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Converting Bases with the Gröbner Walk

S. COLLART, M. KALKBRENER AND D. MALL

Department of Mathematics, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

We present an algorithm which converts a given Gröbner basis of a polynomial ideal I
to a Gröbner basis of I with respect to another term order. The conversion is done in
several steps following a path in the Gröbner fan of I. Each conversion step is based on
the computation of a Gröbner basis of a toric degeneration of I.
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1. Introduction

The objective of this note is the presentation of a procedure for converting a given
Gröbner basis (Buchberger, 1965) of a polynomial ideal I to a Gröbner basis of I with
respect to another term order. This procedure, which we call the Gröbner walk, is com-
pletely elementary and does not require any assumptions about the dimension or the
number of variables of the ideal.

The Gröbner walk breaks up the conversion problem into several simple steps between
adjacent Gröbner bases following a path in the Gröbner fan. Since two term orders leading
to adjacent Gröbner bases can be viewed as refinements of a common partial order, these
simple transformations can be computed working just with the initial forms with respect
to this partial order. Because the initial forms typically involve far fewer terms than the
polynomials as a whole, the transformations can be computed cheaply. First experiments
seem to indicate that the Gröbner walk performs rather well for large classes of examples.

It is interesting to note that, although the theoretic concepts on which the algorithm is
based are neither new nor complicated, it has not been considered before as a candidate
for efficient change of basis, even though there has been some interest in Gröbner basis
conversion for some time (see for instance Faugère et al., 1993; Traverso, 1993; Gianni
et al., 1994; Faugère, 1994). The main reason for the interest in this question is the
obvious demand for fast conversion algorithms. For instance, if for some polynomial
ideal a Gröbner basis with respect to some elimination order is sought, it may well be
more efficient to compute first a Gröbner basis with respect to a total degree order, and
then to convert, since total degree bases are generally much faster to compute. More
specialized applications which by nature involve basis conversions might for instance be
the implicitization of varieties (Hoffmann, 1989; Licciardi and Mora, 1994; Kalkbrener,
1996) and the inversion of polynomial isomorphisms.

The authors are indebted to several sources for their inspiration. The article by Faugère
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et al. (1993) which proposed a solution in the zero-dimensional case motivated the au-
thors to consider the question of basis conversion. The theory of Gröbner fans introduced
by Mora and Robbiano (1988) (see also Schwartz, 1988) provided the geometric inter-
pretation essential for the formulation of the algorithm. A dual approach is based on the
notion of state polytope and toric degenerations (Bayer and Morrison, 1988; Sturmfels,
1995; Mall, 1995; Collart and Mall, 1997). The authors’ own interest in the question of
base conversion goes back to 1993 (cf. Collart et al., 1993). As pointed out to the authors
by T. Mora, the idea behind the Gröbner walk was independently used by Assi (1993)
for computing ‘critical tropisms’ (see also Alonso et al., 1992a, b).

The Gröbner walk was first implemented experimentally by the authors in Mathemat-
ica. More recently, Amrhein et al. (1996) are working with a ‘real world’ implementation
developed at the University of Tübingen based on the Gröbner bases implementation by
Windsteiger and Buchberger (1993). The results so far are very encouraging.

2. Gröbner Cones

Throughout this paper let I be an ideal in the polynomial ring A := K[x1, . . . , xn],
where K is an arbitrary field. The set of terms in the variables x1, . . . , xn is denoted by
Tn. Let f be a polynomial in A and G a subset of A. The ideal generated by G is denoted
by 〈G〉. For an admissible term order ≺ on Tn the initial monomial of f is denoted by
in≺(f) and the set {in≺(g) | g ∈ G} is denoted by G≺. The reduced Gröbner basis of an
ideal I with respect to ≺ is denoted by R≺(I). The set Ωn := {(ψ1, . . . , ψn) ∈ Qn | ψi ≥
0 for every i ∈ {1, . . . , n}} is called the set of weight vectors. For σ, τ ∈ Ωn we denote
the line segment in Ωn between σ and τ by στ , i.e.

στ := {(1− a)σ + a τ | 0 ≤ a ≤ 1}.
Let ω = (ω1, . . . , ωn) ∈ Ωn. For a monomial t = axi11 · · ·xinn in A we denote its ω-degree

by

degω(t) :=
n∑
j=1

ijωj .

The ω-degree of a non-zero polynomial f , abbreviated degω(f), is the maximum of the
ω-degrees of the monomials which occur in f with non-zero coefficients. The initial form
of f with respect to ω, abbreviated inω(f), is the sum of all those monomials in f with
maximal ω-degree. Furthermore, degω(0) := −1 and inω(0) := 0. A polynomial f is
called ω-homogeneous if f = inω(f). Note that for ω = (1, . . . , 1) this notion coincides
with standard homogeneity. For a subset G of A the set {inω(g) | g ∈ G} is denoted by
Gω.

For the term order ≺ and the weight vector ω we define the term order (ω | ≺) on Tn

by

t1 (ω | ≺) t2 if degω(t1) < degω(t2) or degω(t1) = degω(t2) and t1 ≺ t2.
We say that ≺ refines ω if degω(t1) < degω(t2) implies t1 ≺ t2 for t1, t2 ∈ Tn. Obviously,
(ω | ≺) refines ω.

For sufficiently generic ω the initial ideal 〈Iω〉 is a monomial ideal. In this case there
exists a term order ≺ such that 〈I≺〉 = 〈Iω〉, and we say that any such vector represents
the term order ≺ for I. The following lemma (see, for instance, Proposition 15.16 in
Eisenbud, 1995) gives a criterion whether a weight vector represents a term order for I.
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Lemma 2.1. Let I be an ideal and ≺ a term order. A weight vector ω represents ≺ for
I if and only if inω(g) = in≺(g) for all g ∈ R≺(I).

Let C≺(I) be the topological closure in Qn of {ω ∈ Ωn | 〈I≺〉 = 〈Iω〉}. This is a
convex, polyhedral cone in Qn with a non-empty interior called the Gröbner cone of I
with respect to ≺. The finite set F (I) := {C≺(I) | ≺ a term order} is called the Gröbner
fan of I (see Mora and Robbiano, 1988).

The following lemma, which follows immediately from Lemma 2.1, will be used as a
termination condition in our basis conversion algorithm.

Lemma 2.2. Let I be an ideal and ≺1 and ≺2 be two term orders. Then C≺1(I) = C≺2(I)
if and only if in≺1(g) = in≺2(g) for every g ∈ R≺1(I).

As a consequence we obtain that C≺1(I) = C≺2(I) if and only if R≺1(I) = R≺2(I).
Hence, we can speak about the reduced Gröbner basis of I over the corresponding
Gröbner cone.

Remark 2.3. Let I be an ideal, ≺ a term order and ω ∈ Qn. Then ω ∈ C≺(I) if and
only if in≺(g) = in≺(inω(g)) for every g ∈ R≺(I).

The following proposition characterizes neighbouring Gröbner cones touched by line
segments originating in a given point ω.

Proposition 2.4. Let ω and τ be two different weight vectors and ≺ a term order which
refines τ . Then there exists an ω′ ∈ ωτ with ω′ 6= ω such that

ωω′ ⊆ C(ω |≺)(I).

Proof. Since (ω| ≺) refines ω it follows that ω ∈ C(ω |≺)(I). LetR(ω |≺)(I) = {g1, . . . , gr}
and put hi := gi − inω(gi) for i = 1, . . . , r. We can choose a weight vector ωi ∈ ωτ such
that ωi 6= ω and degψ(u) is greater than degψ(v) for every ψ ∈ ωωi, every monomial u in
inω(gi) and every monomial v in hi. Since ≺ refines τ , it follows that degτ (u) is at most
degτ (in(ω |≺)(gi)) for every monomial u in inω(gi). Thus, ψ ∈ ωωi implies that degψ(t)
is at most degψ(in(ω |≺)(gi)) for every monomial t in gi. Therefore, in(ω |≺)(inψ(gi)) =
in(ω |≺)(gi). We denote the element of {ω1, . . . , ωr} closest to ω with ω′. Then ω′ ∈
ωτ with ω′ 6= ω and in(ω |≺)(inω′(g)) = in(ω |≺)(g) for every g ∈ R≺(I). Hence, ω′ ∈
C(ω |≺)(I) by remark 2.3, and we are done. 2

3. The Gröbner Walk

We now present the algorithm for computing the reduced Gröbner basis R≺2(I) of
I with respect to ≺2, given admissible orders ≺1 and ≺2 and the reduced Gröbner
basis R≺1(I) = {g1, . . . , gr}. For our purposes we assume that ≺1 and ≺2 are given by
sequences S≺1 and S≺2 of rational vectors which span Qn (see Robbiano, 1985). Note
that the first members of S≺1 and S≺2 , denoted by σ respectively τ , are the unique
weight vectors (up to a scalar factor) refined by ≺1, ≺2 respectively.

The Gröbner walk is based on the following strategy: we move on the line segment
στ from σ to τ . Whenever we leave a Gröbner cone C and enter a new cone C ′ we
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transform the reduced Gröbner basis over C into the reduced Gröbner basis over C ′. The
crucial point is that this conversion can be done efficiently without applying Buchberger’s
algorithm to the reduced Gröbner basis over C. After finitely many conversions we arrive
at C≺2(I) and obtain the reduced Gröbner basis with respect to ≺2.

More precisely, let ω be the weight vector with

σω = στ ∩ C≺1(I).

ω can be easily computed from σ, τ and R≺1(I) using linear algebra techniques. It follows
from Proposition 2.4 that after leaving C≺1(I) we enter C(ω |≺2)(I). We now have to
transform R≺1(I) into R(ω |≺2)(I). This can be done in the following way.

Observe that there is a term order ≺ which refines ω such that C≺(I) = C≺1(I).
Therefore in≺(f) = in≺(inω(f)) for all f ∈ I and

〈〈Iω〉≺〉 = 〈I≺〉 = 〈R≺1(I)≺〉 = 〈(R≺1(I)ω)≺〉.
Hence, R≺1(I)ω is a Gröbner basis of 〈Iω〉 with respect to ≺. We now convert R≺1(I)ω to
the reduced Gröbner basis M := {m1, . . . ,ms} of 〈Iω〉 with respect to (ω | ≺2). Note that
this conversion itself can be done with any basis conversion algorithm. Since m1, . . . ,ms

are ω-homogeneous we can compute ω-homogeneous polynomials hi1, . . . , hir with

mi =
r∑
j=1

hijinω(gj) and degω(mi) = degω(hijinω(gj)) for j ∈ {1, . . . , r} with hij 6= 0.

Replacing inω(gj) by gj we obtain

fi :=
r∑
j=1

hijgj and G := {f1, . . . , fs}. (3.1)

It immediately follows that inω(fi) = mi and therefore

〈I(ω |≺2)〉 = 〈〈Iω〉(ω |≺2)〉 = 〈M(ω |≺2)〉 = 〈G(ω |≺2)〉.
Hence, G is a Gröbner basis of I with respect to (ω | ≺2) which we reduce to R(ω |≺2)(I).

Using lemma 2.2 as termination condition we obtain a Gröbner basis with respect to
≺2 after finitely many basis conversions.

4. Implementational Issues

The performance of the Gröbner walk depends on many parameters. For instance, the
Gröbner basisG obtained in (3.1) is generally not reduced but only minimal (cf. Eisenbud,
1995; p. 329). Since all results in this paper hold for minimal Gröbner bases as well the
reduction of G would not be necessary for the correctness of the algorithm.

Performing one step in the Gröbner walk we have to compute a Gröbner basis M of
a toric degeneration 〈Iω〉 of I. (Proper) toric degenerations are generated by (proper)
initial forms of polynomials of I. Therefore, their Gröbner bases are much faster to
compute than the original Gröbner bases of I. Furthermore, we can use an arbitrary
basis conversion algorithm, for instance the method described by Gianni et al. (1994)
instead of Buchberger’s algorithm. This is possible because 〈Iω〉 is an ω-homogeneous
ideal given by a Gröbner basis.

Another important parameter is the choice of the path since the number of conversion
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steps and the complexity of each step heavily depend on it. Ideally, the path is in ‘general
position’, and only intersects the walls between cones in codimension one faces. This
is because these faces correspond to the most degenerate 〈Iω〉 that are able to bridge
adjacent Gröbner cones, involving the fewest terms in their reduced Gröbner bases. In
this case a single weight vector, e.g. a weight vector orthogonal to the face, is sufficient
to order the monomials during the conversion between the bases of 〈Iω〉. In practice it
seems appropriate to vary the starting point and the direction of the path at each step
in order to ensure the generality of the position.

For practical applications it is important to know for which classes of polynomial sets
the Gröbner walk is superior to other methods. The previous remarks indicate that sets
consisting of polynomials with many terms are especially appropriate for the Gröbner
walk.
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