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Abstract

In Fitzpatrick and Flynn(J. Symbolic Comput. 13 (1992) 133), a Gr¨obner basis technique for
multivariable Pad´e approximation problems was developed under a rather restrictive hypothesis on
the shape of the numerator and denominator in relation to the approximation conditions desired. In
this article, we show that their hypotheses can be replaced by other less stringent conditions, and we
show how to compute some standard forms of multivariable approximants through several examples.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The general Pad´e approximation problem can be phrased as the question of finding
rational functionsa/b in one or more variables, of some specified form, that approximate
some other given functionh of the same variables in a suitable sense. For instance, we
might ask thata/b interpolate values ofh (or minimize a measure of the interpolation
error), or that specified initial segments of the Taylor expansions ofa/b andh at a point
agree. Pad´e-type approximations are used in both numerical and symbolic computation
and have a number of applications in numerical analysis, in coding theory (in decoding
algorithms for multidimensional cyclic codes, for instance), and in multidimensional signal
processing (for instance, in the design of IIR filters).
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Fitzpatrick and Flynn (1992)introduced a symbolic technique for computing Pad´e
approximants using the theory of Gr¨obner bases for submodules of free modules
over polynomial rings (seeCox et al., 1998; Adams and Loustaunau, 1994). Given a
polynomial h ∈ k[x1, . . . , xs] representing an initial segment of the Taylor series of
the function to be approximated, and an idealI ⊂ k[x1, . . . , xs] encoding the desired
agreement conditions between the approximant and the polynomialh at x = 0, they
consider the moduleM of solutions(a, b) ∈ (k[x1, . . . , xs])2 of the congruence

a ≡ bh mod I . (1)

Each pair(a, b) with b(0) �= 0 yields a rational functiona/b that approximatesh moduloI .
For example, in the cases = 1, if we seek an approximanta(x)/b(x) with deg(a) ≤ n,
deg(b) ≤ m, andb(0) = 1 then there aren + m + 1 free coefficients ina(x) andb(x).
So one usually takesI = 〈xn+m+1〉, expecting to be able to match a generalh(x) modulo
〈xn+m+1〉 with a(x)/b(x).

The basis of Fitzpatrick and Flynn’s method is a statement guaranteeing that a particular
solution of the Pad´e approximation problem appears in a suitable Gr¨obner basis for the
moduleM of solutions of(1). To describe this, we begin by fixing some monomial order>

on k[x1, . . . , xs]. Given two monomialsϕ1 andϕ2 in k[x1, . . . , xs], Fitzpatrick and Flynn
introduce the so-calledweak term order conditionwith respect to(ϕ1, ϕ2). Let (a, b) be a
solution of(1) wherea, b are relatively prime, and botha, b are reduced moduloI . Then
(a, b, I ) satisfies the weak term order condition with respect to(ϕ1, ϕ2) if ϕ1 ≥ LT>(a),
ϕ2 ≥ LT>(b), and if for all monomialsρ andσ in k[x1, . . . , xs] such thatϕ1 ≥ ρ, ϕ2 ≥ σ

andρ, σ /∈ LT>(I ), the productρσ /∈ LT>(I ). Then Fitzpatrick and Flynn’s main result
is the following statement.

Theorem 1.1 (Fitzpatrick and Flynn, 1992, Theorem 2.4).Let (1) have a solution(a0, b0)

where a0, b0 are relatively prime and reduced modulo I . Assume that(a0, b0, I ) satisfies
the weak term order condition with respect to(ϕ1, ϕ2). Then a constant multiple of(a0, b0)

appears in any Gr̈obner basis for M = {(a, b) | a ≡ bh mod I } with respect to a
“weighted” monomial order>(ϕ1,ϕ2) on (k[x1, . . . , xs])2 defined by xαei >(ϕ1,ϕ2) xβej

if xαϕi > xβϕ j or if xαϕi = xβϕ j and i < j .

The reason behind this result is that the weak term order condition implies that(a0, b0)

is minimalin the moduleM with respect to the>(ϕ1,ϕ2) order and this implies that(a0, b0)

must appear in the Gr¨obner basis with respect to that order. The monomial order>(ϕ1,ϕ2)

is an example of the class of orders used by Schreyer to develop Gr¨obner basis methods
for syzygy computations (seeCox et al., 1998, Chapter 5, Theorem 3.3), and indeed
solving(1) is closely related to computing a module of syzygies.

Unfortunately, in many situations where methods for computing Pad´e approximants, or
equivalently solving congruences of the form(1), are potentially of interest, especially in
the study of decoding algorithms for multidimensional cyclic codes, this result does not
apply. The reason is that the weak term order condition on(a, b, I ) as above is far too
restrictive. In fact we will see examples later where that condition does not hold for the
desired solution(a, b) of the congruence(1) for any pair(ϕ1, ϕ2).
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Instead of requiring the weak term order condition, we will look for(a, b) of a specific
form:

τ (a) < τ(b) ≤ m, (2)

whereτ (p) is the total degree of the polynomialp. In many cases, we will be able to
show that if a solution of the form(2) exists, even if that desired module element is not
minimalwith respect to the monomial order used for the Gr¨obner basis computation, then
an element of that form must still appear in a suitable Gr¨obner basis. Hence Fitzpatrick and
Flynn’s basic approach can be extended to a wider range of problems of this form than is
apparent at first from the result quoted above.

As Fitzpatrick and Flynn also remark, applying Buchberger’s algorithm for Gr¨obner
bases directly to find multivariable Pad´e approximants does not offer any clear
computational advantages over the linear algebra techniques used more commonly. Hence
our contribution must also be seen as giving further theoretical understanding of this
problem rather than as providing a superior method for computations.

The present paper is organized as follows. InSection 2, we will introduce some
terminology and notation for multivariable Pad´e approximations and describe the class of
problems that we will consider.Section 3will be devoted to the proofs of several general
results giving results parallel to Fitzpatrick and Flynn’s theorem quoted above, but without
the restrictive hypothesis that the weak term order condition holds. Finally, inSection 4, we
will present a series of explicit examples illustrating the results ofSection 3. In relatively
small examples such as those considered inSection 4, we will see that these methods are
comparable in efficiency to the linear algebra methods.

2. Terminology and notation

As a general reference for the general multivariable Pad´e approximation problem, we
will use the survey articleCuyt (1999). Most of the examples of Pad´e approximants that we
will consider will fall into the general category ofequation latticeapproximants described
there, although we will also present some results about the so-calledhomogeneous
approximants. We begin by sketching the connections between the general equation lattice
framework with the algebraic formulation used by Fitzpatrick and Flynn.

All of our Padé approximants will be quotients of polynomials ink[x1, . . . , xs]. We use
the notation|α| = α1 + · · · + αs for the total degree of a monomialxα, andτ ( f ) for the
total degree of a polynomialf (x) = ∑

α cαxα:

τ ( f ) = max
α

{|α| : cα �= 0}. (3)

To describe the “shape” of the desired approximanta/b ∈ k(x1, . . . , xs) using the
equation lattice approach, we specify finite subsetsN, D ⊂ Zs

≥0 giving the possible
exponents in the numerator and the denominator, respectively. We also specify a third
finite subsetE ⊂ Z≥0 describing the approximation properties we want. Using multi-index
notation, we have

a(x) =
∑
α∈N

cαxα, (4)
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b(x) =
∑
β∈D

dβxβ. (5)

Then givenh(x), we seek to determinea(x), b(x) with

a(x) − b(x)h(x) =
∑

γ∈Zs≥0\E

aγ xγ . (6)

If b(0) �= 0, then it is easy to see that equation(6) is equivalent to the statement that
the coefficient ofxδ in the (formal) Taylor expansion ofa(x)/b(x) − h(x) is zero for all
δ ∈ E. We will denote by

PadéN/D,E(h) (7)

the set of all pairs(a, b) wherea, b have the forms given in(4) and(5) above solving(6).
Each element of Pad´eN/D,E(h) defines a rational functiona/b. However, there is a subtlety.
In some particular solutions, there may be cancellations of factors between the numerator
and denominator, and if so, after cancellation toa/b, the pair(a, b) may not solve(6).

In order for a Pad´e approximation problem of this form to bewell-posedfor a general
h(x) (that is, in order for solutions to exist and satisfy useful properties) it is common
in the multivariable Pad´e approximation literature to require that the followingexponent
conditionshold.

1. The setsN, D, E should be chosen so that|N| + |D| ≥ |E| + 1.
2. If γ ∈ E, andγ = δ + ε for δ, ε ∈ Zs

≥0, thenδ, ε ∈ E.

The first exponent condition says that if(6) is written as a system of linear equations
in the coefficients ofa(x) andb(x), then there are more variables than equations, so we
expect a solution to exist for generalh(x). (For someh, the system may be inconsistent,
though, so it is possible for Pad´eN/D,E(h) to be empty.) For the approximant to be unique,
the inequality here should be an equality.

Example 1. In the cases = 1, the common form for Pad´e approximants corresponds to
D = {0, 1, . . . , m}, N = {0, 1, . . . , n}, andE = {0, 1, . . . , m + n} for somem, n ∈ Z≥0.
Both exponent conditions are clearly satisfied for theseN, D, E. Moreover, if b(0) is
normalized to 1, we get the stronger condition|N| + |D| = |E| + 1.

Example 2. We will devote most of our attention to the multivariable Pad´e approximants
of “triangular” form studied by Karlsson and Wallin (seeKarlsson and Wallin, 1977;
Cuyt, 1999). These approximants are defined by bounds on the total degrees of monomials
appearing in the numerator and the denominator. The exponent sets for the numerators
and denominators are as follows:N = {α : |α| ≤ n}, D = {β : |β| ≤ m} for some
m, n ∈ Z≥0. Here there is a considerable amount of freedom in choosingE to satisfy the
exponent conditions. As we will see inSection 4, different choices yield approximants with
different properties. Our desired solutions will always haveb(0) �= 0 in these examples.

Example 3. Another type of multivariable Pad´e approximant that has received much
attention are the so-calledhomogeneousapproximants (seeCuyt, 1999). These can be
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defined within the equation lattice framework by taking, for somem, n ∈ Z≥0 : N =
{α : nm ≤ |α| ≤ nm + n}, D = {β : nm ≤ |β| ≤ nm + m}, and E = {γ :
nm ≤ |γ | ≤ nm + n + m}. Here the first exponent condition holds (with equality
if s = 2), but the second does not. Also,b(0) = 0 in all cases by the form ofD.
In Section 4we will see that homogeneous approximants can be obtained by replacing
N, D, E above byN′ = {α : 0 ≤ |α| ≤ nm + n}, D′ = {β : 0 ≤ |β| ≤ nm + m},
E′ = {γ : 0 ≤ |γ | ≤ nm + n + m}. This choice does satisfy the second exponent
condition. We will compute the desired element in Pad´eN/D,E(h) by finding an element in
PadéN′/D′,E′(h) in which the coefficients of monomials with 0≤ |γ | ≤ nm− 1 in a andb
all vanish.

The second exponent condition has an interesting interpretation and more far-reaching
consequences. The following fact is straightforward and the proof will be left to the reader
as an exercise.

Proposition 1. Let E ⊂ Zs
≥0 satisfy the second exponent condition. Then the k-linear span

of {xγ : γ ∈ Zs
≥0 \ E} is a monomial ideal I⊂ k[x1, . . . , xs].

Hence, if the second exponent condition holds, then solving the equation lattice Pad´e
problem(6) is the same as solving a congruence of Fitzpatrick and Flynn’s form(1). The
second exponent condition also implies the following covariance result.

Proposition 2 (Cuyt, 1999, Theorem 3.1).Let (a, b) ∈ Pad́eN/D,E(h) and let h = 1/g
with g(0) �= 0. Then(b, a) ∈ Pad́eD/N,E(g).

We note that because ofProposition 2, in a sense, it is enough to consider approximants
a/b with LT>(a) < LT>(b). (If LT>(a) > LT>(b), then we can useProposition 2to
consider the “reciprocal” Pad´e problem forb/a instead. IfLT>(a) = LT>(b) are equal,
then writinga = LT>(a) + a′ wherea′ has only terms strictly smaller thanLT>(a), and
similarly for b,

a

b
= LT>(a) + a′

LT>(a) + b′ = 1 + a′ − b′

LT>(a) + b′

and then the problem reduces to finding an approximant forh − 1 and note that now
LT>(a′ − b′) < LT>(a).) We will consider approximants satisfying a slightly different
condition in the next section.

3. Theoretical results

In this section, we will formulate and prove several theorems showing that, under the
assumption that an approximant (that is, a solution of(1)) of a particular form exists, then
an element of that form must appear in a Gr¨obner basis for the module of solutions with
respect to a particular monomial order.

The particular form we consider is this: We require that in(a0, b0), τ (b0) ≤ m (where
m comes from the definition ofD) and thatτ (a0) < τ(b0). Our motivation for focusing
on this form comes primarily from a projected application to decoding problems for
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multidimensional cyclic codes. In our first result, we assume a uniqueness statement about
the desired solution of the congruence.

For the Gröbner basis calculations, we need to introduce a monomial order on
(k[x1, . . . , xs])2 that will “find” elements in the moduleM of the desired form. Instead
of Fitzpatrick and Flynn’s weighted orders, we will consider orders>τ defined as follows:
Given two monomialsxαei , xβej ∈ (k[x1, . . . , xs])2, thenxα >τ xβ if:

1. |α| > |β|, or if
2. |α| = |β| andi < j , or if
3. |α| = |β|, i = j , andxα > xβ

for a fixed monomial order> on k[x1, . . . , xs]. (Note that for termsxαei with i fixed, the
>τ order is equivalent to a graded order onk[x1, . . . , xs].)
Theorem 3.1. Assume that N, D, E for an equation lattice Pad́e problem satisfy both
exponent conditions, and let I be the monomial ideal given byProposition1. Let

M = {(a, b) : a ≡ bh mod I }
and assume that, up to a constant multiple, there exists a unique(a0, b0) ∈ M such that
τ (a0) < τ(b0) ≤ m. Then a constant multiple of(a0, b0) appears in any Gr̈obner basis for
M with respect to the>τ order.

Proof. The hypotheses on(a0, b0) imply that LT>τ (a0, b0) = LT>(b0)e2. Let G be
the Gröbner basis forM with respect to the>τ order. By the definition of a Gr¨obner
basis, there exists(r, s) ∈ G such thatLT>τ (r, s) divides LT>τ (a0, b0). This shows
that LT>τ (r, s) = LT>(s)e2 and LT>(s) divides LT>(b0). Suppose that(r, s) is not a
constant multiple of(a0, b0). Then by the uniqueness hypothesisτ (s) > m or τ (r ) ≥
τ (s). In the first case we get an immediate contradiction: we cannot haveτ (b0) ≤ m,
τ (s) > m, and LT>(s) | LT>(b0). If τ (r ) ≥ τ (s), then by the definition of the>τ

order,LT>τ (r, s) = LT>(r )e1. But this also leads to a contradiction, since thenLT>τ (r, s)
cannot divideLT>τ (a0, b0). The contradiction shows that(r, s) must be a constant multiple
of (a0, b0). �

This hypothesis is still extremely restrictive. Nevertheless, it would apply in any
Karlsson–Wallin Pad´e problem with denominator degreem, numerator degreen < m,
E chosen so that a unique solution was expected, and a sufficiently generich. This would
be true even if Fitzpatrick and Flynn’s weak term order condition did not apply for any
monomialsϕ1, ϕ2. We will see an example of this kind inSection 4.

Even if we do not require uniqueness of the approximant of the desired form, we can
still show that some element of that form exists in a suitable Gr¨obner basis.

Theorem 3.2. Assume that N, D, E for an equation lattice Pad́e problem satisfy both
exponent conditions, let I be the monomial ideal given byProposition1, and let

M = {(a, b) : a ≡ bh mod I }.
If there exists some(a0, b0) in M with τ (a0) < τ(b0) ≤ m, then in any Gr̈obner basis for
M with respect to the>τ order, there exists some element(r, s) such thatτ (r ) < τ(s) ≤ m.
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Proof. Our hypotheses on(a0, b0) imply that its>τ -leading term isLT>(b0)e2. There
must be some element(r, s) in the>τ Gröbner basisG for M whose leading term divides
LT>(b0)e2. But then the leading term of(r, s) must beLT>(s)e2, soτ (r ) < τ(s) by the
definition of the>τ order, andLT>(s) | LT>(b0) implies thatτ (s) ≤ m. �

As a corollary of this theorem, we note the following fact which will be useful in the
consideration of the homogeneous Pad´e approximants inSection 4.

Corollary 1. In the situation ofTheorem3.1, let

m0 = min{τ (b) : (a, b) ∈ M andτ (a) < τ(b)},
and define

M0 = {(a, b) ∈ M : τ (b) = m0 andτ (a) < τ(b)}.
Assume that the minimal nonzero element of the module M under the>τ order lies in M0.
If G is a Gröbner basis for M with respect to the>τ order, thenG ∩ M0 spans M0 over k.

Proof. Apply the module version of the division, or normal form, algorithm (see
Cox et al., 1998, Chapter 5, Theorem 2.5) with divisorsG and the>τ monomial order. The
remainder on division of each(a, b) ∈ M0 ⊂ M, must be zero, so there are(r i , si ) ∈ G
and polynomialspi such that

(a, b) =
∑

i

pi (r i , si ).

However, sinceLT>τ (pi (r i , si )) is less than or equal toLT>τ (a, b) for all i , our hypotheses
imply that each(r i , si ) ∈ M0, andpi is constant for alli . �

4. Examples

In this section, we will present several examples illustrating how the theorems from
Section 3can be applied to different types of Pad´e approximation problems. For all of the
following computations, we used theGroebner packages in both Maple V Release 5 and
Maple 8 and tookk = Q.

Appropriate orders>τ may be defined in any computer algebra system that allows
specification of term orders by means of the weight matrices. We remark that these
computations could also be done by the module version of the FGLM Gr¨obner basis
conversion algorithm presented inFitzpatrick (1997).

Example 4. We takes = 2 and consider equation lattice approximants of the shape
specified by

N = {α ∈ Z2≥0 : |α| ≤ 2},
D = {β ∈ Z2≥0 : |β| ≤ 3},
I = 〈x4, x3y3, y4〉.

That is,E is the set of exponents of the monomials in the complement of the idealI . This
is a special case of the Karlsson–Wallin approximants considered inSection 2. Both of the
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exponent conditions are satisfied in this case. Indeed,|N| + |D| = |E| + 1, so we expect a
unique approximanta/b with b(0) = 1 in PadéN/D,E(h), at least for sufficiently generalh.

We will consider first the Pad´e approximation problem for

h(x, y) = 1 + 2y + 2y2 + 4/3y3 − x − 2xy− 2xy2 − 4/3xy3 + 1/2x2

+ x2y + x2y2 + 2/3y3x2 − 1/6x3 − 1/3x3y − 1/3x3y2 − 2/9x3y3.

In this case, it can be verified by linear algebra techniques that there is a unique
approximant in Pad´eN/D,E(h) and that the condition(2) is satisfied. Following Fitzpatrick
and Flynn’s general approach, we compute a Gr¨obner basis for the module

M = 〈(h, 1), (x4, 0), (x3y3, 0), (y4, 0)〉
with respect to the>τ order defined above using the lexicographic order> with x > y on
Q[x, y]. We find that the minimal element of the Gr¨obner basis gives our desired solution:

(a0, b0) = (60− 24x + 48y + 3x2 − 12xy+ 12y2, 12xy2

+ 36y2 − 8y3 + 36x − 72y + 60− 36xy+ 9x2 − 6x2y + x3).

As always, one could normalize to make the constant term in the denominator equal 1, and
there is a unique rational function corresponding to(a0, b0) in PadéN/D,E(h).

We remark that Fitzpatrick and Flynn’s weak term order condition is not satisfied for
any choice of(ϕ1, ϕ2) in this example. SinceLT>(a0) = x2 andLT>(b0) = x3 are not
in I , but their product is inI , the weak term order condition cannot hold. However, even
though Fitzpatrick and Flynn’s theorem does not apply, ourTheorem 3.1does apply.

Example 5. Our next example uses the sameN, D, E as above, but a different, sparser,
h(x, y):

h(x, y) = −4x2y2 − 21xy2 − 75y2 + 93y3 + 23y4.

In this case, the set Pad´eN/D,E(h) is infinite (Eq. (6) is underdetermined) but elements
(a, b) ∈ PadéN/D,E(h) satisfying (2) with b(0) �= 0 do exist. By ourTheorem 3.2,
we expect an element somewhere in the Gr¨obner basis that has the desired form. In the
Gröbner basis for〈(h, 1), (x4, 0), (x3y3, 0), (y4, 0)〉 with respect to the>τ order, we find
the minimal element(a, b) = (0, y2) which satisfies the congruencea ≡ bh mod I , but
that is not of the desired form becauseb(0) = 0. The next largest element in the>τ order
also satisfies(2) :

(−3515 625y2, 371x3 + 7471x2y + 58 125y + 1175x2

−32 550xy− 13 125x + 46 875)

and the correspondinga0/b0 is an approximant of the desired form. For the same reason as
in the previous example, Fitzpatrick and Flynn’s weak term order condition will not hold
for any choice of(ϕ1, ϕ2) here. OurTheorem 3.2does apply, however.

Example 6. We retain N and D as above. In the previous two examples, we chose
I = 〈x4, x3y3, y4〉 because the first exponent condition|N| + |D| = |E| + 1 was
easily verified. In order to obtain Pad´e approximants with other useful properties, we may
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need to tailor the setE for the problem at hand. For instance, one common requirement for
multivariable Pad´e approximants in numerical analysis and other applications is thata/b
should satisfy the so-calledprojection property—namely that if we set all but one variable
equal to zero in the approximant (and if necessary cancel common factors in the numerator
and denominator), the result should agree with the approximant for a suitable one-variable
Padé problem where the function to be approximated ish with all but that one variable set
equal to zero. InKarlsson and Wallin (1977), a general condition implying the projection
property is developed.

For simplicity, we only state this in the cases = 2. With a numerator of degreen
and a denominator of degreem, the one-variable approximants should agree withh(x, 0)

andh(0, y) mod 〈xn+m+1〉 and〈ym+n+1〉, respectively. The projection property is valid
for (a, b) ∈ PadéN/D,E(h), N and D as before ifE contains{(0, 0), (1, 0), . . . , (n +
m, 0), (0, 1), . . . , (0, n + m)}. The simplest choice ofE for which this condition (with
n = 2 andm = 3) and the second exponent condition both hold yields the monomial ideal
I = 〈x6, x3y, xy3, y6〉. (Once again, it is easy to see that for generalh, the weak term
order condition will never be satisfied.)

We will take

h = −3 + xy3 − 2x + y − 9x2 − 7xy+ x4.

It is easy to check that withN andD as above butI = 〈x4, x3y3, y4〉 as in the previous
examples, we get a unique element of Pad´eN/D,E(h). However that approximant does
not satisfy the projection property (we geta(x, 0) ≡ b(x, 0)h(x, 0) mod〈x4〉, but not
mod〈x6〉 as we should if the projection property were satisfied).

With I = 〈x6, x3y, xy3, y6〉, even though the equations for the approximant are
underdetermined, the>τ Gröbner basis for the moduleM contains the element

(a0, b0) = (125 975xy+ 34 075x − 483y2 + 164 124x2 + 53 016− 16 223y,

47x3 + 1029y2x − 1974x2 − 294xy+ 423x − 483y − 17 672)

satisfying(2). Substitutingx = 0 andy = 0 yields

a0(x, 0)/b0(x, 0) = −3 − 725
376x − 873

94 x2

1 − 9
376x + 21

188x2 − 1
376x3

,

a0(0, y)/b0(0, y) = −3 + y.

These agree with the one-variable Pad´e approximants forh(x, 0) and h(0, y) with
numerator degree≤2 and denominator degree≤3.

Example 7. Our final example will demonstrate how the homogeneous approximants
described inSection 2might be found in the present Gr¨obner basis framework, using
Corollary 1. We consider

h =
5∑

k=0

(
1

k!
∑

i+ j =k

xi y j

)
.
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(This is a Taylor polynomial for the functionf (x, y) = (xey − yex)/(x − y).) We want
to determine a homogenous Pad´e approximant withn = 1, m = 2 (so the numerator
will contain terms of total degrees 2 and 3 and the denominator will contain terms of total
degrees 2–4).

Let N = {α : |α| ≤ 3}, D = {β : |β| ≤ 4}, and I = 〈x, y〉6. The corresponding
E = {γ : |γ | ≤ 5} has|E| + 1 > |N| + |D|, so the equations for Karlsson–Wallin type
approximants are underdetermined. And in fact, a>τ Gröbner basis forM contains four
elements of the form(a, b) with τ (a) ≤ 3 andτ (b) ≤ 4, one of which is the minimal
element of the Gr¨obner basis. It follows byCorollary 1that the homogeneous approximant
we are looking for corresponds to a linear combination of these four elements of the>τ

Gröbner basis, and indeed we find that the suitable linear combination (eliminating all
1, x, y terms) yields:

(a0, b0) = (75y2 + 75x2 + 175xy2 + 225xy+ 175x2y + 25y3 + 25x3,

25
2 x4 − 125x2y + 25xy3 − 125xy2 − 50y3 + 25x3y + 225xy

+ 25
2 y4 + 75x2 − 50x3 + 125

2 x2y2 + 75y2).

The rational functiona0/b0 is the desired homogeneous approximant.

We conclude with some timings (in seconds) for the computations in these examples.
In all cases, these were obtained using Maple 8 on a SunBlade 100 workstation with a
500 MHz UltraSparc processor and 256 MB of memory, running Solaris. The column
marked “LA” (Linear Algebra) shows the time to set up and solve the system of linear
equations for coefficients in the Pad´e approximants. The column marked “BA” gives
the time to compute the module Gr¨obner basis containing the element representing the
approximant, using Buchberger’s algorithm directly (via thegbasis command in the
Groebner package). ForExample 6, we report the time for the second computation.

Ex. LA BA
4 0.29 0.52
5 0.09 0.19
6 0.16 0.45
7 0.47 1.2

In these small examples, the linear algebra computations were faster in each case, but
not by a large margin.

Acknowledgements

The first steps of the work reported here were made as part of an undergraduate research
project at the 1999 Summer Institute in Mathematics for Undergraduates (SIMU) at the
University of Puerto Rico, Humacao carried out by three of us (Ortiz, Ortiz-Rosado, and
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