G) = hl - h2 (2) 

for any sequence of Janet reductions. On the other hand, h 1 = NFJ (f, G) and h2 = NFJ(~, G), hence 
h 1 - h2 E M(G). Then, by Theorem 1, NFJ(h 1 - h2, G) = 0 for any sequence of Janet reductions. 
Comparing with (2) we obtain hl = h2. 0 

Theorem 3. Zf G is autoreduced, then 

Vfl, .f2? NFJ(fl + f2, (3 = NFJ(fl, G) + NFJ(f2, (3. 

Proof. Let 

hl = NFJ(fl, G), h2 = NFJ(f2, G>, h3 = NFJ(fl + f2, ‘3. (3) 

Since for each term in h 1, h2 and p there are no Janet divisors in {Zt (g) 1 g E G}, we have 

NFJ(hl + hl - h3, G) = hl + h2 - h3. (4) 

One the other hand, from (3) it follows that hl + h2 - h3 E M(G). Hence, by Theorem 1, we obtain that 
NFJ(hl + h2 - h3, G) = 0. Comparing with (4) we have h3 = hl + h2, that is NFJ(fl + f2, G) = 
NFJ(fl> (3 + NFJ(f2, (3. 0 

3. Involutive systems 

Definition 6. Prolongation of polynomial g by variable x is a product g 1 x. If x E Nonmult (It (8)) then 
the prolongation is called non-multiplicative, otherwise multiplicative. 

Definition 7. (Pommaret [l]). G is an involutive system if it is autoreduced and all non-multiplicative 
prolongations of its elements are the linear combinations of multiplicative prolongations of its element, i.e. 

Vg E G, Vx E NonmuZt(lt(g)), NFJ(g .x, G) = 0. (5) 

Note that involution conditions (5) are non-trivial because any non-multiplicative prolongation g . x is 
not reduced to zero in the sense of Janet by means of polynomial g. 

The following algorithm for a given F computes an equivalent involutive system G. 

Algorithm 1 (G = Invsys(F)). 
G := 0; 
while F # 0 do 

G := Autoreduce(G U F) 
F := 0; 
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for each g in G do 
for each xi in Nonmult(Zt(g)) do 

f := NFJ(g . xi, G); 
iff#Othen 

F := F U (f); 

In addition, for the output system G the integers (~4, called Cur-tan characters of G [l], are computed 

($ = cq q+n-i - 84, q = max{deg It(g) (g E G} i= 1,2 ,...) Iz, 

where Ci+n_i is equal to the number of all terms of the classes >i and degree q, and #Is is a number of all 
such terms which have Janet divisors in the set {lt (g) I g E G). 

Example 2. Let <T be the degree reverse laxicographical ordering, z <T y <T x and 

F = {x3 + y2 + z - 3, y3 + z2 +x - 3, z3 +x2 + y - 3). 

An involutive system G equivalent to F is 

G = ( x2y2z3 - 3x2y2 - xy2z - x2z2 + xyz2 + x2y + 3xy2 + 3x2 - 3xy + y2 + z - 3, 

x2yz3 + x2y2 - 3x2y - xyz + xz2 + x2 + 3xy - 3x, 

XY2Z3 - 3xy2 - y22 - XZ2 + yz2 - x2 + xy + 3y2 + 3x - 3y, 

x2y3 +x222 - 3x2 - y2 - z + 3, x2$ + x2y - xy2 - 3x2 - x7_ + 3x, 

xyz3 + xy2 -3xy-yZ+22+x+3y-3,y223+x2y2-3y2-Z2-x+3, 

xy3 + XZ2 + x2 - 3x, XZ3 + xy - y2 - 3x - 2 + 3, yz3 + x2y + y2 - 3y, 

x3 + y2 + Z - 3, y3 + z2 + x - 3, Z3 + x2 + y - 3). 

Cartan characters of G are ay = (1127 = ‘2137 = 0. 

Note that (5) is a termination condition for Algorithm 1. Hence, the output system G is involutive. On 
the other hand, there exist polynomial systems which cannot be transformed to involutive form at all (in the 
sense of condition (5)). It means that generally Algorithm 1 is non-terminating process. For example, for any 
singleelementsetF=[f(xt,x~,...,x,)}wherexl <T..* <T X,, U = f?(f), &l/&Xl # 0, &l/&X, # 
0, n # 1, Algorithm 1 generates an infinite sequence of prolongations of the form f + xk, k = 1,2, . . . , 
which cannot be reduced to zero in the sense of Janet. 

Thus there exist “irregular” polynomial systems for which Algorithm 1 does not terminate, contrary to 
the “regular” ones. 

Theorem 4. (Pommaret (21, Zharkov [6]). If dimension of Ideal( F) is zero, then Algorithm I terminates. 

By Theorem 4, Algorithm 1 may not terminate only for the positive-dimension ideals. In these cases 
sometimes it is sufficient to reorder variables so that the system becomes regular. However, there exist 
the systems which are irregular for any order of variables. Note that reordering of variables is a particular 
case of invertible linear transformation of the vector space {(xl, . . . , x,)). The following result forms the 
foundation of the involution approach. 
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Theorem 5. (Pommaret [I]). For any given F = (,f 1 ,f E K [xl. . . . x,,]) there exists an invertible linear 
transformation 

x=A.y, 

x = (Xl, . . . , x,), y = (y1. . . . , .\;I). ?‘I -=c ... < s’,l, 

A = llaij II, aij E K, i, j = 1,. . . , H, det(A) # 0. 
(6) 

such that F is regular w.~t. ~1, . . . , y,,. 

By Theorem 5, any polynomial system can be transformed to involutive form by a suitable transformation 
(6). It may be proved that “almost all” transformations of the form (6) lead to the desirable result. 

To understand the importance of involution approach to solving polynomial equations it is necessary to 
clarify the relation between involutive systems and Grobner bases. It turns out that any involutive system 
is nothing else but a special form of non-reduced Grobner basis. To show this we first prove the following 
theorem. 

Theorem 6. Let G be involutive. Then 

Vf E Ideal(G), NFJ(f, G) = 0. 

Proof. Let g be any polynomial from G and u be an arbitrary term. Represent g u as u . g x w, where 
u w = u, all variables in u are non-multiplicative and all variables in w are multiplicative for g. Fix some 
variable x in II and write g . u = ~1 . (xg) x IU where nt = v/.x. Because of (_5), 

X . I: = gl x SI + xaklc!Tk x Sk15 
k.1 

(7) 

where gi E G, and gt is such that lt(gl) x SI = x . It(g). Since G is autoreduced, gt is unique. Evidently, 
max(lt(gk) x Sk/} <T It(gl) x ~1. Substituting (7) into g u = u1 . (xg) x w we have 

g. U = Ul . gl X Wl + CakIXk . Ukl, 
k.1 

where wt = st w and, by admissibility of the term ordering, max{lt(gk) . Ukl] <T It(g) . u. Repeating 
the same considerations for gt, taking into account that deg(vl) = deg(u) - 1 and acting recursively we 
obtain in a finite number of steps 

g . u = ,g; x W; + Ca;,g; . U;t,, (8) 
k,l 

where g: E G, lt(gl,) x w; = It(g). u and 

max(lt(gi) .I&} <T it(g).U. 

Consider any f E Ideal(G) and represent it in the form 

.f = xaij.ETi X Wij + xakl&‘k . Ukl. 
i.j k.l 

(9) 
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where g;. gk E G and gk . Uk[ # gk x Ukl. Representing each polynomial gk . Uk[ by Eq. (8), we obtain 

,f = CUijg, X W;j + Ca;lR; . ill,, 
i..j k.l 

where max{lr(g~)&) <T max{lt(gk)ukr}. Repeating this process and taking into account that the admis- 
sible term ordering is noetherian, we obtain in a finite number of steps that f = Ci.,j iiijgi x W;j, that is 
,f E M(G). Consequently, by Theorem 1, N FJ (f, G) = 0. ??

Corollary 1. Any involutive system G is a Griibner basis in the given term ordering. 

Proof. According to [5], it is sufficient to prove that for some fixed algorithm of N F the following relations 
hold: 

Vg, g’ E G. N F(Spol(g, g’), G) = 0, (10) 

where 

Spol(g, g’) = Icm(It(g), It(d)) I&) /cm (It (8). It (g’>> - . 
It (g> . g - Ic(g’) It k’) 

g’. 

Icm(u, u) = least common multiple of U, u. 
Choose an algorithm of N F so that N F(f, G) = N F’(N FJ(~, G), G) where N F’ is computed using 

arbitrary fixed normal form algorithm. Then, since Spol(g, g’) E Ideal(G) and because of Theorem 6, we 
have NF~(Spol(g, g’), G) = 0 that implies (10). 0 

In spite of the fact that involutive systems sometimes appear more complicated than reduced Grobner 
bases they enable to obtain information about ideals in a more natural way. The following result may be 
deduced from [2]. 

Theorem 7. (Pommaret [2/j. Let <T be the total-degree ordering and let G be an involutive system. 
Dimension of Ideal(G) is equal to the number qf non-zero characters ~‘4 of G. !f dimension qf Ideal(G) 
is zero, then the number of roots is 

D=C;;;_, -g$, q = max{deg g ] g E G} 
/(=I 

E.g., for G in Example 2 dimension of Ideal(G) is zero and D = 27. 
Let F be a system with finite number of roots. To find the roots of F it is sufficient to construct the Grbbner 

basis of Ideal(F) in the lexicographical ordering. It turns out that involutive system G equivalent to F 
and constructed in the total-degree ordering may be interpreted as a system of linear algebraic equations 
over field K (xl ) w.r.t. all the terms contained in lexicographical Grobner basis of Ideal(F) considered in 
KOI)[~~, . . , x,,]. The compatibility condition of this linear system gives an equation for XI. As a rule, 
to obtain such a system it is sufficient to consider not the whole involutive system, but only its elements 
of class 1. For instance, involutive system G in Example 2 contains nine polynomials of class 1 which 
form a linear algebraic system over Q(Z) w.r.t. the terms _r*y*. x*y, xy*, x2, xy, y*, X, y considered as 
independent unknowns. The compatibility condition gives 
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z2’ - 27~~~ + 317~~’ - 18~‘~ - 2067~‘~ - 502” + 279~‘~ + 8156~‘~ + 645~‘~ - 1674~‘~ 
- 20359~‘~ - 3044Z11 + 46452” + 33644~~ + 6288~’ - 6388~~ - 36936~~ - 5925~~ 

+ 4957~~ + 23187~~ + 4063~~ - 43422 - 5352 = 0. 

Solving the linear system w.r.t. the terms x, y and eliminating other terms, we obtain two equations of the 
formx+pl (z) = 0, y+p&) = 0, deg(lt(p1)) = deg(lt(p2)) = 26, whichgiveareducedlexicographical 
Grobner basis together with equation in Z. 

Thus, involutive system being non-reduced Grobner basis in some admissible term ordering is an implicit 
form of reduced lexicographical Grobner basis which can be easily constructed by means of linear algebra, 
compare with [7]. The theoretical explanation of this fact will be given elsewhere [6]. 

Note that the notions of a Janet normal form, involutive system and Theorems l-6 are valid for any 
admissible term ordering. However, our definition of the Cartan characters and Theorem 7 make sense only 
for the total degree orderings. 

4. Examples 

An improved version of Algorithm 1 [6] is implemented in the form of REDUCE package INVSYS. 
We present the results of comparison of INVSYS with standard REDUCE package GROEBNER [8,9] at 
several examples of zero-dimensional ideals taken from paper [7]. Note that Examples 4 and 5 distinguish 
from each other in only one term and this leads to drastic distinction in computing time. 

Example 3. 

X:X2x3 +X1X,2x3 +X1x2x32 +x1x2x3 + xix2 +x1x3 +X2x3 = 0, 

X:x22X3 +X1X:X: + XtX2X3 +X1X2X3 +X2X3 + Xl +X3 = 0, 

X~X~X~ + XfXiX3 + X1.$X3 + X1X2x3 + X1X3 + X3 + 1 = 0. 

Example 4. 

x + x2 + x3 + x4 + x5 = 0, 

x1x2 + X2X3 + x3x4 + x4x5 + x5x1 = 0, 

x1x2x3 •k x2x3x4 •k x3x4x5 -k x4x5x1 + x5x1x2 = 0, 

XIX2XjX4 + X2X3X4X5 + x3x4x5x1 + x4x5x1x2 +x5x1x2x3 = O, 

X1x2x3x4x5 - 1 = 0. 

Example 5. 

Xl +x2 +x3 +x4 +x5 = 0, 

XIX2 + x2x3 + x3x4 + x4X5 + x5X1 = 0, 

x1x2x3 + x2X3X4 + X3X4X5 + X4X5x1 + X5X1X2 = 0, 

&2X3x4 + x2x3x4x5 + x3x4x5x1 +x4x5x1x2 + x5x1x2x3 = 0, 

x1x2x3x4x5 - 1 = 0. 
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Table 1 
Results of comparison for different variable orderings 
Example Variable ordering 
3 Xl ’ X2 ’ X3 

i-1 T2 

16” 33” 
4 xt > x2 > x3 > x4 > x5 1 1” 8” 
4 xt > x2 > x5 > x3 > x4 9” 7” 
5 xt >x2>x3>xq>x5 2.5” 5.7’ 
5 XI >x2 >x5 >x3 >x4 32’ 51’ 
5 X4>XI >x5>x2>x3 1.5’ 20’ 
6 XI >X2>Xfj>X3>X4>X5 2h > 40h 
6 X5 > X4 Z=- X3 Z=- X6 > X2 Z=- XI lh 22h 

Example 6. 

XI +x2+x3+x4+x5+x6=0, 

x 1 X2 + X2X3 + x3x4 + x4x5 + x5x6 + X6X 1 = 0, 

X1X2X3 + X2X3X4 + x3x4x5 + x4x5x6 + x5xfjx1 + xfjxIx2 = 0, 

x1x2x3x4 + X2X3X4X5 + X3X4X5X6 + X4X5X6X1 + X5X6X1X2 + X6X1X2X3 = 0, 

X1X2X3X4X5 +X2X3X4X5X6 +X3X4X5X6X1 +X4X5X6X1X2 +X5X6X1X2X3 +X6X1X2X3X4 = 0, 

XlX2X3X4X5X(j - 1 = 0. 

All computations using INVSYS and GROEBNER have been performed on an 25 Mhz MS-DOS based 
AT/386 computer with 8 Mb RAM. The results of comparison for different variable orderings are given in 
Table 1. We denote by Tt the time for computing involutive system using INVSYS and by T2 the time for 
computing Grobner basis in the degree reverse lexicographical ordering using GROEBNER. 

The results of comparison enable to hope that the involution approach is sufficiently powerful tool for 
solving polynomial systems. The complexity of the appropriate algorithm is an open question. 

We want to emphasize a great importance of the theory developed in [ 1,2] for the computer algebra that 
becomes clear just now. 
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