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Abstract

In Fitzpatrick and Flynn(J. Symbolic Comput. 13 (1992) 133), adbrier basis technique for
multivariable Pad approximation problems was developed under a rather restrictive hypothesis on
the shape of the numerator and denominator in relation to the approximation conditions desired. In
this article, we show that their hypotheses can be replaced by other less stringent conditions, and we
show how to compute some standard forms of multivariable approximants through several examples.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The general Padapproximation problem can be phrased as the question of finding
rational functionsa/b in one or more variables, of some specified form, that approximate
some other given functioh of the same variables in a suitable sense. For instance, we
might ask thata/b interpolate values ofi (or minimize a measure of the interpolation
error), or that specified initial segments of the Taylor expansiorg/bfandh at a point
agree. Pagltype approximations are used in both numerical and symbolic computation
and have a number of applications in numerical analysis, in coding theory (in decoding
algorithms for multidimensional cyclic codes, for instance), and in multidimensional signal
processing (for instance, in the design of IR filters).
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Fitzpatrick and Flynn (1992)ntroduced a symbolic technique for computing Pad”
approximants using the theory of @ier bases for submodules of free modules
over polynomial rings (seeCox etal., 1998; Adams and Loustaunau, 199Given a
polynomialh € K[xi, ..., Xs] representing an initial segment of the Taylor series of
the function to be approximated, and an idéatt k[xi, ..., Xs] encoding the desired
agreement conditions between the approximant and the polyntraaix = 0, they
consider the modul® of solutions(a, b) € (k[Xa, ..., xs])? of the congruence

a=bhmodl. (1)

Each paira, b) with b(0) £ 0 yields a rational functioa/b that approximatels modulol .
For example, in the case= 1, if we seek an approximaaix)/b(x) with dega) < n,
degb) < m, andb(0) = 1 then there are + m + 1 free coefficients ira(x) andb(x).
So one usually takes = (x"T™+1) expecting to be able to match a gendral) modulo
(xMMy with a(x) /b(x).

The basis of Fitzpatrick and Flynn’s method is a statement guaranteeing that a particular
solution of the Pad approximation problem appears in a suitableliper basis for the
moduleM of solutions of(1). To describe this, we begin by fixing some monomial order
onk[Xi, ..., Xs]. Given two monomialg1 andg2 in K[X1, ..., Xs], Fitzpatrick and Flynn
introduce the so-calledeak term order conditiowith respect ta¢1, ¢2). Let (a, b) be a
solution of(1) wherea, b are relatively prime, and both b are reduced modulb. Then
(a, b, 1) satisfies the weak term order condition with respecitg ¢o) if 1 > LT~ (a),
@2 > LT (b), and if for all monomialg ando in K[X4, ..., Xs] such thatps > p, 92 > o
andp,o ¢ LT.(l), the producho ¢ LT. (l). Then Fitzpatrick and Flynn's main result
is the following statement.

Theorem 1.1 (Fitzpatrick and Flynn, 1992heorem 2.4).Let (1) have a solutiorfag, bp)
where @, by are relatively prime and reduced modulo |I. Assume {lagt bo, | ) satisfies
the weak term order condition with respectia, ¢2). Then a constant multiple ¢, bp)
appears in any Gibner basis for M= {(a,b) | a = bhmodI} with respect to a
“weighted” monomial orders (y, ) on (K[x1, ..., xs))? defined by K& > (4, 4, XPe€;
if X% > xPo; orif x%¢; = xPej andi < j.

The reason behind this result is that the weak term order condition implie@thab)
is minimalin the moduleM with respect to the-, ,,) order and this implies tha#g, bo)
must appear in the @bier basis with respect to that order. The monomial otdgf,,,)
is an example of the class of orders used by Schreyer to develdmérbasis methods
for syzygy computations (se€ox et al., 1998 Chapter 5, Theorem 3.3), and indeed
solving (1) is closely related to computing a module of syzygies.

Unfortunately, in many situations where methods for computingRggroximants, or
equivalently solving congruences of the fo(fr), are potentially of interest, especially in
the study of decoding algorithms for multidimensional cyclic codes, this result does not
apply. The reason is that the weak term order conditioriagt, 1) as above is far too
restrictive. In fact we will see examples later where that condition does not hold for the
desired solutiora, b) of the congruencél) for any pair(e1, ¢2).
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Instead of requiring the weak term order condition, we will look farb) of a specific
form:

(@) < t(b) <m, (2)

wheret(p) is the total degree of the polynomigl In many cases, we will be able to
show that if a solution of the forrfR) exists, even if that desired module element is not
minimalwith respect to the monomial order used for th@k@rér basis computation, then

an element of that form must still appear in a suitablelBier basis. Hence Fitzpatrick and
Flynn’s basic approach can be extended to a wider range of problems of this form than is
apparent at first from the result quoted above.

As Fitzpatrick and Flynn also remark, applying Buchberger’s algorithm fab&ef
bases directly to find multivariable Padapproximants does not offer any clear
computational advantages over the linear algebra techniques used more commonly. Hence
our contribution must also be seen as giving further theoretical understanding of this
problem rather than as providing a superior method for computations.

The present paper is organized as follows.Saction 2 we will introduce some
terminology and notation for multivariable Radpproximations and describe the class of
problems that we will consideBection 3will be devoted to the proofs of several general
results giving results parallel to Fitzpatrick and Flynn’s theorem quoted above, but without
the restrictive hypothesis that the weak term order condition holds. FinaBggtion 4 we
will present a series of explicit examples illustrating the resultSegftion 3 In relatively
small examples such as those considereSidntion 4 we will see that these methods are
comparable in efficiency to the linear algebra methods.

2. Terminology and notation

As a general reference for the general multivariableePagpiroximation problem, we
will use the survey articl€uyt (1999) Most of the examples of Padipproximants that we
will consider will fall into the general category efjuation latticeapproximants described
there, although we will also present some results about the so-datietbgeneous
approximants. We begin by sketching the connections between the general equation lattice
framework with the algebraic formulation used by Fitzpatrick and Flynn.

All of our PadE approximants will be quotients of polynomialsdixi, . . ., xs]. We use
the notationa| = a1 + - - - + as for the total degree of a monomiat, andz (f) for the
total degree of a polynomidl(x) = )", CuX*:

7(f) =maxe| : ¢y # 0). (3

To describe the “shape” of the desired approximaft € k(x,..., Xs) using the
equation lattice approach, we specify finite subf¥tD c Z3, giving the possible
exponents in the numerator and the denominator, respectively. We also specify a third
finite subsekE C Z-q describing the approximation properties we want. Using multi-index

notation, we have

a(x) = Z CaX?, (4)

aeN
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bo) = > dgx’. (5)

pebD

Then giverh(x), we seek to determire(x), b(x) with
ax) — b(x)h(x) = Z a,x”. (6)

y€ZSH\E

If b(0) # O, then it is easy to see that equati@) is equivalent to the statement that
the coefficient o’ in the (formal) Taylor expansion @f(x)/b(x) — h(x) is zero for all
8 € E. We will denote by

Padn,p,e(h) (7)

the set of all pairga, b) wherea, b have the forms given i4) and(5) above solving6).
Each element of P&ql/p, e (h) defines a rational functicay/b. However, there is a subtlety.
In some particular solutions, there may be cancellations of factors between the numerator
and denominator, and if so, after cancellatio@tb, the pair(@, b) may not solve6).

In order for a Pad approximation problem of this form to beell-posedor a general
h(x) (that is, in order for solutions to exist and satisfy useful properties) it is common
in the multivariable Paglapproximation literature to require that the followieponent
conditionshold.

1. The setdN, D, E should be chosen so that| + |D| > |E| + 1.
2. Ify e E,andy =8 +eforé, e € 23, thens, e € E.

The first exponent condition says tha{) is written as a system of linear equations
in the coefficients ofi(x) andb(x), then there are more variables than equations, so we
expect a solution to exist for genetalx). (For someh, the system may be inconsistent,
though, so it is possible for Ped;/p e (h) to be empty.) For the approximant to be unique,
the inequality here should be an equality.

Example 1. In the cases = 1, the common form for Padapproximants corresponds to
D={0,1,....m, N={0,1,...,n},andE = {0, 1,..., m+ n} for somem, n € Zxo.
Both exponent conditions are clearly satisfied for thdseD, E. Moreover, ifb(0) is
normalized to 1, we get the stronger conditjdfj + |D| = |E| + 1.

Example 2. We will devote most of our attention to the multivariable Bagproximants

of “triangular” form studied by Karlsson and Wallin (sé@arlsson and Wallin, 1977;

Cuyt, 1999. These approximants are defined by bounds on the total degrees of monomials
appearing in the numerator and the denominator. The exponent sets for the numerators
and denominators are as follows: = {« : |¢| < n}, D = {8 : |B] < m} for some

m, n € Z>o. Here there is a considerable amount of freedom in chodsitgsatisfy the
exponent conditions. As we will see 8ection 4 different choices yield approximants with
different properties. Our desired solutions will always ha¢@ # 0 in these examples.

Example 3. Another type of multivariable Padapproximant that has received much
attention are the so-callddomogeneouapproximants (se€uyt, 1999. These can be
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defined within the equation lattice framework by taking, for samen € Z>o : N =

o :nm < Ja| <= nm+n}, D = {8 :nm=< || < nm+m}, andE = {y :

nm < |y| < nm+ n + mj}. Here the first exponent condition holds (with equality

if s = 2), but the second does not. Also0) = 0 in all cases by the form obD.

In Section 4we will see that homogeneous approximants can be obtained by replacing
N,D,E above byN' = {@ : 0 < |a]| < nm+n}, D’ = {8 : 0 < |B] < nm+ m},

E' = {y : 0 < |y|] < nm+ n+ m}. This choice does satisfy the second exponent
condition. We will compute the desired elementin &’ e (h) by finding an element in
Padn'/p’, e/ (h) in which the coefficients of monomials with€© |y| < nm—1inaandb

all vanish.

The second exponent condition has an interesting interpretation and more far-reaching
consequences. The following fact is straightforward and the proof will be left to the reader
as an exercise.

Proposition 1. Let E C Z2 ; satisfy the second exponent condition. Then the k-linear span
of {x” : y € Z%,\ E}is amonomial ideal IC k[xy, ..., Xs].

Hence, if the second exponent condition holds, then solving the equation lattiee Pad”
problem(6) is the same as solving a congruence of Fitzpatrick and Flynn’s {@jnThe
second exponent condition also implies the following covariance result.

Proposition 2 (Cuyt, 1999 Theorem 3.1) Let (a, b) € Paden,p,e(h) and let h= 1/g
with g(0) # 0. Then(b, a) € Padp N, E(9).

We note that because Bfoposition 2in a sense, it is enough to consider approximants
a/b with LT. (@) < LT.(b). (If LT>(a) > LT.(b), then we can us€roposition 2o
consider the “reciprocal” Padproblem forb/a instead. IfLT. (a) = LT- (b) are equal,
then writinga = LT. (a) + @’ wherea’ has only terms strictly smaller thdril.. (a), and
similarly for b,

a LT.a+a a —b

b LT-(a+b LT. (@) + b’

and then the problem reduces to finding an approximanhfer 1 and note that now
LT. (@ — b’) < LT (a).) We will consider approximants satisfying a slightly different
condition in the next section.

3. Theoretical results

In this section, we will formulate and prove several theorems showing that, under the
assumption that an approximant (that is, a solutio(ly)fof a particular form exists, then
an element of that form must appear in so@mér basis for the module of solutions with
respect to a particular monomial order.

The particular form we consider is this: We require thatag, bo), t(bp) < m (where
m comes from the definition ob) and thatr (ag) < t(bg). Our motivation for focusing
on this form comes primarily from a projected application to decoding problems for
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multidimensional cyclic codes. In our first result, we assume a uniqueness statement about
the desired solution of the congruence.
For the Gobner basis calculations, we need to introduce a monomial order on

(K[X1, . .., xs])? that will “find” elements in the modul of the desired form. Instead
of Fitzpatrick and Flynn’s weighted orders, we will consider ordefglefined as follows:
Given two monomials®e;, x’ej € (K[x1, ..., Xs])?, thenx® >, xF if:

1. || > |B], orif
2. la| = |Blandi < j,orif

3. || = |B],i = j,andx® > xP
for a fixed monomial order onk[xy, ..., Xs]. (Note that for terms*g with i fixed, the
> order is equivalent to a graded orderkmy, . . ., Xs].)

Theorem 3.1. Assume that ND, E for an equation lattice P&l problem satisfy both
exponent conditions, and let | be the monomial ideal giveRrfopositionl. Let

M = {(@@,b):a=bhmodl}

and assume that, up to a constant multiple, there exists a uriaLieg) € M such that
7(ap) < t(bp) < m. Then a constant multiple ¢dp, bp) appears in any Gibner basis for
M with respect to the-, order.

Proof. The hypotheses of@g, bp) imply that LT~ _(ag, bp) = LT.(bg)er. Let G be
the Giobner basis foM with respect to the-; order. By the definition of a @Gbner
basis, there existér,s) € G such thatLT. (r,s) divides LT._(ag, bg). This shows
thatLT. (r,s) = LT.(s)e; andLT.(s) dividesLT. (bp). Suppose thafr, s) is not a
constant multiple ofag, bg). Then by the uniqueness hypothes{s) > mor z(r) >
7(S). In the first case we get an immediate contradiction: we cannot hdyg < m,
7(S) > m, andLT.(s) | LT (bo). If (r) > 7(s), then by the definition of the-,
order,LT. (r,s) = LT.(r)e;. But this also leads to a contradiction, since thén._(r, s)
cannotdivideLT.., (ag, bg). The contradiction shows that, S) must be a constant multiple
of (ag, bp). O

This hypothesis is still extremely restrictive. Nevertheless, it would apply in any
Karlsson—Wallin Paglproblem with denominator degree numerator degree < m,
E chosen so that a unique solution was expected, and a sufficiently gene&tits would
be true even if Fitzpatrick and Flynn’s weak term order condition did not apply for any
monomialsp1, g2. We will see an example of this kind Bection 4

Even if we do not require unigueness of the approximant of the desired form, we can
still show that some element of that form exists in a suitableb@er basis.

Theorem 3.2. Assume that ND, E for an equation lattice P&l problem satisfy both
exponent conditions, let | be the monomial ideal giveRlppositionl, and let
M = {(@@,b):a=bhmodl}.

If there exists someg, bp) in M with 7(ag) < t(bp) < m, then in any Gibner basis for
M with respect to the-, order, there exists some eleménts) suchthat (r) < t(s) <m.
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Proof. Our hypotheses ofag, bg) imply that its >;-leading term isL T (bp)ez. There
must be some elemeft, s) in the >, Grébner basig; for M whose leading term divides
LT. (bo)ex. But then the leading term df, s) must belL T~ (s)e2, sot(r) < 7(s) by the
definition of the>; order, and_T. (s) | LT (bp) implies thatr(s) <m. O

As a corollary of this theorem, we note the following fact which will be useful in the
consideration of the homogeneous Pagproximants isection 4

Coroallary 1. In the situation ofTheorenB.1, let

mo = min{z(b) : (a,b) € M andt(a) < t(b)},
and define

Mo = {(a,b) € M : 7(b) = mp andz(a) < =(b)}.

Assume that the minimal nonzero element of the module M under;tbeder lies in M.
If G is a Grobner basis for M with respect to the, order, thenGg N Mg spans M over k.

Proof. Apply the module version of the division, or normal form, algorithm (see
Cox et al., 1998Chapter 5, Theorem 2.5) with divisafsand the>, monomial order. The
remainder on division of eacta, b) € Mg C M, must be zero, so there afg,s) € G
and polynomialgy; such that

@b)=> pii.s).
i

However, sinc& T.._(pi(ri, S)) isless than or equal ioT-._ (a, b) for alli, our hypotheses
imply that eachr, 5) € Mo, andp; is constant forall. O

4. Examples

In this section, we will present several examples illustrating how the theorems from
Section 3can be applied to different types of Radpproximation problems. For all of the
following computations, we used tléeoebner packages in both Maple V Release 5 and
Maple 8 and took = Q.

Appropriate orders-, may be defined in any computer algebra system that allows
specification of term orders by means of the weight matrices. We remark that these
computations could also be done by the module version of the FGLbbi&r" basis
conversion algorithm presentedHitzpatrick (1997)

Example 4. We takes = 2 and consider equation lattice approximants of the shape
specified by

N={xeZ?: ol <2}

D={Bez%:|Bl <3

I = (x4, x3y3, y4.
That is, E is the set of exponents of the monomials in the complement of the id&élis
is a special case of the Karlsson—Wallin approximants considei®eldtion 2 Both of the
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exponent conditions are satisfied in this case. Indé¢/d+ |D| = |E| + 1, SO we expect a
unique approximard/b with b(0) = 1 in Padi,p e (h), at least for sufficiently generhl
We will consider first the Pagapproximation problem for

h(x,y) = 1+ 2y + 2y%2 + 4/3y3 — x — 2xy — 2xy? — 4/3xy3 + 1/2x?
+ X2y + x2y2 + 2/3y3x2 — 1/6x3 — 1/3x3y — 1/3x3y? — 2/9x3y3.

In this case, it can be verified by linear algebra techniques that there is a unique
approximant in Pagl, p, e (h) and that the conditio(R) is satisfied. Following Fitzpatrick
and Flynn's general approach, we compute alfBer basis for the module

M = ((h, 1), (x*,0), (x3y3,0), (y*, 0))

with respect to the-, order defined above using the lexicographic ordevith x > y on
QIx, yl. We find that the minimal element of the @x’ier basis gives our desired solution:

(@, bp) = (60— 24x + 48y + 3x% — 12xy + 12y?, 12xy?
+36y? — 8y3 + 36x — 72y + 60— 36xYy + 9x? — 6x2y + Xx3).

As always, one could normalize to make the constant term in the denominator equal 1, and
there is a unique rational function correspondinge@ bo) in Padén,p, e (h).

We remark that Fitzpatrick and Flynn’s weak term order condition is not satisfied for
any choice of(¢1, ¢2) in this example. Sinc& T- (ag) = x? andLT- (bg) = x2 are not
in 1, but their product is if, the weak term order condition cannot hold. However, even
though Fitzpatrick and Flynn’s theorem does not apply, Theorem 3.-does apply.

Example 5. Our next example uses the saieD, E as above, but a different, sparser,
h(x, y):

h(x, y) = —4x2y? — 21xy? — 75y? 4 93y> + 23y*.

In this case, the set Pad,p e(h) is infinite (Eq. (6) is underdetermined) but elements
(a,b) e Padin,p,e(h) satisfying (2) with b(0) # 0 do exist. By ourTheorem 3.2
we expect an element somewhere in thel@Er basis that has the desired form. In the
Grobner basis fot(h, 1), (x*, 0), (x3y3, 0), (y*, 0)) with respect to the-, order, we find
the minimal elementa, b) = (0, y2) which satisfies the congruenae= bh mod1, but
that is not of the desired form becaus®) = 0. The next largest element in the order
also satisfie$2) :

(—3515 6252, 371x3 + 7471x%y + 58 125/ + 11752
—32550y — 13125 + 46 875

and the correspondiray/bg is an approximant of the desired form. For the same reason as
in the previous example, Fitzpatrick and Flynn’s weak term order condition will not hold
for any choice of¢1, ¢2) here. OuiTheorem 3.2loes apply, however.

Example 6. We retainN and D as above. In the previous two examples, we chose
I = (x* x3y3 y* because the first exponent conditifd| + |D| = |E| + 1 was
easily verified. In order to obtain Padpproximants with other useful properties, we may
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need to tailor the sek for the problem at hand. For instance, one common requirement for
multivariable Pad approximants in numerical analysis and other applications isatat
should satisfy the so-callgatojection property—namely that if we set all but one variable
equal to zero in the approximant (and if necessary cancel common factors in the numerator
and denominator), the result should agree with the approximant for a suitable one-variable
Pad problem where the function to be approximateld vgith all but that one variable set
equal to zero. IrKarlsson and Wallin (1977a general condition implying the projection
property is developed.

For simplicity, we only state this in the case= 2. With a numerator of degree
and a denominator of degreg the one-variable approximants should agree Wwith, 0)
andh(0, y) mod (x"*™+1) and (y™t"+1) respectively. The projection property is valid
for (a,b) € Padn,p,e(h), N and D as before ifE contains{(0, 0), (1,0), ..., (n +
m, 0), (0, 1), ..., (0,n + m)}. The simplest choice oE for which this condition (with
n = 2 andm = 3) and the second exponent condition both hold yields the monomial ideal
I = (x5 x3y, xy3, y8). (Once again, it is easy to see that for genérahe weak term
order condition will never be satisfied.)

We will take

h=—-3+xy3—2x+y—9x?—7xy+x*

It is easy to check that withl andD as above but = (x*, x3y2, y*) as in the previous
examples, we get a unique element of &ad e (h). However that approximant does
not satisfy the projection property (we gatx, 0) = b(x, 0)h(x, 0) mod (x*), but not
mod (x®) as we should if the projection property were satisfied).

with I = (x5 x3y, xy3, y®), even though the equations for the approximant are
underdetermined, the, Grébner basis for the modul contains the element

(ap, bo) = (125 97Xy + 34 075 — 483y? + 164 1242 + 53016— 16 223,
A7x3 + 1029%x — 19742 — 294xy + 423X — 483y — 17672

satisfying(2). Substitutingk = 0 andy = 0 yields

725 873,,2
—3— 376X — 94 X

9 21 1.3
1— g% + 1392 — 576X°
ap(0,y)/bo(0,y) = -3 +y.

These agree with the one-variable Padpproximants forh(x, 0) and h(0, y) with
numerator degreg2 and denominator degrees.

ap(x, 0)/bo(x, 0) =

Example 7. Our final example will demonstrate how the homogeneous approximants
described inSection 2might be found in the present Gier basis framework, using
Corollary 1 We consider

h=i<% > xiyi).

k=0 \ " i+j=k
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(This is a Taylor polynomial for the functiofi(x, y) = (x&¥ — ye)/(x — y).) We want
to determine a homogenous Radpproximant witm = 1, m = 2 (so the numerator
will contain terms of total degrees 2 and 3 and the denominator will contain terms of total
degrees 2-4).

LetN = {o : |o| <3}, D = {B : |B] < 4}, andl = (x, y)8. The corresponding
E ={y : |yl <5} has|E| +1 > [N| + |D|, so the equations for Karlsson—Wallin type
approximants are underdetermined. And in fact;;.aGrébner basis foM contains four
elements of the fornga, b) with 7(a) < 3 andt(b) < 4, one of which is the minimal
element of the Gabner basis. It follows bZorollary 1that the homogeneous approximant
we are looking for corresponds to a linear combination of these four elements sf. the
Grobner basis, and indeed we find that the suitable linear combination (eliminating all
1, x, y terms) yields:

(@, bp) = (75y% + 75x2 4 175xy? + 225xy + 1752y + 25y2 + 25x3,
Dx4 — 125¢%y + 25xy° — 125y? — 50y° + 25x3y + 225Ky
+ 2y* + 75x2 — 503 + 1252y2 4 75y2).

The rational functiorag/bg is the desired homogeneous approximant.

We conclude with some timings (in seconds) for the computations in these examples.
In all cases, these were obtained using Maple 8 on a SunBlade 100 workstation with a
500 MHz UltraSparc processor and 256 MB of memory, running Solaris. The column
marked “LA" (Linear Algebra) shows the time to set up and solve the system of linear
equations for coefficients in the Radipproximants. The column marked “BA’ gives
the time to compute the module @mier basis containing the element representing the
approximant, using Buchberger’s algorithm directly (via glsis command in the
Groebner package). FOExample 6 we report the time for the second computation.

Ex. | LA | BA
4 0.29 | 0.52
5 0.09 | 0.19
6 0.16 | 0.45
7 047 1.2

In these small examples, the linear algebra computations were faster in each case, but
not by a large margin.
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