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Abstract

Since Buchberger introduced the theory of Gr�obner bases in 1965 it has become an important
tool in constructive algebra and, nowadays, Buchberger’s method is fundamental for many al-
gorithms in the theory of polynomial ideals and algebraic geometry. Motivated by the results in
polynomial rings a lot of possibilities to generalize the ideas to other types of rings have been
investigated. The perhaps most general concept, though it does not cover all possible extensions,
is the theory of graded structures due to Robbiano and Mora. But in order to obtain algorithmic
solutions for the computation of Gr�obner bases it needs additional computability assumptions. In
this paper we introduce natural graded structures of �nitely generated extension rings and present
subclasses of such structures which allow uniform algorithmic solutions of the basic problems in
the associated graded ring and, hence, of the computation of Gr�obner bases with respect to the
graded structure. Among the considered rings there are many of the known generalizations. But,
in addition, a wide class of rings appears �rst time in the context of algorithmic Gr�obner basis
computations. Finally, we discuss which conditions could be changed in order to �nd further
e�ective Gr�obner structures and it will turn out that the most interesting constructive instances of
graded structures are covered by our results. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A widely studied problem in general algebra and theoretical computer science is the
decidability of congruence relations of algebraic structures modulo a set of equations.
In many applications the algebraic structures are groups or semigroups. Here, we will
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focus on the case of rings. Given a ring R and a set E⊆R2 of equations it is enough
to investigate the zero congruence modulo E because of the underlying abelian group
structure of a ring R. Instead of the binary congruence relation ≡E generated by E one
investigates the unary relation I ⊆R consisting of all left-hand sides of congruences
a≡E 0. Such a set I is called an ideal of R and studying congruence relations in ring
theory means studying ideal theory and the usual notation for the quotient structure
R=≡E in ring theory is R=I .
Naively, an algebraic structure is called computable if equality of elements is decid-

able, all operations are computable functions, and all relations are decidable. A quotient
of a computable algebraic structure modulo a congruence relation is computable i� the
congruence relation is decidable. Hence, computability of residue class rings R=I of
constructive rings R reduces to the decidability of the ideal membership problem of I .
For given elements f1; : : : ; fk ∈R one may ask for a solution (h1; : : : ; hk)∈Rk of the
homogeneous linear equation

∑k
i=1 hifi=0. The solutions are called left syzygies of

f1; : : : ; fk , the solution space is a left R-module. In non-commutative rings R also the
more general homogeneous linear equations

∑l
j=1 gijfij g

′
ij =0 are of interest. The solu-

tions live in a direct sum of tensor products R⊗R. They are called two-sided syzygies
and form a R-bimodule.
In various types of rings the fundamental ideal theoretical problems of the decision

of ideal membership and the computation of syzygy modules could be solved in an
algorithmic way using the so-called Gr�obner bases. Among the more complex applica-
tions there are the computation of ideal operations, e.g. intersection or quotient, and the
computation of related objects, e.g. Hilbert functions. So, the algorithmic computation
of and division modulo Gr�obner bases can be considered as the fundamental problems
of computational ideal theory. During the last more than three decades Buchberger’s
algorithm became a central tool in constructive commutative algebra and algebraic ge-
ometry (cf. [1, 9, 10, 12]) and motivated by the achievements in polynomial rings many
e�orts have been spent in generalizations to other types of rings.
The concept of graded structures due to Robbiano [27] and Mora [23] provides an

excellent frame for investigating Gr�obner bases in very general situations. What remains
to do in a concrete application is to verify a series of computability conditions which
have to be ful�lled in order to obtain not only existential statements on Gr�obner bases
but also constructive results such as decidability of the ideal membership problem or
the computability of �nite generating sets of syzygy modules. The bottleneck of this
approach is the veri�cation and algorithmic solution of properties and problems in the
associated graded ring (conditions (iii)–(v) in De�nitions 2 and 3). A �rst approach to
illustrate the boundaries of constructiveness in the frame of graded structures was pre-
sented in [4]. Starting from a graded structure R =(R; �; ’; G; in) su�cient conditions
ensuring that R is an e�ective Gr�obner structure, i.e. that R allows the algorithmic
computation of Gr�obner bases, were derived. The motivation to start from R was to
maintain as much as possible generality. But it proved to be a disadvantage that the
class of rings covered by the results remains widely hidden. Therefore, in this paper
we use an opposite approach. We start with a well-ordered monoid � and a ring R
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obtained by adjunction of �nitely many elements X = {X1; : : : ; Xn} to a ground ring Q.
Then we associate a natural graded structure R to these objects and investigate its
constructiveness in dependence on Q, �, and the de�ning relations of R. More pre-
cisely, our aim is to �nd classes of rings whose natural graded structures allow the
reduction of large subproblems to the valuation monoid � and the ground ring Q in
order to obtain uniform algorithmic solutions.
The constructive instances of graded structures corresponding to successful gener-

alizations of Buchberger’s method can be divided in two main directions. The �rst
considers polynomial rings R=Q[X ] in �nitely many variables X = {X1; : : : ; Xn} with
more general ground rings Q than only �elds. For instance, there were investigated
situations with principal ideal domains Q (cf. [16, 25]) or, even more general, com-
mutative rings Q in which linear equations are solvable (cf. [1, 9, 21, 29, 31, 32]). R is
a graded ring with respect to the commutative monoid freely generated by X in all
these cases. The second direction of generalizations keeps Q a (skew) �eld but relaxes
the property that R is a graded ring. Examples are enveloping algebras of Lie algebra
[8], algebras of solvable type [17], G-algebras [2, 3], and solvable polynomial rings
[18]. The constructive instances of natural graded structures investigated here include
all the above types of rings but, in addition, also combinations of the two main direc-
tions are subsumed. Of course, the extensions which do not �t in the frame of graded
structures, e.g. group rings (cf. [19, 20, 28]) and reduction rings (cf. [11, 30]), are not
covered here.
The paper is organized as follows. We start with a short explanation of Gr�obner bases

in polynomial rings over a computable �eld. In Section 3 we present an introduction to
the theory of graded structures. Then we de�ne the notion of natural �-graded struc-
tures R of extension rings R of Q generated by a set X and outline the proof of the
e�ective Gr�obner structure property in Sections 4 and 5. Section 6 considers necessary
conditions Q and � have to satisfy in an e�ective left, right, or two-sided Gr�obner
structure R . The presentation of R by Gr�obner bases in free extensions of Q by X is
subject of Section 7. Sections 8 and 9 provide algorithmic solutions for problems in the
associated graded ring G of R which are fundamental for the computation of Gr�obner
bases. Assumptions ensuring ascending chain conditions for one- or two-sided ideals of
G are considered in Section 10. Section 11 shows that the conditions introduced so far
allow the algorithmic computation of left syzygy modules of homogeneous left ideals
of the associated graded ring. In particular, this �nishes the proof of the �rst main
result of the paper which concerns e�ective left Gr�obner structures and is summarized
in Theorem 6. Section 12 deals with the two-sided case. Some e�ective left Gr�obner
structures R allow the application of a generalized Kandri-Rody=Weispfenning clo-
sure technique (see [17]) in order to compute Gr�obner bases of two-sided ideals (see
Theorem 7). Theorem 8 generalizes a result of Mora who was the �rst presenting al-
gebras in which Gr�obner bases of two-sided ideals can be computed in an algorithmic
way while, in general, one-sided ideals are even not �nitely generated in these algebras
(see [24]). The aim of Section 13 is to give an impression when a graded structure
can be an e�ective Gr�obner structure though it does not satisfy the assumptions of
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Theorems 6–8. We close the paper by presenting examples of e�ective Gr�obner
structures in Section 14.
Finally, we remark that ring always stands for associative ring with unit element

in this paper. In particular, also ring extensions are considered only in this class.
Moreover, by the symbol Z we denote the ring of integers and by N the additive
monoid of non-negative integers.

2. Basic idea of Gr�obner bases

Let K be a computable �eld, R=K[X1; : : : ; Xn] the polynomial ring over K in the set
X = {X1; : : : ; Xn} of indeterminates, I ⊆R an ideal of R, and F = {f1; : : : ; fk} a �nite
generating set of I . We are looking for an algorithm deciding a∈ I? for any given
a∈R. Having such an algorithm one can derive algorithms for the computation in the
quotient ring R=I .
Following the theory of Euclidean rings we ask for a division algorithm which for

arbitrary given a∈R computes polynomials h1; : : : ; hk ∈R and b∈R such that

a =
k∑
i=1
hifi + b: (1)

In addition, we require that the remainder b is bounded by a in some sense 1 and
that b is uniquely determined by the residue class a+ I , i.e. for all a; a′ ∈R satisfying
a−a′ ∈ I the division algorithm has to produce the same b. Since a∈ I i� the remainder
b of a is 0 the ideal membership problem of I is decidable if such an algorithm exists.
The polynomial ring R is N-graded. Each non-zero polynomial has a degree and if

two homogeneous non-zero polynomials, i.e. all monomials occurring in the polynomial
are of the same degree, are multiplied then the product is again homogeneous and
its degree is equal to the sum of the degrees of the factors. For simplicity, we call
0 homogenous of every degree. Each polynomial a∈R has a unique representation
a= a0 + a1 + · · ·+ ad, where d is the degree of a and ai is homogeneous of degree i.
If all elements of F are homogeneous then we can divide each homogeneous part
ai of a by F using linear algebra methods, namely Gauss elimination. Adding the
homogeneous division formulas provides a representation (1) of a which satis�es our
above conditions. Let us consider such a “level by level” method for non-homogeneous
F . Denote the highest homogeneous part of fj by fj. We start by dividing ad modulo
f1; : : : ; fk and obtain a formula ad=

∑k
i= 1 uifi + bd with homogeneous polynomials

ui and bd. Then we compute a′ := a −
∑k

i= 1 uifi − bd which is zero or has a lower
degree than a. By recursion we compute a formula a′=

∑k
i= 1 h

′
ifi + b

′ and �nally
obtain a=

∑k
i= 1(ui + h

′
i)fi + bd+ b

′. The degree of b := bd+ b′ is at most as high as
the degree of a. But, unfortunately, b needs not to be the same for all polynomials from
a + I . Let us illustrate this by a simple example. Let a= x, f1 = x2 + x; f2 = x2. The

1 In particular, for a=0 also b must be zero.
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above algorithm yields b= x. But a=f1 − f2 ∈ I and, hence, a should have the same
remainder as 0, which is 0. It is easy to observe that extending F by the polynomial
f3 =f1 − f2 = x will remove our problem. The following question remains: how to
�nd the polynomials of I which should be added to F? The answer is that one has
to look for linear dependencies

∑k
i=1 uifi=0 between the highest homogeneous parts

of the elements of F , here the ui are homogeneous polynomials and all non-zero
summands have the same degree. Recall, (u1; : : : ; uk) is a homogeneous syzygy of the
highest homogeneous parts of the elements of F . Each such syzygy s can be associated
with an element lift(s) :=

∑k
i=1 uifi ∈ I . If some of the elements lift(s) have non-zero

remainder modulo F then we know that our “level by level” division algorithm does
not work correctly for this generating set F . Adding all the non-zero remainders to
F will repair these problems but other may still remain. Repeating this process until
all remainders are zero eventually will produce a set F for which the “level by level”
method produces for all a∈R a representation (1) satisfying our conditions.
Note, the set Rd of all homogeneous polynomials of �xed degree d (including the

zero-polynomial) is a �nite-dimensional linear space and we have dimK (Rd)=
(n+d−1
n−1

)
.

By splitting the degree levels we can achieve that all linear spaces of homogeneous
polynomials become one dimensional. We introduce a Nn-grading with respect to an
arbitrary admissible term order 2 ≺ on R by de�ning the generalized degree of the
polynomial a∈R\{0} to be the exponent vector of the largest monomial appearing in
a with non-zero coe�cient. For degree compatible orders ≺ this re�nes the ordinary
N-grading of R. The above division algorithm will work also in the context of the
Nn-grading. But, now, homogeneous means monomial. This essentially simpli�es the
divisions inside the degree levels and the computation of homogeneous syzygies of
the highest homogeneous parts of the elements of F . The price is a higher number of
di�erent degree levels which have to be considered during the algorithm. In the case
of a Nn-grading our algorithm is exactly Buchberger’s well-known algorithm for the
computation of Gr�obner bases of polynomial ideals.
Let us summarize the above algorithms. The division problem of an inhomogeneous

a∈R modulo a �nite inhomogeneous basis F ⊂ I was solved as follows:
(1) Divide the highest homogeneous part of a by the highest homogeneous parts of

F , lift the division formula to the inhomogeneous case by substituting a and F
for their highest parts. As result of the lifting process one obtains a formula
a=

∑k
i=1 uifi + (a

′ + a′′), where a′=0 or a′ is homogeneous and has the same
(generalized) degree as a and a′′=0 or a′′ is of smaller (generalized) degree
than a.

2 The monoid Nn is isomorphic to the multiplicative monoid T (X ) of power products in X1; : : : ; Xn.
Originally admissible term order (c.f. [9, 12]) stands for an order ≺ of T (X ) which is compatible with
multiplication, i.e. ∀u; v; w∈ T (X ): u ≺ v⇒ wu ≺ wv, and satis�es ∀u∈ T (X )\{1}: 1 ≺ u. The admissible
term orders are exactly the monoid well-orders of T (X ). In this sense the notion of admissible term orders
can be generalized to arbitrary monoids.
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(2) By recursion compute a division formula for a′′ and substitute it in the above
formula for a.

An arbitrary given �nite basis F ⊂ I can be completed to a Gr�obner basis of I by
the algorithm:

(1) Compute a homogeneous generating set B of the syzygy module of the highest
homogeneous parts of F .

(2) Divide the elements lift(s)∈ I associated to the syzygies s∈B modulo F and add
all non-zero remainders to F .

(3) Repeat the process until no more non-zero remainders occur.

The basic idea behind both methods can be characterized as transforming the original
problem to a homogeneous problem, solving the (often much simpler) homogeneous
problem, lifting the homogeneous solution back to the inhomogeneous case using simple
calculations in the polynomial ring R yielding a new inhomogeneous problem of smaller
degree, iterating these steps will eventually solve the input problem. In this paper we
will apply the same method in the more general context that the graded ring in which
the homogeneous calculations take place may di�er from the ring the original problem
comes from.
The objects involved in this method will be introduced in the next section on graded

structures.

3. Graded structures

Let R be a ring with unit element and (�;≺) a well-ordered monoid. Let � denote
the unit element of � and note the well-known fact that � is the minimal element of
� with respect to ≺. Finally, let ’ : R\{0}→� be a �-pseudo valuation function, i.e.
it satis�es

’(u) = �;
a+ b 6= 0⇒ ’(a+ b) 4 max(’(a); ’(b));
ab 6= 0⇒ ’(ab) 4 ’(a) ◦ ’(b)

for all invertible elements u∈R and all non-zero elements a; b∈R. For each 
∈� the
set F
= {a |’(a)4
} ∪ {0} is an additive subgroup of R and it is easy to prove that
the family F =(F
)
∈� is a �ltration of R. For each 
∈� we de�ne the quotient
G
=F
=F̂
 of F
 by its subgroup F̂
= {0} ∪⋃
′≺
F
′ . For a∈F
 we introduce the

denotation [a]F̂
 for the residue class a+ F̂
 ∈G
. The equation

∀a; b ∈ R\{0} : [a]F̂’(a)
[b]F̂’(b)

= [ab]F̂’(a)◦’(b)

determines a multiplication which makes the direct sum G=
⊕


∈� G
 a �-graded ring
with unit element [1]F̂� . G with this multiplication is called the associated graded ring
of the �ltered structure (R;F ). The elements u∈G
 are homogeneous of degree 
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(denotation deg(u)= 
). R and G are connected via the function in : R→G assign-
ing each element a∈R its initial form in(a)= [a]F̂’(a) (by de�nition in(0)= 0). Let

Ĝ=
⋃

∈� G
 denote the set of all homogeneous elements of G and in∗ : Ĝ→R an

arbitrary section of in, i.e. in(in∗(u))= u for all homogeneous elements u∈G.
Let us illustrate the notion of graded structure by explaining the objects introduced

above for a list of examples of rings well-investigated in the theory of Gr�obner bases.

(I) Let R=K[X1; : : : ; Xn] be a polynomial ring and �=N the monoid of non-
negative integers with the ordinary ¡-order. The function ’ assigns the degree
to each non-zero polynomial. Then the abelian group Fd consists of all polyno-
mials of degree less or equal than d and F̂d is its subgroup of the polynomials
of degree strictly less than d. The associated graded ring G is isomorphic to R
and the direct summands Gd are the abelian groups of homogeneous polynomials
of degree d. For a 6=0 the initial form in(a) is the highest homogeneous part of
a in the ordinary sense. Since G=R we can choose in∗ the identity on the set
Ĝ of all homogeneous polynomials.

(II) Now, consider R=K[X1; : : : ; Xn] with �=Nn and an arbitrary admissible term
order ≺. The function ’ assigns to the polynomial a 6=0 the largest (w.r.t. ≺)
exponent vector of a power product occurring in a with non-zero coe�cient.
F(i1 ;:::;in) (F̂(i1 ;:::;in)) consists of all polynomials containing only power products
whose exponent vector is less or equal (strictly less) than (i1; : : : ; in) w.r.t. ≺.
Again, G=R. But G(i1 ;:::;in) consists of all products �X

i1
1 · · ·X inn , where �∈K .

The function in assigns to each polynomial its leading monomial and in∗ acts
identically.

(III) Let R=K〈X1; : : : ; Xn〉 be the free non-commutative polynomial ring, �= 〈X1; : : : ;
Xn〉 the word semigroup freely generated by X1; : : : ; Xn and ≺ a monoid well-
order 3 of �. The function ’ assigns the largest word appearing with non-zero
coe�cient to a∈R\{0}. G is isomorphic to R. in(a) is the monomial with largest
word appearing in a, in∗ acts identically.

(IV) Let R=K〈X1; : : : ; Xn〉=(XiXj − XjXi − [Xi; Xj]) be an enveloping algebra of a Lie
algebra, �=Nn with degree compatible admissible term order ≺. As linear space
R is equal to the polynomial ring in the Example (II) of this list and we can
de�ne ’ in the same way as there. Then also the �ltration F and the additive
structure of the associated graded G are the same as in Example (II). Moreover,
also the multiplication in G is this of the commutative polynomial ring. So, we
meet a graded structure where R and G are di�erent. The function in assigns to
a 6=0 its largest monomial. But while multiplication of two monomials in R, in
general, does not produce a monomial multiplication of the initial forms of two
elements of R yields always a monomial since the multiplication takes place in

3 Examples for monoid well-orders ≺ of the free-word semigroup are the orders which �rst compare the
words using an admissible term order by forgetting non-commutativity and subsequently break ties using a
lexicographical order.
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the commutative polynomial ring G. In most applications in∗ is chosen in such
a way that the monomial u∈G and in∗(u)∈R “look the same”. Note, however,
that they are di�erent objects.

(V) Example (IV) can be generalized straightforward to an arbitrary algebra of solv-
able type with de�ning relations XiXj+ci; jXjXi+pi; j, 16j¡i6n. The admissible
term order ≺ has to satisfy the additional condition that any power product occur-
ring in pi; j with non-zero coe�cient is less than XiXj. Moreover, the coe�cients
ci; j, 16j¡i6n, are non-zero elements of K such that the “commutative look-
ing” power products X i11 · · ·X inn of R are linearly independent over K , hence the
set {X i11 · · ·X inn : (i1; : : : ; in)∈Nn} is a K-vector space basis of R. There is one
interesting di�erence to the previous example. If some of the ci; j are di�erent
from −1 then the associated graded ring is no longer a commutative polynomial
ring. In this case it may happen that the product of two power products of G is
only a monomial, more precisely a multiple of the expected power product by a
non-zero element of K .

(VI) Let K be a �eld of characteristic di�erent from 2 and �: Kn×Kn → K a sym-
metric bilinear form. We consider the Cli�ord algebra R=K〈X1; : : : ; Xn〉=(XiXj +
XjXi − �(Xi; Xj) : 16i; j6n) and the valuation monoid �=Nn with arbitrary
admissible term order ≺. In di�erence to the previous Example (V), here, the
elements X i11 · · ·X inn are linearly dependent, a K-basis of R is formed by all el-
ements of the form Xi1Xi2 · · ·Xir , where 16i1¡i2¡ · · ·¡ir6n. The function ’
is de�ned in the usual way, i.e. it assigns to each a 6=0 the largest exponent
vector of monomials appearing in a. We have F̂exp(X 2i ) =Fexp(X 2i ), 16i6n, for
the induced �ltration F and for this reason in(Xi)2 = 0. Hence, G contains zero
divisors, e.g. the monomials in(Xi) are nilpotent. To the function in

∗ apply the
same remarks as in Example (IV).

Now, we come to the de�nition of Gr�obner bases in graded structures.

De�nition 1. With the above notation we call R =(R; �; ’; G; in) a graded structure.
Furthermore, a set F ⊂R is called a Gr�obner basis with respect to R of the left (right,
two-sided) ideal I generated by F if in(F) and in(I) generate the same left (right, two-
sided) ideal of G. If F is a Gr�obner basis of I with respect to R and no proper subset
of F has this property then F is called a minimal Gr�obner basis of I with respect
to R .

If the graded structure R is clear from the context we will call F simply a Gr�obner
basis of I . But sometimes if we consider more than one graded structure in parallel,
then we will also write shortly R -Gr�obner basis instead of Gr�obner basis with respect
to R .

De�nition 2. A graded structure R =(R; �; ’; G; in) is called an e�ective left (right)
Gr�obner structure if the following conditions are satis�ed:
(i) the rings R and G and the ordered monoid � are computable algebraic structures,
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(ii) ’ and in are computable functions, and there exists a computable section in∗ of
the initial mapping,

(iii) the membership problem of homogeneous left (right) ideals of G given by an
arbitrary �nite homogeneous generating set is decidable,

(iv) for any �nite set H ⊂G of homogeneous elements there can be computed a
�nite homogeneous generating set of the left (right) syzygy module LSyz(H)
(R Syz(H)) of H , and

(v) G is a left (right) noetherian ring.

Before, we consider the two-sided case we will brie
y discuss the syzygy problem
of two-sided ideals. Let E denote the subring of G which is generated by the unit
element [1]F̂� . G is a left and a right E-module, so the tensor product G⊗E G is a well-
de�ned E-bimodule. In the following we consider G⊗E G with its natural G-bimodule
structure. Let H = {h1; : : : ; hk}⊂G be a �nite subset of G and SH : (G⊗E G)k →G
denote the G-bimodule homomorphism de�ned by SH (

∑m
j=1 ajeij bj)=

∑m
j=1 ajhij bj,

where 16ij6k and ajeij bj denotes the tensor aj ⊗ bj belonging to the ijth copy of
G⊗E G. For any H the kernel ker SH forms a G-submodule of (G⊗E G)k , the so-called
syzygy module Syz(H) of H . Even for noetherian rings G the G-bimodule (G⊗E G)k
need not to be noetherian. Therefore, a straightforward generalization of condition (iv)
would be to strong. Mora solved the problem in [23] by asking for the computability
of a �nite non-trivial homogeneous generating set of Syz(H). A homogeneous syzygy∑m

j=1 ajeij bj ∈Syz(H) is called trivial if the element liftF(
∑m

j=1 ajeij bj)=
∑m

j=1 in
∗

(aj)fij in
∗(bj) can be reduced to zero modulo F for any set F = {f1; : : : ; fk}⊂R such

that in(fi)= hi (i=1; : : : ; k). If B together with the trivial syzygies of H generate the
syzygy module Syz(H) then B is called a non-trivial generating set of Syz(H).

De�nition 3. A graded structure R =(R; �; ’; G; in) is called an e�ective two-sided
Gr�obner structure if the following conditions hold:
(i) the rings R and G and the ordered monoid � are computable algebraic structures,
(ii) ’ and in are computable functions, and there exists a computable section in∗ of

the initial mapping,
(iii) the membership problem of homogeneous two-sided ideals of G given by an

arbitrary �nite homogeneous generating set is decidable,
(iv) for any �nite set H ⊂G of homogeneous elements a �nite non-trivial homogeneous

generating set of the syzygy module Syz(H) can be computed, and
(v) G satis�es the ascending chain condition for two-sided ideals.

Let A⊆G be an arbitrary subring generated by the initial forms in(a) of elements a
belonging to the center of R. Obviously, A is contained in the center of G. By SyzA(H)
we denote the image of the syzygy module of H under the natural G-bimodule homo-
morphism � : (G⊗E G)k → (G⊗A G)k . Since all syzygies belonging to the intersection
ker �∩Syz(H) are trivial the following criterion can be used for the veri�cation of
condition (iv): if SyzA(H) is �nitely generated then Syz(H) has a �nite non-trivial
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generating set and for any generating set B of SyzA(H) the set {b | �(b)∈B} is non-
trivial generating set of Syz(H).
Let R =(R; �; ’; G; in) be an e�ective left (right, two-sided) Gr�obner structure. Then

for any �nite subset F ⊂R there can be computed a left (right, two-sided) Gr�obner
basis of the left (right, two-sided) ideal of R generated by F in an algorithmic way
[23]. Given R it remains to check that the conditions (i)–(v) are satis�ed. The large
generality of the concept of graded structures is its power but as soon as e�ectiveness
is concerned it becomes also its main di�culty. At the level of De�nitions 2 and 3
no restrictions apply to the algorithms solving conditions (iii) and particularly (iv).
This is a motivation to look for subclasses of e�ective graded structures which have
uniform algorithms for deciding membership problems and computing syzygy modules
of homogeneous ideals of the associated graded ring.

4. Natural graded structures of extension rings

In this section we will present a class of graded structures which extends our list from
Section 3. We consider a ring R with a �nite minimal generating set X = {X1; : : : ; Xn}
over some ground ring Q. For an arbitrary well-ordered monoid (�;≺) with a minimal
generating set Y = {Y1; : : : ; Yn} the condition

a ∈ F
 :⇔ a is a �nite sum of terms r0 Xi1r1 · · ·Xik rk ;
where r0; : : : ; rk ∈Q and Yi1 ◦ · · · ◦ Yik 4 


de�nes a �-�ltration F =(F
)
∈� of R. Note, the enumerations of the elements of the
generating sets X and Y of R and �, respectively, are considered to be �xed. At this
stage of construction the only relationship between the generators Xi and Yi consists in
the same index i. Note, in general, renumbering the sets will alter the �ltration F and
the possibility of algorithmic Gr�obner basis computations may depend on the chosen
enumerations.

De�nition 4. For R, (�;≺), and F as above, the �-graded structure R =(R; �; ’; G; in)
induced by the function

’(a) := min{
 ∈ � | a ∈ F
}; a ∈ R\{0}
will be called the natural �-graded structure of R.

There is a natural isomorphism between the subring Q⊆R and the subring G�⊆G
formed by all homogeneous elements of degree �, where � denotes the unit element of
�. In the following G� and Q will be identi�ed. Then G is a left and a right Q-module.
Note, using the above construction that any extension ring of Q can be associated

with a �-graded structure with respect to an arbitrary well-ordered monoid �. Of
course, in this general context the above-de�ned graded structures are not very helpful
in applications. In general, even the function ’ is not computable.
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In the remaining sections we will introduce further conditions which will ensure
constructiveness. Until now, there is no connection between R and � except that
we assumed that both have �nite minimal generating sets of the same cardinality. 4 On
the one hand, it would be much too restrictive to require that R is the monoid ring
Q〈�〉 of � with coe�cients from Q. For instance, Examples (IV)–(VI) from Section 3
are not of this type. But on the other hand it is clear that pushing the problems to
the associated graded ring G will be not useful if there is no connection between the
multiplicative structures of R and of G at all. But the multiplicative structure of G is
determined by � up to a large extent.

5. Outline of investigations

Before we start to investigate the e�ectiveness of natural graded structures R we
will sketch and motivate the necessary constructions.
First, we have to �nd a suitable representation of a ring R which is obtained by

adjoining �nitely many elements X1; : : : ; Xn to some ground ring Q, i.e. we have to
describe the relations between the Xj and between the Xj and the elements of Q. For
this purpose we will construct a free object A= 〈Q; X 〉Q̂ and represent R as a quotient
A=K . From the undecidability of the word problem for semigroups it follows that for K
given by a �nite generating set even equality in R needs not to be decidable. We will
overcome this di�culty by the restriction that K has to be given by a �nite Gr�obner
basis. So, �rst we need a theory of Gr�obner bases in the free object A. Two suitable
graded structures A and A� of A can be found in the class of natural graded structures
de�ned in Section 4. But before we construct these graded structures let us illustrate
the method by means of an example.
The method of presenting R as a quotient of a free object appears already in

Examples (IV)–(VI) presented in Section 3. Consider the de�ning relations XiXj +
ci; jXjXi + pi; j, 16j¡i6n, from Example (V). Then the quotient is an algebra of
solvable type i� all ci; j are non-zero and the above elements are a Gr�obner basis
in the graded structure (III), where the free non-commutative monoid 〈X1; : : : ; Xn〉 is
ordered by ≺ such that XjXi ≺ XiXj for all 16j¡i6n and all words appearing in
pi; j are less (w.r.t. ≺) than XjXi. Algebras of solvable type can be investigated also
without using the free non-commutative polynomial ring (see [17]). But for Cli�ord
algebras and the more general class of G-algebras (see [2]) the representation by a
Gr�obner basis in the free non-commutative polynomial ring is essential. Besides algo-
rithms for the computation in R the Gr�obner basis provides complete knowledge about
the zero-divisors of the associated graded ring G and this knowledge is essential for

4 Note, even the condition |X |= |Y | could be dropped. But having in mind the aim of cyclic homogeneous
modules of the associated graded ring the above restriction is natural. However, the condition does not yet
ensure cyclic modules G
, e.g. if R is a free non-commutative polynomial ring K〈X 〉 and � is the free
commutative monoid generated by Y then a homogeneous element of the associated graded ring is a linear
combination of words consisting of the same letters with the same multiplicity.
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computing syzygies in G. Note, that we generalized not only the ring but also the valu-
ation monoid to a free object. The latter ensured that in our example the homogeneous
modules of the associated graded ring are cyclic.
On the one hand, the non-commutative polynomial ring Q〈X 〉 would be too special

for our investigations since the elements of Q do not need to commute with the genera-
tors X . On the other hand, the free object 〈Q; X 〉 in the class of all extension rings of Q
generated by |X | elements is too general because the kernel of the canonical homomor-
phism from 〈Q; X 〉 to R is not �nitely generated in almost all interesting applications,
e.g. consider once more the de�nition of an algebra of solvable type (see Example (V)
in Section 3) but now as a quotient of 〈K ; {X1; : : : ; Xn}〉 instead of K〈X1; : : : ; Xn〉. In
this case there appear additional de�ning relations of the form �Xi−Xi�, where �∈K .
A good compromise is to �x a subring Q̂⊆Q whose elements commute with all

elements of the ring R and to consider the ring A= 〈Q; X 〉Q̂ which is freely generated by
X in the class of all extension rings of Q whose center contains Q̂. At least the subring
of Q which is generated by 1 is a suitable ring Q̂ since all extension rings are assumed
to have a unit element, too. In order to obtain a computable ring A the subring Q̂ has to
be chosen in such a way that Q is a computable Q̂-module. Fix a monoid well-order ≺A
of 〈Y 〉 such that ∀u; v∈ 〈Y 〉 : �(u)≺ �(v)⇒ u≺A v, where � : 〈Y 〉→� denotes the natural
epimorphism acting identically on Y . Let A=(A; 〈Y 〉; ’A; GA; inA) be a natural graded
structure according to De�nition 3 (for the case R=A and (�;≺)= (〈Y 〉;≺A)). The
ring A is computable. Moreover, for decidable ≺A also the associated graded ring GA of
A is computable. In Section 7, we will introduce some restrictions on the ideals K we
are interested in. At least for those ideals the A-Gr�obner basis property is decidable.
Moreover, if K has a �nite A-Gr�obner basis then the usual Gr�obner basis completion
method for graded structures eventually will have computed one. However, in general,
no �nite Gr�obner basis of K need to exist as the following simple example shows. Let
R be the G-algebra de�ned by the relations {yx−xy; zy−yz; zx−xz; xyz}, which indeed
is simply a quotient of a commutative polynomial ring. The kernel K of the canonical
homomorphism from A=K〈x; y; z〉 to R contains the elements xykz, k =1; 2; : : :, hence,
any Gr�obner basis of K with respect to the graded structure (III) is in�nite. This
motivation is enough to look for possibilities to relax the condition that R has to be
presented by a Gr�obner basis of K with respect to the natural 〈Y 〉-graded structure A

of A. We introduce a second natural graded structure A�=(A; �; ’�; G�; in�) of the
free object A. In di�erence to A, here, we use the same valuation monoid (�;≺) as
in the graded structure R . It is well known that any Gr�obner basis of an ideal I ⊆A
with respect to A is also a Gr�obner basis of I with respect to A�. 5

The advantage of A� becomes clear when we look once more at our above example.
In the case �=Nn the �nite set {yx−xy; zy−yz; zx−xz; xyz} consists of homogeneous
elements with respect to a �-grading of K〈x; y; z〉. Hence, it is a A�-Gr�obner basis
of K . In De�nition 5 we will introduce the notion of a �-truncation of a A-Gr�obner

5 In general, the opposite is wrong.
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basis. Such �-truncations combine the advantage of simple calculations with respect to
A and the advantage of smaller Gr�obner bases with respect to A�.
In summary, our strategy is to present K by a �-truncation Htrunc of a Gr�obner basis

H with respect to A and then to derive su�cient conditions for the natural graded
structure R to be an e�ective (left, right, two-sided) Gr�obner structure in dependence
on Q, � and Htrunc. The diagram

A = (A; 〈Y 〉; ’A; GA; inA) : A = 〈Q; X 〉Q̂ (〈Y 〉;≺A)
‖ ↓ �

A� = (A; �; ’�; G�; in�) : A = 〈Q; X 〉Q̂ (�;≺)
↓ � ‖

R =(R; �; ’; G; in) : R=A=K (�;≺)

(2)

displays the relations between the involved objects and structures.

6. Conditions on Q and �

In this section we ask for necessary conditions on Q and � in order to have a
chance to obtain an e�ective Gr�obner structure R in the third row of diagram (2). If
the natural graded structure R is an e�ective left Gr�obner structure then Q has to be a
computable noetherian ring with decidable left ideal membership problem. Moreover,
for any �nite subset H ⊂Q a �nite generating set of the left syzygy module LSyz(H)
can be computed. To sketch a proof consider the extension left ideal G · I of the left
ideal I ⊂Q. G needs not to be a 
at extension of Q, for instance, the left syzygy
module of G · I is not necessarily generated by homogeneous left syzygies of degree �.
But taking into account that G is a graded ring the computability conditions carry over
from G to Q. Analogous arguments can be applied in the right and two-sided case.
Assume that the natural graded structure R of the monoid ring R=Q〈�〉 is an

e�ective left, right, and two-sided Gr�obner structure. Then also � has to ful�ll rather
strong conditions. So, � must be a computable well-ordered monoid. Furthermore, it
has to satisfy a generalization of Dickson’s Lemma [13], i.e. for any in�nite sequence

1; 
2; : : : of elements of � there exist positive integers i¡j and k¡l such that 
i is a
left divisor of 
j and 
k is a right divisor of 
l. In this case we call � a noetherian
monoid which re
ects the fact that ascending chains of left, right, or two-sided monoid
ideals, respectively, will always stabilize. 6 Further, necessary conditions on � are that
left, right, and two-sided divisibility of elements of � is decidable and that minimal
common left, right, and two-sided multiples of �nite subsets of � can be computed
algorithmically. We remark, that the decidability of left or right divisibility is equiv-
alent to the seemingly much harder condition, that the set of all decompositions into

6 If the graded structure of R=Q〈�〉 is only required to be an e�ective two-sided Gr�obner structure then
a weaker generalization of Dickson’s Lemma providing only the ascending chain condition for two-sided
ideals would be su�cient. But for simplicity, we consider only the strongest generalization which is suitable
for all three types of ideals.
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irreducible factors is �nite and computable in an algorithmic way for all 
∈�. This
is an easy consequence of the following facts. Any noetherian well-ordered monoid �
satis�es the left and right cancellation law and any element 
 6= � of � has only a �nite
number of decompositions into irreducible factors. It follows that the minimal gener-
ating set X of � is uniquely determined, �nite, and consists exactly of the irreducible
elements of � \{�}.

7. Representation of R by Gr�obner bases in free structures

For the rest of the paper we will restrict the class of considered graded structures
R by the condition that each quotient G
=F
=F̂
, 
∈�, is either the zero module or
generated by the element

g
 := in(Xi1 · · ·Xik ); where Yi1 · · ·Yik = min≺A
{u ∈ 〈Y 〉 | �(u) = 
} (3)

as a left and as a right Q-module. By de�nition let g
 := 0 for all 
 such that G
= {0}.
Then we have

G =
⊕

∈�

Q · g
 =
⊕

∈�

g
 · Q: (4)

All G
 are cyclic left Q-modules and, hence, for each 
∈� there exists a homomor-
phism �
 : Q → Q satisfying

g
a− �
(a)g
 = 0 for all a ∈ Q: (5)

A cyclic left Q-module M is determined by its annihilating left ideal

annLM = {a ∈ Q | am = 0 for all m ∈ M}
up to isomorphism. We have M ' Q=annLM . An analogous statement holds for right
Q-modules M and annihilating right ideals annRM . Both, left and right annihilators
are even two-sided ideals of Q and for M being generated by the same element g as
a left and as a right Q-module it follows the ring isomorphism

Q=annLM ' Q=annRM: (6)

Moreover,

a ∈ annLM ⇔ ag = 0; a ∈ annRM ⇔ ga = 0:

We remark that the restriction to cyclic modules G
 is typical but not necessary for
Gr�obner basis investigations. For instance, the main theorem on abelian groups can be
applied successfully in many situations where the G
 are of higher dimension. Mora and
M�oller investigated such situations in [22]. Also Hironaka’s standard bases in power
series rings refer to a grading with non-cyclic homogeneous summands (see [15]). 7

7 Note, Hironaka’s grading is based on an order ≺ which is not well-founded. This leads to additional
computability problems which were discussed in [5].
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Pesch introduced a Gr�obner theory in iterated Ore extensions (see [26]). Though, there
is a natural translation of Pesch’s method in the language of graded structures
the result is not one of the known constructive instances. The direct summands G

of the associated graded ring are only cyclic as left Q-modules but higher dimensional
as right Q-modules.
Now, we will investigate the structure of a Gr�obner basis H of K =ker � with respect

to A. According to Eq. (5) for all �∈Q and Xi in X the kernel ker � contains an
element of the form

Xi�− �Yi(�)Xi + pi;�; (7)

where pi;�=0 or pi;� ∈R with �(’A(pi;�))≺ �(Yi)=Yi.
Consider an arbitrary t=Yi1 · · ·Yik ∈ 〈Y 〉 and let Yj1 · · ·Yjl = min≺A{u∈ 〈Y 〉 | �(u)=

�(t)}. Then K contains an element

Xi1 · · ·Xik − �tXj1 · · ·Xjl + qt; (8)

where �t ∈Q and qt =0 or �(’A(qt))≺ �(t). Furthermore, in the special case l= k and
j1 = i1; : : : ; jk = ik the ideal K can contain elements

�tXj1 · · ·Xjl + rt ; (9)

where �t ∈ annLG�(t) and rt =0 or �(’A(rt))≺ �(t).
Since Q ∩ K = {0} there exists a minimal A-Gr�obner basis H of K consisting only

of elements of types (7)–(9). Recall, that any A-Gr�obner basis of K is also a (possibly
redundant) A�-Gr�obner basis of K . We de�ne: 8

De�nition 5. A subset Htrunc⊆H of a minimal Gr�obner basis H of K with respect to
A is called a �-truncation of H if Htrunc is a Gr�obner basis of K with respect to A�.

Note, that �-truncations of minimal A-Gr�obner bases are A�-Gr�obner bases which
have a particular structure. Given a �nite �-truncated A-Gr�obner basis Htrunc of K we
can compute a �nite set

Dt := {h ∈ H ′ |’A(h)|t}; (10)

where H ′ denotes some minimal A-Gr�obner basis of K , for an arbitrary given t=Yi1 · · ·
Yik ∈ 〈Y 〉.
More precisely, consider t=Yi1 · · ·Yik ∈ 〈Y 〉 and let 
 := �(t)=Yi1◦· · ·◦Yik . We divide

all products Xj1 · · ·XjmgXp1 · · ·Xpl , where g∈Htrunc and Yj1 ◦ · · · ◦Yjm ◦ �(’A(g)) ◦Yp1 ◦
· · · ◦ Ypl | 
, by the set Htrunc with respect to the graded structure A. The elements
of types (7) and (8) which are needed in Dt were already contained in Htrunc. Since

8 In a previous version of this paper (see [6]) the notion of truncated Gr�obner basis was de�ned in a
very technical way without using the graded structure A� . I am thankful to Teo Mora and the anonymous
referees for pushing me to illustrate the notion. Thinking about explanations and illustrations of the old
notion I discovered the equivalence to the much simpler notion presented here.
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by de�nition Htrunc is a A�-Gr�obner basis we know that the A�-initial form of each
element h∈K such that ’�(h) divides 
 has a A�-homogeneous representation in
terms of the A�-initial forms of the elements of Htrunc. Hence, each such h is a Q-
linear combination of the products Xj1 · · ·XjmgXp1 · · ·Xpl considered above. The initial
form of an element h of type (9), where �t 6= 0, is monomial in both graded rings GA
and G�. The division of the products Xj1 · · ·XjmgXp1 · · ·Xpl modulo Htrunc with respect
to A acts like Gauss elimination and produces all elements of type (9) belonging to
some suitable set Dt .
Let us illustrate the idea behind the �-truncation of a minimal A-Gr�obner basis

H . The ordinary meaning of the truncation of H at t ∈ 〈Y 〉 is the initial segment
Ht := {h∈H |’A(h)4A t}. Such truncations proved to be very useful in the treatment
of homogeneous ideals. It is well-known that the ideal membership problem of �nitely
generated homogeneous ideals of free non-commutative polynomial rings over a con-
structive �eld is decidable. The decision algorithm is based on the fact that, in spite of
possibly in�nite minimal Gr�obner bases, one can compute a truncation of a minimal
Gr�obner basis at an arbitrary given degree.
In our situation the �-truncations Htrunc are often more practical than ordinary trunca-

tions Ht since the latter may be in�nite for orders ≺A which are not degree compatible.
Moreover, the possibility to compute a �nite set Dt for an arbitrary t ∈ 〈Y 〉 enables to
decide the ideal membership problem of K in a similar way as by means of ordinary
truncations in the homogeneous case.
Let us consider the structure of a minimal A-Gr�obner basis in more detail. By

Y�⊆〈Y 〉 we denote the set of all words which are the minimal (with respect to
≺A) element of an equivalence class of elements having the same image under �,
in fact Y�⊆〈Y 〉 is a set of canonical representants modulo the homomorphism � and
identifying the canonical representants with the elements of � yields a set embed-
ding of � in 〈Y 〉. Obviously, a minimal A-Gr�obner basis contains only such elements
h=Xi1 · · ·Xik − �tXj1 · · ·Xjl + qt for which ’A(h)=Yi1 · · ·Yik =∈ Y� but t ∈Y� for all
proper subwords t of ’A(h). Hence, given any con
uent term rewriting system which
de�nes � as a quotient of the free monoid 〈Y 〉, only the left-hand sides of the rewriting
rules need to be considered as the possible highest term of A-Gr�obner basis elements
of type (8). In particular, if � is the free commutative monoid generated by Y then
w.l.o.g. we can assume that all A-Gr�obner basis elements of type (8) have the form
h=XiXj − �i;jXjXi + qi;j, where 16j¡i6n and qi;j =0 or ’A(qi;j) ≺A YiYj. Moreover,
if qi;j 6= 0 then it will follow ’�(qi;j) ≺� Yi ◦Yj =Yj ◦Yi by the properties of ≺A. Sim-
ilar arguments apply also to non-free commutative monoids �. But some of the �i;j are
zero in this case. Finally, if � is commutative and Q is a �nitely generated Q̂-module,
let us say by {c1; : : : ; cr}, then H has a minimal A-Gr�obner basis of the form

Xicj − �Yi(cj)Xi + pi;j (16i6n; 16j6r);

XiXj − �i;jXjXi + qi;j (16j ¡ i6n);

�(i1 ;:::;il)Xi1 · · ·Xil + r(i1 ;:::;il) (16i16 · · ·6il6n);
(11)
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where the initial parts of the elements with respect to A are underlined. Examples
for A-Gr�obner bases can be found in Section 14. The �rst example illustrates a case
when all A-Gr�obner bases are in�nite but �nite A�-Gr�obner bases and, hence, �nite
�-truncations of A-Gr�obner bases exist.
In the following sections we will show how a �nite �-truncation of a A-Gr�obner

basis H of K can be applied to the solution of some important algorithmic problems in
R=A=K and its associated graded ring with respect to the graded structure R . Together
with a few more conditions these results will imply the computability of Gr�obner bases
with respect to R .

8. Computation of annihilating ideals of G


Given a �nite �-truncation Htrunc of a minimal A-Gr�obner basis of K it is possible
to compute a �nite generating set of the annihilating left ideal annLG
 for any given

∈� in an algorithmic way.
Let t=Yi1 · · ·Yik ∈ 〈Y 〉 be the (w.r.t. ≺A) minimal word such that �(t)=Yi1 ◦ · · · ◦

Yik = 
. Then we have

� ∈ annLG
 ⇔ �Xi1 · · ·Xik is reducible (w:r:t: A) modulo H; (12)

where H is an arbitrary Gr�obner basis of ker � with respect to A.
Consider h∈H with initial form inA(h)= �hXij · · ·Xim . Then the product Xi1 · · ·Xij−1

inA(h)Xim+1 · · ·Xik is congruent to the monomial �h; tXi1 · · ·Xik ∈GA, where �h; t = �Yi1 (· · ·
(�Yij−1

(�h))), modulo the two-sided ideal generated by the A-initial forms of the ele-
ments of H which belong to type (7). Obviously, �h; t ∈ annLG
 for all so-constructed
elements �h; t ∈Q. Furthermore, the right hand side of condition (12) means that for
all �∈ annLG
 the homogeneous element �Xi1 · · ·Xik ∈GA must be a linear combination
of homogeneous elements Xi1 · · ·Xij−1 inA(h)Xim+1 · · ·Xik , where h belongs to the set Dt
de�ned in (10), ’A(h)=Yij · · ·Yim , and 16j6m6k. Hence, the annihilating left ideal
annLG
 is generated by the above elements �h; t . The set of all such �h; t is �nite and
can be constructed algorithmically since Dt can be computed from Htrunc.
For constructive G there are also computable homomorphisms �̂
 : Q → Q satisfying

ag
= g
�̂
(a). This allows the transformation of the truncated Gr�obner basis Htrunc in
an equivalent system with all coe�cients right of the products Xi1 · · ·Xik . Therefore,
�nite generating sets of the right annihilating ideals annRG
 can be computed in a
similar way.

9. Ideal membership in the associated graded ring

Let u1; : : : ; uk ; and v be non-zero homogeneous elements of the associated graded
ring G of the natural graded structure R . Can we decide v∈ J , where J is the
left, respectively, two-sided, ideal generated by the elements u1; : : : ; uk? Our previous
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assumptions on Q, �, and K will turn out to be already su�cient to answer this
question positively.
Let deg ui= 
i and deg v= 
 denote the degrees of the homogeneous elements u1; : : : ;

uk ; and v. Then the elements can be assumed to be presented in the form ui= �ig
i ,
and v= �g
, where �1; : : : ; �k ; �∈Q.
First consider left ideals J . The set M = {(!; i) | 16i6k ∧ ! ◦ 
i= 
} is �nite and

can be computed in an algorithmic way since divisibility in � is decidable. By con-
structiveness of G there is an algorithm transforming each product g!�ig
i , (!; i)∈M ,
in the form g!�ig
i = �

′
!; ig
, where �

′
!; i ∈Q. Obviously,

v ∈ J ⇔∃�!; i ∈ Q : v =
∑

(!;i)∈M
�!; ig!ui

⇔ � ∈ Q · (�′!; i) + annLG
: (13)

Now, consider the two-sided ideal generated by u1; : : : ; uk . We can compute the set
M = {(!; i; !′) | 16i6k∧!◦
i ◦!′= 
}, which is �nite according to our assumptions.
Applying similar arguments as in the left ideal case and taking into account that annLG

is even two-sided it follows that

v ∈ J ⇔∃�!;i;!′;j; �′!;i;!′;j ∈ Q : v =
∑

(!;i;!′)∈M

m!;i;!′∑
j=1

�!;i;!′;jg!uig!′�′!;i;!′;j

⇔ � ≡∑�!;i;!′;j�′!;i;!′�
(�′!;i;!′;j) mod annLG


⇔ � ∈ Q · (�′!;i;!′) · Q + annLG
; (14)

where �′!; i;!′g
= g!uig!′ .
In conclusion, we proved that the membership problem of a (left) homogeneous

ideal of G can be reduced to the membership problem of a (left) ideal of Q. It
is well-known that the decidability of v∈ J? ensures the existence of an algorithm
computing a representation of v in terms of u1; : : : ; uk for any v∈ J . However, due
to its ine�ciency, this general algorithm resulting from the theory is of no practical
importance. Note, our above considerations prove not only decidability but provide also
nice formulae transforming solutions of (13) and (14), respectively, in representations
of v. Let �1; : : : ; �m generate annLG
 as a left ideal. We have

�=
∑

(!;i)∈M
�!;i�′!;i +

m∑
j=1
�j�j

⇒ v=
k∑
i=1

( ∑
(!;i)∈M

�!;ig!

)
ui
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and

�=
∑

(!;i;!′)∈M

m!;i;!′∑
j=1

�!;i;!′;j�′!;i;!′�′!;i;!′;j +
m∑
j=1
�j�ij�

′
j

⇒ v=
∑

(!;i;!′)∈M

m!;i;!′∑
j=1

(�!;i;!′;jg!)ui(g!′ �̂
(�′!;i;!′;j)):

Hence, under some obvious conditions on the e�ciency of calculations in Q, �, and
G we obtain also e�cient algorithms for the computation of representations of v in
terms of u1; : : : ; uk .

10. The noetherian property of G

Until now our conditions on Q, �, and K in
uenced mainly the Q-module structure
but there are still to many freedoms in the ring structure of R and G. In particular, we
have not yet enough control about the zero divisors of G.
Consider, for instance, the following extremal case. Let � be the free commutative

monoid generated by Y and assume that the elements of Q commute with the elements
of X , hence, A=Q〈X 〉 in diagram (2). Moreover, let XiXj ∈K for all 16j¡i6n
and K contain no element of type (9). Then G is non-noetherian and contains zero-
divisors. For instance, the product uv of two monomials u; v∈G is zero, whenever v
contains a variable of smaller index than the highest index of variables contained in u.
In particular, in(Xi)in(Xj)= 0 for all 16j¡i6n. The two-sided ideal of G generated
by the homogeneous elements in(X1X k2 X3), k =0; 1; : : :, is not �nitely generated, hence,
G does not satisfy any ascending chain condition for one- or two-sided ideals.
In general, serious problems can appear if ker � contains elements of type (8) whose

coe�cient �t is not invertible modulo annLG�(t). Such kernel elements can, but need
not, cause a non-noetherian associated graded ring G.
The condition

∀
; ! ∈ � : G
G! = G
◦! (15)

is equivalent to the property that for any t=Yi1 · · ·Yik ∈ 〈Y 〉 there exists Xi1 · · ·Xik −
�tXj1 · · ·Xjl + qt ∈ ker � of type (8) such that �t is a unit modulo annLG�(t). Note, we
call �∈Q a unit (or an invertible element) modulo the two-sided ideal I ⊆Q i� there
exists �′ ∈Q such that ��′−1∈ I and �′�−1∈ I . In particular, even 0 is a unit modulo
I =Q according to this de�nition.
If Q and � are noetherian and G satis�es condition (15) then the associated graded

ring G is left and right noetherian. We show that any in�nite sequence of non-zero
homogeneous elements u1 = g
1�1; u2 = g
2�2; : : : of G contains ul ∈G(u1; : : : ; ul−1). Since
� is noetherian there exists an in�nite subsequence ui1 ; ui2 ; : : : such that the degree
of uik is a right multiple of the degree of uij for all j¡k. Moreover, by condition
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(15) for all j¡k it follows the existence of a homogeneous element vj; k such that
g
ik = vj; kg
ij . Furthermore, since Q is noetherian it follows the existence of an index
l¿1 such that �il belongs to the left ideal of Q generated by the elements �i1 ; : : : ; �il−1 .
Consequently, there exist �1; : : : ; �l−1 ∈Q such that uil = g
il �il =

∑l−1
r=1 vr;lg
ir �r�ir=∑l−1

r=1 vr;l�̂
ir (�r)g
ir �ir=
∑l−1

r=1(vr;l�̂
ir (�r))uir . Hence, uil belongs to the left ideal of G
generated by u1; : : : ; uil−1 and it follows that G is a left noetherian ring. Starting with
representations ui= c′ig
i we can prove in the same way that G is right noetherian and,
hence, noetherian.
Next we change condition (15) in such a way that G still satis�es the ascending

chain condition for two-sided but not longer necessarily for left or right ideals. Instead
of (15) we assume now that the elements of Q commute with the elements of X and
that for all !∈� and divisors 
∈� there exists a decomposition 
′ ◦ 
 ◦ 
′′=! such
that

G�′G�G�′′ = G�′◦�◦�′′ (16)

for all divisor triples �′|
′, �|
, �′′|
′′. We will show that any in�nite sequence u1 =
g
1�1; u2 = g
2�2; : : : of homogeneous elements of G contains an element uk ∈G(u1; : : : ;
uk−1)G. Since � is noetherian it is su�cient to prove the assertion for sequences sat-
isfying 
i | 
j for all i¡j. Since Q is noetherian there exists k such that �k ∈Q(�1; : : : ;
�k−1)Q. For all i¡k there exist 
′i ; 


′′
i ∈� and �i ∈Q such that �ig
′i uig
′′i = g
k �i ac-

cording to the above assumptions. Hence, uk ∈G(u1; : : : ; uk−1)G and the ascending
chain condition for two-sided ideals of G will follow.
Given a �-truncation of a minimal A-Gr�obner basis of K condition (15) could be

veri�ed using a simple criterion checking whether the coe�cients �t appearing in the
elements of type (8) are invertible modulo annLG�(t). When � is commutative and
GYi1 ◦ Yi2 ◦ ··· ◦ Yik =GYi1GYi2 · · ·GYik for all 16i16 · · ·6ik6n 9 then a similar criterion
allows the veri�cation of condition (16). For each pair (i; j) such that 16j¡i6n the
ideal K contains an element XiXj − �i;jXjXi + qi;j of type (8) and it is obvious how
to construct these elements from an arbitrary �-truncation of a minimal A-Gr�obner
basis of K . Condition (16) holds i� for each 16j6n we have at least one of the
following two properties: (i) �i;j is invertible modulo annLGYj ◦ Yi for all j¡i6n or
(ii) �j; i is invertible modulo annLGYi◦Yj for all 16i¡j. Let 
|!, an example of a
suitable decomposition != 
′ ◦ 
 ◦ 
′′ can be obtained by gathering all variables of the
quotient !=
 whose index j satis�es condition (ii) in 
′ and the rest in 
′′. Now, let
us consider the opposite direction, i.e. for some 16j6n neither condition (i) nor (ii)
holds. Then there exist i¡j and i′¿j such that �j; i and �i′ ; j are not invertible modulo
the corresponding annihilating left ideals and for !=Yi ◦Yj ◦Yi′ and 
=Yi ◦Yi′ no
decomposition ful�lls condition (16).

9 Note, the most important case covered by these conditions is when � is the commutative monoid freely
generated by Y and the order t≺As :⇔ �(t)≺ �(s)∨(�(t)= �(s)∧t¡ls), where¡l denotes the lexicographical
order extending Y1¡lY2¡l : : :¡lYn, is used in the construction of A.
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We remark, if Q is a �eld then condition (16) is equivalent to the assumption that
for all ! and 
|! there exist 
′ and 
′′ such that 
′ ◦ 
 ◦ 
′′=! and G
′G
G
′′ =G!. But
already for Q=Z the above condition is weaker than condition (16). For instance, con-
sider R=Z〈X1; X2; X3〉=(X2X1−2X1X2; X3X2; X3X1; 3X1X2X3) and � the free commutative
monoid generated by {Y1; Y2; Y3}. There we have GY2GY1GY3 =GY1Y2Y3 =Z · (X1X2X3) '
Z=3Z in spite of GY2GY1 =Z · (2X1X2)( GY1Y2 =Z · (X1X2). Note, only the weaker con-
dition had to be used in order to prove the noetherian property. However, the full
strength of condition (16) will be required for the syzygy computation in the proof of
Theorem 8.

11. E�ective one-sided Gr�obner structures

In this section, we assume that the associated graded ring G of R satis�es the
conditions (4) and (15). In order to prove that R is an e�ective left Gr�obner structure it
remains to show that left syzygy modules of homogeneous ideals of G are computable.
Our �rst considerations concern the degrees of the left syzygies which have to be
contained in a homogeneous generating set of LSyz(U ), where U is a �nite set of
homogeneous elements of G. Of course, the minimal common multiples of the degrees
of the elements of U are of interest. But in addition, a zero relation may arise if
a non-zero homogeneous combination of U is multiplied by a homogeneous element
such that the coe�cient of the product annihilates the direct summand of G belonging
to the degree of the product. In order to characterize such situations we study the sets

�
 = {! ∈ � |G
 6' G! ◦ 
}: (17)

As an immediate consequence of condition (15) we obtain that the product g!g
 gen-
erates G! ◦ 
 as left and as right Q-module for all !; 
∈�. In particular, g!g
�=0
i� �∈ annRG!◦
 and, hence, annRG
⊆ annRG!◦
. Consequently, the quotient ring Q=
annRG!◦
 is a homomorphic image of the quotient ring Q=annRG
 and the condition
! =∈ �
 is equivalent to annRG
=annRG!◦
. Moreover, for arbitrary 
; !; !′ ∈� there
is a sequence

G
 ' Q=annRG
 �!;
−→Q=annRG!◦

�!′ ;!◦
−→ Q=annRG!′◦!◦
 ' G!′◦!◦


of epimorphisms. If �!;
 is not injective then also the composition of �!;
 and �!′ ;!◦

is surjective but not injective. Since Q is noetherian the existence of a non-injective
epimorphism implies that the rings are not isomorphic. Hence, with !∈�
 the set �

contains also the multiples !′ ◦! for all !′ ∈�.
In summary, for all 
∈� the set �
 is either empty or a left monoid ideal of �.

Given a �nite �-truncation Htrunc of a minimal A-Gr�obner basis of K there is an
obvious algorithm for the computation of a �nite generating set 10 �
 of �
 for an
arbitrary given 
∈�. Roughly, the idea behind is to extract a generating set �
 from

10 Formally, �
 = ∅ is considered as generating set of �
 = ∅.
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the set of all elements !∈� for which ! ◦ 
 is a minimal common multiple of 
 and
the elements of some subset of {�(’A(h)) | h∈Htrunc}.
This can be applied to the algorithmic computation of the left syzygy module

LSyz(U ) for an arbitrary �nite set U of homogeneous non-zero elements of G. We de-
�ne recursively 
(U )i+1 = {
′ ◦ 
 | 
∈
(U )i ∧ 
′ ∈�
}, where the initial value 
(U )0
⊆� is the set of all minimal common right multiples of the degrees of elements of
U . Each set 
(U )i is �nite and can be computed algorithmically. If 
(U )i= ∅ then

(U )j = ∅ for all j¿i. By the properties of Q there cannot exist an in�nite sequence
Q=annLG
0 →Q=annLG
1 → · · · of non-injective ring epimorphisms. Hence, there exists
a positive integer i0 such that 
(U )i0 = ∅ and, therefore, 
(U )= ⋃∞

i=1 
(U )i=
⋃i0−1
i=1


(U )i is �nite and can be computed algorithmically. For arbitrary given 
∈
(U )
there can be computed a �nite generating set of the left syzygy module of {� +
annLG
 | ∃u∈U∃!∈�: g!u= �g
}⊂Q=annLG
 according to the properties of Q. These
generating left syzygies can be lifted to homogeneous left syzygies of degree 
 of U
by multiplying each of their components from the right by the corresponding element
g!. Any homogeneous left syzygy of degree 
 of U is contained in the left G-module
generated by the set B
 formed by the lifted left syzygies. Next, we show that any
homogeneous left syzygy s=

∑
u∈U hueu of U , whose degree is a common right mul-

tiple of the degrees of all elements of U , belongs to the left G-module generated
by the union B(U )=

⋃

∈
(U ) B
. Let 
 be a maximal right divisor of deg s which is

contained in 
(U ) and !∈� be such that ! ◦ 
=deg s. According to condition (15)
there exist homogeneous elements vu such that g!vu= hu and, hence, s can be written
in the form s= g!

∑
u∈U vueu.

∑
u∈U vuu is a homogeneous element of G of degree 


and, therefore, can be written in the form g
d, where d∈Q. Furthermore, g!g
d=0
since s is a left syzygy of U . Consequently, d∈ annRGdeg s⊇ annRG
. By de�nition of

(U ) the inclusion is even equality and, therefore, s is a multiple of a homogeneous
left syzygy of U which has a degree contained in 
(U ).
In conclusion, the set B(U ) ∪ ⋃U ′ ⊂U LSyz(U

′), where B(U )=
⋃

∈
(U ) B
, gen-

erates LSyz(U ) and induction on the number of elements of U yields that a �nite
homogeneous generating set of LSyz(U ) can be constructed in an algorithmic way.

Theorem 6. Let Q be a computable noetherian ring with decidable ideal membership
and solvable syzygy problem for left; right; and two-sided ideals; and Q̂ a subring of
the center of Q such that Q is a computable Q̂-module. Furthermore; let � be a com-
putable well-ordered monoid which is noetherian and allows algorithmic computation
of minimal common multiples and factorial decompositions. Finally; let R= 〈Q; X 〉Q̂=K
be given by a �nite �-truncation Htrunc of a minimal A-Gr�obner basis of the two-
sided ideal K and let the associated graded ring G belonging to the natural graded
structure R =(R; �; ’; G; in) satisfy conditions (4) and (15).
Then R is an e�ective left Gr�obner structure.

Proof. Conditions (i)–(v) of De�nition 2 have been veri�ed already.
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Analogous considerations prove that any graded structure R ful�lling the assump-
tions of the above theorem is also an e�ective right Gr�obner structure. However, the
assumptions could be slightly relaxed by assuming only the conditions on Q and �
which refer to left (right) ideals. Among these marginal cases there are graded struc-
tures R which are only an e�ective left (right) but not an e�ective right (left) Gr�obner
structure. For computable �elds K the graded structures (II), (IV), (V) and (VI) pre-
sented in Section 3 ful�ll the assumptions of the above theorem. Besides the explicitly
mentioned examples of enveloping algebras of Lie algebras and Cli�ord algebras also
the classical examples of Weyl algebras and exterior algebras are covered by this list.
In the next section, the two-sided case will be investigated and all the examples listed
so far will satisfy also the stronger assumptions of Theorem 7. An example where
only Theorem 6 for one-sided Gr�obner structures is applicable 11 is the Hecke algebra
Hr(q)=C〈X1; : : : ; Xr−1〉=K , where q is a non-zero complex number, r¿2 an integer,
and K the two-sided ideal generated by the elements

XiXi+1Xi − Xi+1XiXi+1; i = 1; : : : ; r − 2;
XiXj − XjXi; 16j ¡ j + 1¡ i ¡ r;

X 2i − (q− q−1)Xi − 1; i = 1; : : : ; r − 1:
(18)

Note the isomorphism between the Hecke algebra Hr(1) and the complex unital group
algebra of the symmetric group Sr .
For instance, in the special case r=6 the additional elements

X3X5X4X3 − X5X4X3X4; X2X4X3X2 − X4X3X2X3;
X1X3X2X1 − X3X2X1X2; X2X5X4X3X2 − X5X4X3X2X3;
X1X4X3X2X1 − X4X3X2X1X2; X1X5X4X3X2X1 − X5X4X3X2X1X2

have to be added to (18) in order to obtain a minimal A-Gr�obner basis of K , where
the order ≺A of the free word semigroup 〈Y1; Y2; Y3; Y4; Y5〉 re�nes the total degree
order extending Y5≺Y4≺Y3≺Y2≺Y1 (cf. [12]). Note, any product Xi1 · · ·Xik such
that k¿15 is reducible with respect to the above Gr�obner basis of K and the maximal
irreducible product is X5X4X3X2X1X5X4X3X2X5X4X3X5X4X5.
The Hecke algebra Hr(q) is a �nite-dimensional C-vector space for an arbitrary

r¿2 whereby the monomials of degree at most d : = r(r− 1)=2 form a (non-minimal)
generating set. A natural graded structure of Hr(q) with respect to a commutative valu-
ation monoid does not satisfy condition (4). Using the free non-commutative valuation
monoid 〈Y1; : : : ; Yr−1〉 the above theorem is not applicable since the monoid is not
noetherian. A possible valuation monoid for building an e�ective left (right) Gr�obner
structure of the Hecke algebra Hr(q) is �= 〈Y1; : : : ; Yr−1〉=Ed, where Ed is the con-
gruence relation de�ned by the equations Yi1 · · ·Yit =Yi�(1) · · ·Yi�(t) , for all t¿d and all

11 To be precise, C has to be replaced by an arbitrary computable sub�eld in order to obtain an e�ective
one-sided Gr�obner structure.



24 J. Apel / Theoretical Computer Science 244 (2000) 1–33

permutations �∈ St . The associated graded rings of the natural graded structures of
Hr(q) with respect to 〈Y1; : : : ; Yr−1〉 and �, respectively, are graded isomorphic 12 and,
hence, the Gr�obner bases are the same with respect to both graded structures. But � is
a noetherian (non-commutative) monoid satisfying the assumption of Theorem 6 (but
not of Theorems 7 or 8) and provides algorithms for the computation of Gr�obner bases
of one-sided ideals of Hr(q).
A similar construction works for arbitrary �nite-dimensional algebras R, in particular,

for group algebras of �nite groups.
Examples for Euclidean domains Q and coe�cients not commutating with the

generators X can be found in Section 14 (Examples 2 and 3).

12. E�ective two-sided Gr�obner structures

Under some additional assumptions the graded structures considered in
Theorem 1 allow also the computation of Gr�obner bases of two-sided ideals of R
using a generalized Kandri-Rody=Weispfenning closure technique [17].

Theorem 7. Let Q be a computable noetherian ring with decidable ideal membership
and solvable syzygy problem for left; right; and two-sided ideals; and Q̂ a subring of
the center of Q such that Q is a computable Q̂-module. Furthermore; let � be a com-
putable well-ordered commutative monoid which is noetherian and allows algorithmic
computation of minimal common multiples and factorial decompositions. In addition;
let there exist computable functions � : Q × Q → Q and �Y : Y × Q → Q satisfying
� · �= �(�; �) · � respectively � · gYi = �Y (Yi; �) · gYi · � for all �; �∈Q and i=1; : : : ; n.
Finally; let R= 〈Q; X 〉Q̂=K be given by a �nite �-truncation Htrunc of a minimal A-
Gr�obner basis of K and the associated graded ring G of the natural graded structure
R =(R; �; ’; G; in) satisfy conditions (4) and (15).
Then R is an e�ective two-sided Gr�obner structure and each two-sided Gr�obner

basis F of an arbitrary two-sided ideal I ⊆R is also a left and a right Gr�obner basis
of I .

Proof. It remains to consider the solution of the syzygy problem. Note, Q̂ is a subring
of the center of R and the initial mapping acts identically on Q̂. Therefore, according
to the criterion presented behind De�nition 3 it su�ces to show that for an arbitrary
�nite set U of non-zero homogeneous elements of G there can be computed a �nite
homogeneous generating set of SyzQ̂(U ) in an algorithmic way.
For arbitrary �∈Q and u= �g
 ∈U , where �∈Q and 
∈�, there can be com-

puted the syzygy s�; u= eu� − ��; ueu ∈SyzQ̂(U ), where ��; u= �(�; �
(�)). In a similar
way there can be computed a syzygy sYi; u= eugYi − �Yi; ugYi eu ∈SyzQ̂(U ) for given
i=1; : : : ; n and u∈U . sYi; u is uniquely determined up to a trivial summand �gYi eu,

12 Both associated graded rings are direct sums of the same non-zero modules belonging to the same
degrees.



J. Apel / Theoretical Computer Science 244 (2000) 1–33 25

where �∈ annLGYi◦
. Since Htrunc is �nite the set Z={�∈Q |Xi�−�Yi(�)Xi+pi;� ∈Htrunc}
of all highest coe�cients of the elements of type (7) contained in the �-truncated
Gr�obner basis Htrunc is �nite, too. Moreover, Z generates Q as a ring over Q̂. So, we
can compute �nite sets BZ = {s�; u | (�; u)∈Z × U} and BY = {sYi; u | (Yi; u)∈Y × U}.
Next we will show that BZ ∪ BY ∪ LSyz(U )⊗Q̂ 1 generates SyzQ̂(U ).
We have eu�1 · · · �k =(s�1 ; u+��1 ; ueu)�2 · · · �k and by induction on k it follows s�1···�k ;u

∈GBZG for all u∈U and all products �1 · · · �k , where �1; : : : ; �k ∈Z . Hence, s�; u ∈
GBZG for all �∈Q and u∈U . Next, we will prove the existence of a syzygy s
; u=
eug
 − �
; ug
eu ∈G(BZ ∪ BY )G for all 
∈� and u∈U by induction on the length k
of an arbitrary representation 
=Yi1 ◦ · · · ◦Yik . The initial step k =1 is obvious. Con-
sider k¿1 and set 
′=Yi1 ◦ · · · ◦Yik−1 . We have eug
′ ◦ Yik = eugYik g
′�= sYik ; ug
′� +
�Yik ; ugYik eug
′� for some �∈Q and by induction hypothesis there exists s
′ ; u= eug
′ −
�
′ ; ug
′eu ∈G(BZ ∪BY )G. Hence, eug
′ ◦ Yik = sYik ; ug
′�+�Yik ; ugYik s
′ ; u�+�Yik ; ugYik �
′ ; ug
′
eu�= sYik ; ug
′� + �Yik ; ugYik s
′ ; u� + �Yik ; ugYik �
′ ; ug
′sa; u + �Yik ; ugYik �
′ ; ug
′��; ueu. This �n-
ishes the induction proof. As an immediate consequence we obtain that for any ho-
mogeneous syzygy s∈SyzQ̂(U ) there exists a homogeneous left syzygy s′ ∈LSyz(U )
such that s − s′ ⊗ 1∈G(BZ ∪ BY )G. Therefore, BZ ∪ BY ∪ LSyz(U ) ⊗Q̂ 1 generates
SyzQ̂(U ). LSyz(U ) is computable according to Theorem 6. In conclusion, R is an
e�ective two-sided Gr�obner structure.
From the above investigations it follows that for arbitrary homogeneous elements

u; v∈G there exists a homogeneous element w∈G of the same degree as v such that
uv=wu. Hence, any homogeneous left ideal of G is even two-sided. Therefore, left and
two-sided initial ideal coincide for any two-sided ideal I ⊆R. Moreover, the left and the
two-sided ideal generated by the initial parts of a subset of I are equal. Consequently,
any Gr�obner basis of the two-sided ideal I is also a Gr�obner basis of I considered as
left ideal according to De�nition 1. Analogous arguments apply to I considered as a
right ideal.

The requirement of the existence of the functions � and �Y might seem rather
technical. It could be replaced by one of the stronger conditions that Q is a skew �eld
or Q= Q̂. In fact these both situations are the most interesting applications.
Roughly, the idea behind the Kandri-Rody=Weispfenning closure technique consists

in computing left Gr�obner bases and checking whether the generated left ideal is closed
under multiplication with variables from the right. If this is not the case then the non-
zero remainders are added to the basis and the cycle of left Gr�obner basis computa-
tion and saturation with right multiples is repeated. In our situation the generating set
BZ ∪BY ∪LSyz(U )⊗Q̂ 1 of the syzygy module allows a similar procedure. The syzy-
gies contained in BZ and BY represent the multiples considered in the saturation step
of the left Gr�obner basis.
In the previous section we remarked the existence of Gr�obner structures which are

e�ective only with respect to one side. An interesting open question is if we can relax
the conditions on Q in order to obtain graded structures which are an e�ective Gr�obner
structure with respect to two-sided and left (or right) ideals but not with respect to
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right (or left) ideals. Outside the theory of graded structures such a behavior is known
from the investigations of Madlener and Reinert in group rings (see [20]).
Some classical examples satisfying the assumptions of Theorem 7 were already dis-

cussed in Section 11. Here, we will add only one remark concerning Hecke algebras.
In fact, Gr�obner bases of two-sided ideals in Hecke algebras can be computed without
any problem by adding elements (18) to the ideal basis and computing a Gr�obner
basis in the graded structure (III). Though, (III) is not an e�ective Gr�obner structure
the method will be successful for the above particular ideals since after completion of
(18) to a Gr�obner basis only �nitely many words remain as possible highest words
for further Gr�obner basis elements. In fact, it is a (cumbersome and tedious but not
very di�cult) exercise to generalize Theorem 7 to non-commutative valuation monoids
which are “commutative for su�ciently large elements”.
Mora considered a class of non-commutative algebras which allow the computation

of Gr�obner bases for two-sided but not necessarily for one-sided ideals (see [24]). The
reason is that the associated graded ring satis�es the ascending chain condition for
two-sided but not for one-sided ideals. The following theorem based on condition (16)
generalizes Mora’s result.

Theorem 8. Let Q be a computable noetherian commutative ring with decidable ideal
membership and solvable syzygy problem. Furthermore; let � be a computable well-
ordered commutative monoid which is noetherian and allows algorithmic computation
of minimal common multiples and factorial decompositions. Finally; let R= 〈Q; X 〉Q=K
be given by a �nite �-truncation Htrunc of a minimal A-Gr�obner basis of the two-
sided ideal K and let the associated graded ring G of the natural graded structure
R =(R; �; ’; G; in) satisfy conditions (4) and (16).
Then R is an e�ective two-sided Gr�obner structure.

Proof. The veri�cation of condition (iv) of De�nition 3 remains. We will sketch
only the main ideas of the rather technical and lengthy proof and refer to Apel
[5, Theorem 5:23] for the complete proof. First, we generalize set (17). Let 
′ ◦ 
 ◦ 
′′
=! and 
′; 
′′ satisfy the assumptions of condition (16). In particular, we have G
′G

=G
′ ◦ 
 and G
′ ◦ 
G
′′ =G!. Applying similar arguments as in the previous section to
arbitrary !′; !′′ ∈� we obtain an epimorphism sequence

G
 ' Q=annRG
 → Q=annRG
′◦
 ' Q=annLG
′◦
 → Q=annLG! → G!′◦!◦!′′ :

Hence, for all 
∈� the set
�̂
 = {! ∈ �: 
|! ∧ G
 6' G!} (19)

is either empty or a monoid ideal of �. A �nite generating set �
 of �̂
 can be computed
using a �-truncation of a minimal A-Gr�obner basis of K .
Now, we sketch the computation of a homogeneous generating set of the syzygy

module SyzQ(U ). For any Yi ∈Y and u∈U there exists a homogeneous syzygy sYi;u=
�Yi;ueugYi − �Yi;ugYi eu ∈SyzQ(U ), where at least one of the elements �Yi;u; �Yi;u ∈Q is a
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unit. Let BY = {sYi;u | (Yi; u)∈Y ×U}. For any homogeneous syzygy s= ∑k
i=1 vieuiwi ∈

SyzQ̂(H) whose degree is a multiple of the degrees of all u∈U there exists a homoge-

neous syzygy s′= g�(
∑k

i=1 v
′
ieuiw

′
i)g�′ such that s− s′ ∈GBYG and deg(v′i) ◦ deg(ui) ◦

deg(w′
i) is a minimal common multiple of the degrees of the elements of U . Let 
(U )0

be the set of all minimal common multiples of the degrees of u∈U and de�ne re-
cursively 
(U )i+1 =

⋃

∈
(U )i �
. Then the set 
(U )=

⋃∞
i=0 
(U )i is �nite and can

be constructed algorithmically. Finally, the set BY ∪
⋃

∈
(U ) C
 ∪

⋃
U ′ ⊂U SyzQ(U

′),
where the C
 are �nite generating sets of the Q-modules of all homogeneous syzygies
of U of degree 
, generates SyzQ(U ).

Consider a quotient ring R=Q〈X1; : : : ; Xn〉=K de�ned by a A-Gr�obner basis of K
of the shape {XiXj − ci; jXjXi + pi;j | 16j¡i6n}, the underscore marks the high-
est monomials with respect to ≺A, and let R denote a natural graded structure of
R and �=Nn. In contrast to Theorem 7 the assumptions of Theorem 8 allow also
non-units among the ci; j. 13 For instance, let Q=K be a computable �eld and R the
K-algebra de�ned by the two-sided ideal K ⊂A=K〈X1; : : : ; Xn〉 with A-Gr�obner basis
{X2X1 − X1X2 − X1; X3X1 + 1; X3X2 − X2X3 − X3}. Then R is an example satisfying the
assumptions of Theorem 8 which belongs to the class considered by Mora. Examples
1 and 4 of Section 14 illustrate the more general situation, where Q is not a �eld.

13. Open problems

Before we could prove that a natural graded structure R =(R; �; ’; G; in) is an
e�ective Gr�obner structure we had to introduce a series of conditions on the objects
Q, �, and K . In this section we deal with the question which conditions could be
relaxed without loosing the e�ective Gr�obner structure property. For natural graded
structures R which are left, right, and two-sided Gr�obner structure our conditions on
Q are necessary and cannot not be relaxed in any way. If R is required to be an
e�ective Gr�obner structure with respect to only one side, left, right, or two-sided, then
the necessity of the conditions follows only for ideals of Q belonging to the same side.
Under the condition that the natural graded structure of the monoid ring Q〈�〉 has to
be an e�ective Gr�obner structure similar statements apply to the assumptions on �. In
marginal cases with many homogeneous summands of G being the zero module, e.g. if
G
=0 for all 
∈� \ {�}, the conditions on � could be relaxed. But in such situations
the linkage between the ring R and the monoid � is so weak that often a graded
structure of R with respect to a suitable submonoid of � satisfying our assumptions
can be used. Open questions are when such a submonoid exists and how it can be
constructed. Moreover, special situations with ground rings Q and valuation monoids
� satisfying only the conditions corresponding to ideals of a �xed side remain open
for future investigations.

13 A necessary and su�cient condition which ci; j need not to be invertible was given in Section 10.
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In Section 7, we gave examples showing that the restriction to graded structures
whose associated graded ring has cyclic homogeneous summands is serious. But, in
spite the described examples, this condition is very typical for Gr�obner basis investi-
gations. Even Pesch makes use of it by mainly working with the left module structure.
Nevertheless, there remains an open research direction.
The condition that R has to be given by a �nite �-truncation of a minimal A-Gr�obner

basis of the kernel K of a homomorphism � : 〈Q; X 〉Q̂→R and conditions (15) and
(16) are the most interesting restrictions and will be discussed now.
Assume, there exists an in�nite sequence 
1; 
2; : : : ∈� of right multiples such that

G!iG
i ( G
i+1 , where 
i+1 =!i ◦ 
i, for all i=1; 2; : : : : Then the left ideal G ·
(g
1 ; g
2 ; : : :) is not �nitely generated. Hence, such a sequence cannot exist in the as-
sociated graded ring of an e�ective left Gr�obner structure. Though, an e�ective left
Gr�obner structure need not necessarily satisfy condition (15) the above observation
shows that the cases lying outside are rather marginal.
In the following, we will consider the condition that K can be presented by a �nite

�-truncation of a minimal A-Gr�obner basis. If the ring Q is �nitely generated over Q̂
and there exists a �nite con
uent system of rewriting rules for � then there are A-
Gr�obner bases of K which contain only �nitely many elements of types (7) and (8) and
it remains to consider the number of elements of type (9). For e�ective left Gr�obner
structures there can be computed a �nite homogeneous generating set of the left syzygy
module of the principal left ideal generated by g
 ∈G for any given 
∈�. The coe�-
cients of the left syzygies of degree 
 generate the annihilating left ideal of the homoge-
neous summand G
 of the associated graded ring and, hence, the annihilating left ideals
annL G
 are computable for any e�ective left Gr�obner structure R satisfying the above
assumptions. Moreover, all !∈� which are minimal right multiples of 
 with the prop-
erty that there exists a non-injective epimorphism from G
 onto G! appear among the
degrees of the left syzygies in an arbitrary homogeneous generating set of LSyz(G ·g
).
Hence, if (15) holds then a �nite generating set �
 of the left monoid ideal (or empty
set) �
 de�ned in (17) can be computed in an algorithmic way for any given 
∈�. If
G
 ' G! for some proper divisor ! of 
∈� then no elements of type (9) with highest
degree 
 need to be contained in a �-truncation Htrunc. Hence, we have to compute the
set of all 
∈� such that G
 6' G! for all proper divisors !. Let 
({1}) be de�ned as
in Section 11 before Theorem 6. 
({1}) can be computed in an algorithmic way since
it requires only computations of generating sets �
. Moreover, 
({1}) is just the set of
degrees where elements of type (9) can appear in a A�-Gr�obner basis of K . For each
of the �nitely many elements 
∈
({1}) there can be computed a �nite generating set
of annL G
. A possible set of highest coe�cients of Gr�obner basis elements of type (9)
with highest term Xi1 · · ·Xik , where Yi1 · · ·Yik ∈ 〈Y 〉 is the minimal representant of 
,
can be found among the generators of annL G
. Note, we proved not only the existence
of a �nite �-truncation of a minimal A-Gr�obner basis of K but also showed how its
initial forms can be constructed whenever R is an e�ective left Gr�obner structure.
Similar considerations can be done in the two-sided case. In fact, the remaining gaps

are larger than here, but, the most interesting cases are again covered by our theorems.
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14. Examples

We already mentioned the classical applications of our theorems, e.g. polynomial
rings over �elds, enveloping algebras of Lie algebras, Weyl algebras, Hecke algebras,
Cli�ord algebras, exterior algebras, etc., which have in common that the coe�cient
domains are �elds. Moreover, our theorems apply also to the examples of polynomial
rings over more general coe�cient rings, e.g. Euclidean domains, which have been
considered in the literature in the past.
The following examples will illustrate some typical new situations where our results

are applicable, too. By considering rings R with more general coe�cient rings Q and
more general multiplicative structure than polynomial rings we show how our frame-
work covers and uni�es both classical research directions. Theorems 6–8 assumed that
a �nite �-truncation of a minimal A-Gr�obner basis of K is given a priori. However,
also if R=A=K is given by an arbitrary �nite generating set of K there is a good
chance to compute a �-truncation of a Gr�obner basis of K . There has to be calcu-
lated a (truncated) Gr�obner basis in a free extension ring A= 〈Q; X 〉Q̂ with the free
word semigroup 〈Y 〉 as valuation monoid. The decision of ideal membership and the
computation of syzygy modules of �nitely generated 〈Y 〉-homogeneous ideals requires
only the application of simple well-known algorithms for 〈Y 〉-graded rings. Hence,
the general method for computing Gr�obner bases in graded structures becomes semi-
algorithmic for free extension rings A, i.e. if there exists a �nite A-Gr�obner basis of
K then it will be computed in �nite time. If K has no �nite A-Gr�obner basis but
a �nite A�-Gr�obner basis then eventually the Gr�obner method will have computed
one. However, it is a (probably undecidable) problem to realize that the algorithm can
be stopped. The examples were calculated using the special computer algebra system
FELIX (see [7]).

Example 1. Consider the ring A=Z〈x; y; z〉= 〈Z; {x; y; z}〉Z which is freely generated
by {x; y; z} in the class of all extension rings of the integers Z. 14 Let 〈x; y; z〉 denote
the word monoid and � the monoid of commutative terms in the variables {x; y; z}.
We order � by the total degree order ≺ extending z≺y≺ x and 〈x; y; z〉 by the well-
founded order ≺A which compares the words �rst (forgetting non-commutativity) ac-
cording to ≺ and second applies the lexicographical order ¡l extending x¡l y¡l z
for breaking ties. Let A denote the natural 〈x; y; z〉-graded structure of A and consider
the two-sided ideal K ⊆A generated by {yx−3xy−3z; zx−2xz+y; zy−yz−x}. During
the computation of a A-Gr�obner basis of K the following elements are constructed:

yx − 3xy − 3z; zx − 2xz + y; zy − yz − x;
6yz + 3x; 9xz − 3y; 12xy + 9z; 12y2 − 27z2; x2 + 2y2 − 6z2;
9z3 − 30xy − 21z; 4y3 + 9yz2 + 3y; 4xy2 + 3yz + 3x; 3xyz − 3y2 + 9z2;

14 Note, the condition that Z is contained in the center of A is trivially satis�ed since only rings with unit
element are considered.
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3yz3 − 90xy2 − 3xz2 − 3yz − 36x; 2y3z − 3xy2 + 3yz; xy2z − 3y3 − 3xz;
y3z3 − 2xy4 − 3y3z − 3yz3 + xy2 − 3yz;
xy3z + 3y4 − 6y2z2; xy4z + y5 + y3z2 + 2y3 − 3yz2; xy5z − y6 + 3y4z2; : : :

Reducing (xyj−1z+pj−1)y modulo this intermediate basis we observe by induction that
K contains an element of the form xyjz + pj, where ’A(pj)≺A xyjz, for any positive
integer j¿1. In fact, only such elements are necessary in order to complete the above
intermediate basis to an in�nite A-Gr�obner basis of K but a �nite A-Gr�obner basis
does not exist. However, the above set is already a A�-Gr�obner basis of K , i.e. it
is a �-truncation of a A-Gr�obner basis of K . Even the elements of the last row can
be dropped. The ring R=A=K satis�es the assumptions of Theorem 8 and therefore,
the natural �-graded structure of R is an e�ective two-sided Gr�obner structure. The
assumptions of Theorems 5 and 7 are violated since the coe�cient of xy in yx−3xy−3z
is not invertible modulo the annihilating ideal annL Gxy =12Z.

Example 2. Consider the graded structure A from the previous example and let K be
the two-sided ideal generated by the elements yx−3xy−z; zx−xz+y, and zy−yz−x.
We are interested in the natural �-graded structure of R=A=K . The generators look
similar to the de�ning relations of an algebra of solvable type. But even if we allow
rational coe�cients the behavior of our ring is much di�erent since the terms xiyjzk

(i; j; k =0; 1; 2; : : :) are linearly dependent. The elements

yx − 3xy − z; zx − xz + y; zy − yz − x;
8xy + 2z; 4xz − 2y; 4yz + 2x;
2x2 − 2y2; 4y2 − 2z2; 2z3 − 2xy

form a �nite A-Gr�obner basis of the two-sided ideal K ⊂Z〈x; y; z〉, where A de-
notes the graded structure introduced in Example 1. Since annL Gxy =8Z, we have
gxy = gxgy =3gygx in the associated graded ring of the natural �-graded structure R

of R. Hence, condition (15) holds. The other assumptions of Theorem 7 are obvious.
Consequently, �nite Gr�obner bases with respect to R can be computed for arbitrary
ideals of R using the algorithms sketched in this paper.

Example 3. Let the coe�cient ring W=Q〈p; q〉=(qp−pq−1) be a non-commutative
ring similar to a Weyl algebra but with coe�cients restricted to rational numbers.
Consider the ring R= 〈W; {x; y}〉Q=K , where K is the two-sided ideal of 〈W; {x; y}〉Q
given by the Gr�obner basis

xp− qx; xq+ px; yp− qy; yq+ py; yx − xy + y2

with respect to the natural graded structure induced by the well-ordered word monoid
(〈x; y〉;≺A), where ≺A compares words by �rst forgetting non-commutativity and ap-
plying the lexicographical order ≺ of the free commutative monoid which extends y≺ x



J. Apel / Theoretical Computer Science 244 (2000) 1–33 31

and second breaking ties by comparing the non-commutative words with respect to the
lexicographical order extending x¡l y. Note, not all coe�cients but only the rational
numbers commute with the variables of the ring R. Functions � and �Y as required
in Theorem 7 do not exist but at least the assumptions of Theorem 6 are ful�lled in
this situation. For this reason �nite Gr�obner bases of left ideals I ⊆R can be com-
puted using the algorithms presented in this paper. Consider the homogeneous element
u=pgx2y of the associated graded ring G of R. Since up− au=(−pq− ap)gx2y 6= 0
for all a∈W the two-sided ideal generated by u is strictly larger than the left ideal
generated by u. Hence, homogeneous left ideals of G need not to be two-sided and,
therefore, two-sided Gr�obner bases need not to be left Gr�obner bases. However, though
neither Theorem 7 nor Theorem 8 are applicable it remains an open question if the
natural graded structure of R is an e�ective two-sided Gr�obner structure.

Example 4. Once again, let us consider the graded structure A from Example 1 and
let K be generated by yx − 3xy; zx + y2; zy − yz + z2. Since R=A=K is a N-graded
ring it is easy to observe that annL Gxz and annL Gxy are zero ideals. Therefore, the
coe�cient 3 of xy in the �rst generator and the coe�cient 0 of xz in the second
generator are both not invertible modulo the corresponding annihilating left ideal and,
hence, neither Theorem 6 nor Theorem 7 can be applied to R. The elements

yx − 3xy; zx + y2; zy − yz + z2;

2y3 + y2z − 2yz2 + 2z3;

14yz3 − 28z4; y2z2 − 4yz3 + 6z4; 27xy2z − 54xyz2 + 54xz3 + y4;

14z5; 2yz4 − 6z5; y4z; y5; 2xyz3 − 4xz4; 27xy3z;

2z6; 2xz5

form a A-Gr�obner basis of K . Consider arbitrary monoid elements != xiyjzk and

= xi

′
yj

′
zk

′
such that 
 |!. Then condition (16) holds for the decomposition 
′ ◦ 
 ◦ 
′′,

where 
′= xi−i
′
and 
′′=yj−j

′
zk−k

′
. Hence, the assumptions of Theorem 8 are satis�ed

and the natural �-graded structure R of R is an e�ective two-sided Gr�obner structure.
A �nite Gr�obner basis can be computed for any two-sided ideal of R using the
algorithms sketched in this paper.
Note, R does not satisfy the ascending chain condition for left ideals, e.g. the left

ideal R(xz; xz2; xz3; : : :) has no �nite generating set. Hence, it is proved that R is not
an e�ective left Gr�obner structure.
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