
Journal of Pure and Applied Algebra 150 (2000) 27–39
www.elsevier.com/locate/jpaa

The Gr�obner fan of an An-module

A. Assia, F.J. Castro-Jim�enezb ;1, M. Grangera ;∗
aD�epartement de Maths, Universit�e d’Angers, 2Bd Lavoisier, 49045 Angers, Cedex 01, France

bDepartamento de �Algebra, Computation, Geometria Topologia, Facultad de Maths, Universidad de
Sevilla, 41012 Sevilla, Spain

Received 1 August 1998; received in revised form 20 November 1998
Communicated by M.-F. Roy

Abstract

Let I be a non-zero left ideal of the Weyl algebra An of order n over a �eld k and let
L : R2n → R be a linear form de�ned by L(�; �) =

∑n
i=1 ei�i +

∑n
i=1 fi�i. If ei + fi ≥ 0, then

L de�nes a �ltration FL• on An. Let gr
L(I) be the graded ideal associated with the �ltration

induced by FL• on I . Let �nally U denote the set of all linear form L for which ei + fi ≥ 0
for all 1 ≤ i ≤ n. The aim of this paper is to study, by using the theory of Gr�obner bases,
the stability of grL(I) when L varies in U . In a previous paper, we obtained �niteness results
for some particular linear forms (used in order to study the regularity of a D-module along
a smooth hypersurface). Here we generalize these results by adapting the theory of Gr�obner
fan of Mora-Robbiano to the D-module case. Our main tool is the homogenization technique
initiated in our previous paper, and recently clari�ed in a work by F. Castro-Jim�enez and L.
Narv�aez-Macarro. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 35A27; secondary 13P10; 68Q40

1. Introduction

Let An(k) denote the Weyl algebra of order n over a �eld k: An(k) (An for short) is
the central k-algebra generated by xi; Di; i=1; : : : ; n with relations [xi; xj]=[Di; Dj]=0
and [Di; xj] = �ij. Let P =

∑
�;� p�;�x

�D� be a non-zero element of An and denote by
N(P) the Newton diagram of P, namely

N(P) =
{
(�; �) ∈ N2n; p�;� 6= 0

}
:
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If L : R2n → R is the linear form de�ned by L(�; �) =
∑n

i=1 ei�i +
∑n

i=1 fi�i, then the
L-order ordL(P) of P is de�ned to be the maximal element in the set of L(�; �); (�; �) ∈
N(P). If furthermore ei+fi ≥ 0 for all 1 ≤ i ≤ n, then ordL(P:Q)= ordL(P)+ordL(Q)
for all non-zero elements P;Q ∈ An, in particular L de�nes a �ltration on An (where
for all k ∈ R; FLk (An)={P ∈ An; ordL(P) ≤ k}). If ei+fi ¿ 0 for all i=1; : : : ; l (resp.
ei + fi = 0 for all i = l+ 1; : : : ; n), then the associated graded algebra is

grL(An) ' k[x1; : : : ; xn; �1; : : : ; �l][Dl+1; : : : ; Dn]
with relations

xixj = xjxi; xi�m = �mxi; xiDp = Dpxi − �ip; �mDp = Dp�m

for all 1 ≤ i; j ≤ n; 1 ≤ m ≤ l and l+ 1 ≤ p ≤ n. The principal symbol of P is the
element of grL(An),

�L(P) =
∑

L(�;�)=ordL(P)

p��x��
�1
1 · · · ��ll D�l+1l+1 · · ·D�nn :

Let us point out that in the commutative case, there is no condition of the type ei +
fi ≥ 0. Here, since −xiDi +Dixi = 1, we must require ordL(1) ≤ ordL(xi) + ordL(Di).
Let I be a non-zero left ideal of An and let grL(I) be the graded ideal associated

with the �ltration induced by FL• on I . Let �nally U denote the set of all linear forms
L for which ei + fi ≥ 0 for all 1 ≤ i ≤ n. The aim of this paper is to study, by using
the theory of standard and Gr�obner bases, the stability of grL(I) when L varies in U .
Let Y be the hypersurface of kn de�ned by x1 = 0. Given two non negative reals

p; q, we de�ne the linear form Lp;q on R2n by Lp;q(�; �) = p:(
∑n

i=1 �i) + q:(�1 − �1):
this is an interpolation between the �ltration F by the order of operators
(q=0) and the V -�ltration of Malgrange–Kashiwara (p=0). In [10], Laurent proved,
using 2-microdi�erential operators, that the radical ideal

√
grLp;q(I) is not a (F; V )-

homogeneous ideal for only a �nite set of rational numbers r=p=q (eventually empty),
when p; q vary in R2+ (in [11] and [13], an analytic interpretation of these numbers is
given). Sabbah and Castro proved in [15] the same result by using a local 
attener. In
[2] we obtained, using the theory of standard bases, a constructive proof of this result.
This allowed us to give an algorithm for the calculation of these numbers. So, it was
natural to think about general �niteness results when L varies in U . Recall that the
theory of Gr�obner bases (cf. [5]) works very well in the Weyl algebra An (cf. [6–8]).
However, when the coe�cients of the linear form L ∈ U are negative, the division
process in An can be in�nite. In [2], in order to avoid this di�culty, we worked in
An[t] by homogenizing with respect to the total order in a way inspired by Lazard
[12]. However, the non commutativity of An[t] causes some di�culty, since divisions
by homogeneous elements do not produce necessarily homogeneous remainders. Al-
though our algorithm (which consists in rehomogenizing the remainders and iterating
division) allows us the calculation of standard bases with respect to any L ∈ U , it
does not seem to be adapted to the question we are working on. In [9], this di�culty
is avoided in the following natural way: consider the graded k-algebra B, generated by
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xi; Di; i = 1; : : : ; n and t with homogeneous relations

[t; xi] = [t; Di] = [xi; xj] = [Di; Dj] = 0; [Di; xj] = �ijt2:

This k-algebra coincides with the Rees algebra associated with the Bernstein �ltration
on An. The homogenization process between An and B verify the same properties as
in the commutative case, in particular the notion of the homogenized ideal h(I) of I
is well de�ned. On the otherhand, we can get the di�erent graded ideals grL(I) from
calculations of the graded ideals of h(I). Since the notion of reduced standard bases
exists for ideals in B, then the natural way in order to study our question is in adapting
to the D-module case the theory of the Gr�obner fan developed by Mora and Robbiano
in [14].
Let us summarize the structure of the paper: in Section 2 we recall some of the results

of Castro-Jim�enez and Narv�aez-Macarro [9] related to the homogenization problem. We
also prove that a standard basis w.r.t. the Bernstein �ltration of an ideal I in An gives
us a generating system of h(I) in B=An[t]. In Sections 3 and 3.2, we obtain �niteness
results for the set of graded ideals grL(J ) where J is an homogeneous ideal of An[t].
The main tool we use here is the Hilbert function of J . This notion has also been
used by one of us [1] in order to prove similar results in the commutative case. The
results of Section 3.2. are then applied in order to prove that the set of graded ideals
grL(I); L ∈ U is �nite (Section 3.3). Finally, in Section 4, we study the repartition
of the graded ideals grL(h(I)), where L varies in U . We de�ne �rst the notion of
privileged exponent (or stairs) Exp≺L

(h(I)) of an ideal associated with a �xed well
ordering on N1+2n (see Section 3.3). Our main result is then the following, which
generalizes the results in the commutative case as found in [1,14,17]:

Theorem 1.1. There exists a partition E of U into convex rational polyhedral cones;
such that for all element � ∈ E; grL(h(I)) and Exp≺L

(h(I)) do not depend on L ∈ �
(and the same is true for grL(I)).

Some results of this article has been used in [16].

2. Homogenization

We shall use here the results of Castro-Jim�enez and Narv�aez-Macarro [9]. Let An[t]
denote the algebra

An[t] = k[t; x ][D ] = k[t; x1; : : : ; xn][D1; : : : ; Dn]

with relations

[t; xi] = [t; Di] = [xi; xj] = [Di; Dj] = 0; [Di; xj] = �ijt2:
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The algebra An[t] is a graded algebra, the degree of the monomial tkx�D� being k +
|�|+ |�|. In fact, the k-algebra An[t] is isomorphic to the Rees algebra associated with
the Bernstein �ltration on An. The algebra k[t] is central in An[t], and the quotient
algebra An[t]=〈t − 1〉 is isomorphic to An.
Let P=

∑
�;� p�;�x

�D� be a non-zero operator of An. We denote byN(P) the Newton
diagram of P,

N(P) = {(�; �) ∈ N2n;p�;� 6= 0};
then we denote by ordT(P) the total order of P

ordT(P) = max{|�|+ |�|;p�;� ∈ N(P)}:
The di�erential operator

h(P) =
∑

�;�
p�;�tord

T(P)−|�|−|�|x�D� ∈ An[t]

is called the homogenization of P. If H =
∑

k;�;� hk;�;�t
kx�D� is an element of An[t],

we denote by H|t=1 the operator of An

H|t=1 =
∑
k;�;�

hk;�;�x�D�:

With the notations above, for all P;Q ∈ An and for all homogeneous elements
H ∈ An[t],
1. h(PQ) = h(P)h(Q).
2. There exists k; l; m ∈ N such that tkh(P + Q) = tlh(P) + tmh(Q).
3. There exists k ∈ N such that tkh(H|t=1) = H .
Let ¡ be a total ordering on N2n (not necessarily a well ordering), compatible with

sums. We recall that the extension of ¡, denoted by ¡h, is the total well ordering on
N1+2n (compatible with sums) de�ned by

(k; �; �)¡h (k ′; �′; �′)⇔


k + |�|+ |�|¡k ′ + |�′|+ |�′|

or

{
k + |�|+ |�|= k ′ + |�′|+ |�′| and
(�; �)¡ (�′; �′):

Since ¡h is a total well ordering compatible with sums, we have for all non-zero
element G =

∑
a;�;� g(a;�;�)t

ax�D� the notion of privileged exponent of G w.r.t. ¡h,
which we denote by exp¡h(G): If N(G) = {(a; �; �); g(a;�;�) 6= 0} denote the Newton
diagram of G, then exp¡h(G) = max¡hN(G). Also we have for all non-zero ideal J
of An[t], the notion of Gr�obner (or standard) basis of J , namely, if we denote by

Exp¡h(J ) = {exp¡h(P) |P ∈ J};
then {P1; : : : ; Pr}⊆ J is a standard basis of J if

Exp¡h(J ) =
r⋃
i=1

(exp¡h(Pi) +N1+2n):
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We have �nally a division theorem in An[t], analogous to that in the ring of polynomials
or in the Weyl algebra An. For more details, see [9]. Let � : N1+2n =N ×N2n → N2n

denote the natural projection, then we have:
1. If P ∈ An, then �(exp¡h(h(P))) = exp¡(P).
2. More generally, if H is an homogeneous element of An[t], then

�
(
exp¡h(H)

)
= �

(
exp¡h(h(H|t=1))

)
= exp¡(H|t=1):

Let I be a left ideal of An. We denote by h(I) the homogeneous ideal of An[t],
generated by {h(P) |P ∈ I}. We call h(I) the homogenized ideal of I . With these
notations we have the following (see [9]):
1. �(Exp¡h(h(I))) = Exp¡(I).
2. Let {P1; : : : ; Pm} be a generating system of I and let Ĩ be the ideal generated by

{h(P1); : : : ; h(Pm)} in An[t]. Then �(Exp¡h (̃I)) = Exp¡(I).
Let B•(An) denote the Bernstein �ltration on An (that is the case with ei = fi = 1

for all i = 1; : : : ; n). If P is a di�erential operator in An, then we denote by �B(P)
the principal symbol of P w.r.t. the Bernstein �ltration. If I is an ideal of An, then
we denote by grB(I) the graded ideal associated with the induced Bernstein �ltration
on I .
A standard basis w.r.t. the Bernstein �ltration has the following interesting

property:

Lemma 2.1. Let I be a non-zero left ideal of An and let {P1; : : : ; Pm} be a family of
di�erential operators of I . The following assertions are equivalent:
(i) h(I) = (h(P1); : : : ; h(Pm)).
(ii) grB(I) = (�B(P1); : : : ; �B(Pm)).

Proof. The proof is classical and uses the structure of graded algebra of An[t] (see
for details [3]). Remark that a standard basis with respect to the Bernstein �ltration
satis�es (ii), but the converse is in general false.

3. Finiteness results

Let L ∈ U (see 1) and consider the extension of L to R × R2n (by abuse of
notation we continue to write L and U in R × R2n); L : R × R2n → R, such
that L(a; �; �) =

∑n
i=1 ei�i +

∑n
i=1 fi�i. Recall in particular that ei + fi ≥ 0 for all

1 ≤ i ≤ n.
Let P be a non-zero di�erential operator of An[t]. We de�ne the L-order of P in

the usual way (we denote this element by ordL(P)). If P;Q ∈ An[t], then ordL(PQ) =
ordL(P) + ordL(Q), consequently the L-order de�nes a �ltration on An[t], which we
shall call the L-�ltration and we shall denote by FL• (An[t]). We denote by �

L(P) the
principal symbol of P w.r.t. the L-order, precisely, if P=

∑
p��(t)x�D�, then �L(P)=∑

L(�;�)=ordL(P) p��(t)x
���11 · · · ��ll D�l+1l+1 · · ·D�nn with l is as de�ned in the introduction.
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If J is a non-zero homogeneous ideal of An[t], we denote by grL(J ) the graded ideal
associated with the induced L-�ltration on J (i.e. grL(J ) is the ideal of grL(An[t])
generated by {�L(P) |P ∈ J}). In this section we shall prove that, if the coe�cients
ei; fi vary in R, then the set of grL(J ) is �nite. We shall use in the proof the Hilbert
function, therefore we shall start by recalling some of its properties.

3.1. Hilbert function

Let E⊂N1+2n such that E + N1+2n = E. We de�ne the Hilbert function of E (and
we denote it by HE) to be the map HE : N 7→ N:

HE(k) = ]{(a; �; �) ∈ N1+2n \ E; a+ |�|+ |�|= k}; ∀k ∈ N:
Let J be an homogeneous ideal of An[t]=

⊕
k∈N An[t]k , where An[t]k is the k-vector

space generated by the monomials tax�D� of total degree a + |�| + |�| = k. We set
Jk = An[t]k ∩ J .
Let ≺ be a total well ordering on N1+2n compatible with sums, and let E≺=Exp≺(J ).

Lemma 3.1. For all k ∈ N, we have
dimk(An[t]k =Jk) = ]{(a; �; �) ∈ N1+2n \ E≺; a+ |�|+ |�|= k}= HE≺(k):

Proof. Let {P1; : : : ; Pm} be a family of homogeneous operators of J such that

E≺ =
m⋃
i=1

(
exp≺(Pi) +N

1+2n) :
If we denote by ki = ord

T(Pi), then for all P ∈ An[t]k , there exists a family of homo-
geneous elements Q1; : : : ; Qm; R of An[t] such that
1. P =

∑m
i=1 QiPi + R.

2. ordT(Qi) = k − ki; ordT(R) = k.
3. If R 6= 0, then the Newton diagram N(R)⊂N2n+1 \ E≺. Thus P ∈ Jk ⇔ R= 0.

In particular, P+Jk=R+Jk . This proves that the classes, modulo Jk , of the monomials
tax�D�, with a + |�| + |�| = k; (a; �; �) 6∈ E≺ form a basis for An[t]k =Jk over k. This
proves our assertion.
Let, for all k ∈ N; HJ (k)= dimk(An[t]k =Jk). This de�nes a map HJ : N→ N which

we call the Hilbert function of J . By Lemma 3.1, HJ = HE≺ does not depend on ≺.

3.2. Finiteness theorems for homogeneous ideals

Let O(N1+2n) denote the set of total well ordering on N1+2n compatibles with sums
(for such an order, 0 is the smallest element, this implies in particular that exp≺(PQ)=
exp≺(P) + exp≺(Q))).
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Theorem 3.2. Let J be a non-zero homogeneous ideal of An[t]. Then{
Exp≺(J ) | ≺∈ O(N1+2n)

}
is a �nite set.

Proof. By Lemma 3.1, it su�ces to prove that the set of subsets E⊂N1+2n such that
1. E +N1+2n = E.
2. HE = HJ

is �nite. Denote this set by E and assume that E is in�nite. Given an element E of E
and an integer k ∈ N, we set

E(k) = {
 ∈ E; |
| ≤ k}:

Let k0 ∈ N be the smallest integer for which HJ (k)¡ dimk(An[t]k) (such an integer
exists because J 6= (0)). Since N1+2n(k0) is a �nite set, one of the possible choices of
E(k0) occurs for all E in an in�nite subset E1 = {Ei}i≥1 of E. Thus, there are elements

i ∈ N1+2n(k0) ; 1 ≤ i ≤ r such that

Ei;(k0) =

(
r⋃
i=1

(
i +N1+2n)

)
(k0)

for all i ≥ 1:

Assume, without loss of generality, that E1 = E and set

S0 =
r⋃
i=1

(
i +N1+2n):

Clearly, S0⊆Ei for all i ≥ 1, on the other hand Ei 6= Ej for all i 6= j. In particular
HJ 6= HS0 . Let consequently k1¿k0 be the smallest integer for which HJ (k1)¡HS0 (k1).
For all j ≥ 2, there exists �j ∈ Ej \ S0 such that |�j|= k1. The set N1+2n(k1) being �nite,
there is an in�nite subset E2⊂E and elements 
r+i ; 1 ≤ i ≤ r + r1, in (N1+2n \ S0)(k1)
such that

Ej;(k1) =

(
r+r1⋃
i=1

(
j +N1+2n)

)
(k1)

for all Ej ∈ E2:

Let

S1 =
r+r1⋃
i=1

(
j +N1+2n);

then S0⊂ S1. Now, repeat the same argument with E2 and S1; : : : . This way we construct
an in�nite sequence S0⊂ S1⊂ · · · of subsets of N1+2n with Si+N1+2n=Si for all i ≥ 0.
This is impossible.

As a consequence of Theorem 3.2. we get the following result:
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Theorem 3.3. Let J be a non-zero homogeneous ideal of An[t]. Then {grL(J );L ∈ U}
is a �nite set.

Proof. Fix ≺ ∈O(N1+2n), then for any L ∈ U , denote by ≺L the total ordering on
N1+2n such that

(k; �; �) ≺L (k ′; �′; �′)⇔



k + |�|+ |�|¡k ′ + |�′|+ |�′|
or

k + |�|+ |�|= k ′ + |�′|+ |�′|

and


L(k; �; �)¡L(k ′; �′; �′)

or

L(k; �; �) = L(k ′; �′; �′) and

(k; �; �) ≺ (k ′; �′; �′)
(where we recall that L(k; �; �) =

∑n
i=1 ei�i +

∑n
i=1 fi�i). Clearly, ≺L∈ O(N1+2n). On

the other hand, by Theorem 3.2, {Exp≺L
(J ) |L ∈ U} is a �nite set. Consequently we

have only to prove that, if E⊂N1+2n with E +N1+2n = E, then {grL(J ) | Exp≺L
(J ) =

E; L ∈ U} is a �nite set. Fix to this end E and let L ∈ U be such that E =
Exp≺L

(J ). Then consider a reduced standard basis B = {Q1; : : : ; Qm} of J w.r.t. ≺L
(i.e.

⋃m
i=1(exp≺L

(Qi) +N1+2n) = E and N(Qi) \ {exp≺L
(Qi)}⊂N1+2n \ E, for all 1 ≤

i ≤ m, where N(Qi) is the Newton diagram of Qi). Clearly, B is also a reduced
standard basis of J w.r.t. ≺L′ , for all L′ ∈ U such that Exp≺L′

(J ) = E (indeed, if
exp≺L′

(Qi) 6= exp≺L
(Qi), we would have exp≺L′

(Qi) 6∈ E). In particular, as proved in
[2, Lemma 1:3:3], {�L′(Q1); : : : ; �L′(Qm)} generates grL′(J ) for all L′ ∈ U such that
Exp≺L′

(J )=E. Every N(Qi) being �nite, we have only a �nite number of possibilities.
This proves our assertion.

We shall �nally give a bound for the cardinality of O(J )={Exp�(J ); � ∈ O(N1+2n)}.
Let for all E ∈ O(J ), JE = (y�1 ; : : : ; y�s)k[y1; : : : ; y2n+1], where y1; : : : ; y2n+1 are in-
determinates and {�1; : : : ; �s} is the minimal boundary of E, that is E =

⋃s
i=1 (�i +

N1+2n) and for all k = 1; : : : ; s, �k 6∈ ⋃i 6=k (�i + N1+2n). Clearly HJE = HE , then we
have

]O(J ) = ]{JE ;E ∈ O(J )} ≤ ]{M ⊂ k[y1; : : : ; y2n+1] monomial ideal; HM = HJ}
Let d(J ) denote the maximal degree of the elements arising in the minimal boundaries
of {Exp�(J ); � ∈ O(N2n+1)}. If (d1; d2; : : :) denote the values of the Hilbert function
of J , then we have

Proposition 3.4.

]O(J ) ≤
d(J )∏
k=1

Cakak−dk ;
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where

ak = dimk An[t]k = C
2n+k
k

and Cab is the binomial coe�cient.

Proof. The number of points in E which are exponents of monomials of degree k is
exactly ak − dk . This proves our assertion.

3.3. Finiteness theorems for ideals in An

Let I be non-zero left ideal of An. The aim of this section is to give for I analogous
results to those of 3:2. Let to this end ¡ be a total well ordering on N2n, compatible
with sums, and denote, for all L ∈ U , by ¡L the total ordering on N2n such that

(�; �)¡L (�′; �′) ⇔


L(�; �)¡L(�′; �′)

or

L(�; �) = L(�′; �′) and (�; �)¡ (�′; �′):

Let P ∈ An be a non-zero di�erential operator. We denote by exp¡L
(P) the privileged

exponent of P w.r.t. ¡L, i.e. exp¡L
(P)=max¡LN(P) (see [2] for the main properties

of the privileged exponent of an operator). We also set

Exp¡L
(I) = {exp¡L

(P) |P ∈ I \ {0}}:
Clearly, Exp¡L

(I) +N2n = Exp¡L
(I).

Theorem 3.5. For a given total well ordering ¡ on N2n; compatible with sums;
{Exp¡L

(I) |L ∈ U} is a �nite set.

Proof. This results follows from Theorem 3.2 as follows: �rstly, we remark that, with
the notations of Section 2, ≺L =¡h

L, for the following choice of ≺:

(k; �; �) ≺ (k ′; �′; �′) ⇔


(�; �)¡ (�′; �′)

or

(�; �) = (�′; �′) and k ¡k ′:

Now, apply �( Exp¡h(h(I))) = Exp¡(I), to the order ¡=¡L.

Theorem 3.6. {grL(I) |L ∈ U} is a �nite set.

Proof. Let h(I) be the homogenized ideal of I in An[t]. The associated graded ideal
grL(h(I)) is an ideal of the ring grL(An[t]) ' (grL(An))[t] (where [xi; �i]=0 if ei+fi ¿ 0
and [Di; xi] = t2 if ei + fi = 0). Let

� : An[t] 7→ An; �(H) = H|t=1
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denote the deshomogenization morphism. If L ∈ U , � gives rise to a morphism
�L : grL(An[t]) 7→ grL(An) ' grL(An[t])=(t − 1):

Clearly, �(h(I))=I , on the other hand, for all P ∈ I; �L(�L(h(P)))=�L(P), in particular
�L(grL(h(I)) = grL(I). Now, apply Theorem 3.3 (remark that �L does not depend on
L as far as we may identify di�erent grL(An)).

Finally we shall give, using Proposition 3.4, a bound for the cardinality of {Exp¡L
(I)

|L ∈ U}. Let d(h(I)) denote the maximal degree of the elements arising in the minimal
boundaries of Exp¡h

L
(h(I)); L ∈ U . If (d1; d2; : : :) denotes the set of values of the

Hilbert function of h(I), then we have

Proposition 3.7.

]{Exp¡L
(I) |L ∈ U} ≤

d(h(I))∏
k=1

Cakak−dk ;

where

ak = dimk An[t]k = C
2n+k
k :

4. The Gr�obner fan

Let I be a non-zero left ideal of An and let h(I) be the homogenized ideal of I in
An[t]. The purpose of this section is to study the stability of grL(h(I)) when L varies
in U . For all E⊆N1+2n such that E +N1+2n = E, we set

UE = {L ∈ U ; Exp≺L
(h(I)) = E};

With these notations we have the following:

Theorem 4.1. There exists a partition E of U into convex rational polyhedral cones;
such that for all element � ∈ E; grL(I) and Exp≺L

(I) do not depend on L ∈ �. This
partition is exactly the partition into the set on which both grL(h(I)) and Exp≺L

(h(I))
are �xed. Furthermore; every UE is convex and a union of cones of E.

In order to prove our theorem, we shall �x some notations and give some preliminary
results. Let E be a subset of N2n+1 such that E + N2n+1 = E and let L ∈ UE . Then
consider a reduced standard basis Q1; : : : ; Qr of h(I) w.r.t. ≺L. As in the proof of
Corollary 3:3, we can see that Q1; : : : ; Qr is also a reduced standard basis w.r.t. ≺L′ ,
for all L′ ∈ UE . Denote by ∼ the equivalence relation on U de�ned from Q1; : : : ; Qr
by

L ∼ L′ ⇔ �L(Qk) = �L
′
(Qk) for all k = 1; : : : ; r:

Lemma 4.2. ∼ de�nes on U a �nite partition into convex rational polyhedral cones
and UE is a union of a part of these cones.
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Proof. Let L1; L2 ∈ U such that L1 ∼ L2 and let L ∈ [L1; L2], also let � ∈ [0; 1] such
that L=�·L1+(1−�)·L2. Write for all 1 ≤ k ≤ r, Qk=�L1 (Qk)+Rk=�L2 (Qk)+Rk . Since
for all (�; �) ∈ N2n; L(�; �)=�·L1(�; �)+(1−�)·L2(�; �), then �L(Qk)=�L1 (Qk)=�L2 (Qk)
by an immediate veri�cation. On the other hand, if L1 ∼ L2 and L1 ∈ UE , then L2 ∈ UE .
This proves that UE is a union of classes for ∼.

Proof of Theorem 4.1. We de�ne E as follows: for each E we consider the restriction
EE to UE of the above partition and then E is the �nite union of the EE’s. On each cone
of the partition, grL(h(I)) and Exp≺L

(h(I)) are �xed, and the same is true for grL(I)
and Exp≺L

(I) because of the proof of the Theorems 3.5 and 3.6. Conversely, assume
that L; L′ are in the same UE . The ideal grL(h(I) has the same E as set of priveleged
exponents with respect to ≺L and �L(Qk); k =1; : : : ; r as a reduced standard basis (let
us point out that here we use the fact that h(I) is homogeneous with respect to the
total degree, and therefore the reduced standard basis Q1; : : : ; Qr is also homogeneous).
Therefore, if grL(h(I)) = grL

′
(h(I)), we obtain �L(Qk) = �L

′
(Qk) by the unicity of the

reduced standard basis. This ends the proof of the theorem except for the convexity of
UE proved below.

Lemma 4.3. UE is a convex set: if L1; L2 ∈ UE; then [L1; L2]⊆UE .

Proof. Let L ∈ ]L1; L2[ and let � ∈ ]0; 1[ such that L = � · L1 + (1 − �) · L2. For all
1 ≤ k ≤ r, if exp≺L1

(Qk)=exp≺L2
(Qk)=exp≺L1

(qk(t)x�D�), and if Qk=qk(t)x�D�+Rk ,

then either Rk =0, or ordL(qk(t)x�D�) ≥ ordL(Rk). Furthermore, if ordL(qk(t)x�D�)=
ordL(Rk), then ordLi(qk(t)x

�D�) = ordLi(Rk) for at least one 1 ≤ i ≤ 2. In particular
exp≺L

(Qk)=exp≺L1
(qk(t)x�D�), which implies that E⊆ Exp≺L

(h(I)), and consequently,
by division, that E = Exp≺L

(h(I)), i.e. L ∈ UE .

In the following, we give some precisions about the partition:

De�nition 4.4. We say that grL(h(I)) is a multihomogeneous ideal if we are in the
commutative case, and grL(h(I)) is homogeneous with respect to x; �, that is generated
by monomials in x; � (since h(I) is itself homogeneous, grL(h(I)) is in fact generated
by monomials in t; x; �).

Proposition 4.5. The set of L ∈ U for which grL(h(I)) are multihomogeneous ideals
de�nes the open cones of dimension 2n of E (contained by construction in the part
ei + fi ¿ 0 of U ).

Proof. Let Q1; : : : ; Qr be a reduced standard basis of h(I) with respect to ≺L and let
V (L) be an open neighbourhood of L such that for all L′ ∈ V (L) and for all 1 ≤ k ≤ r,
�L

′
(Qk)=�L(Qk). In particular, exp≺L

(Qk)=exp≺L′
(Qk), for all 1 ≤ k ≤ r. This proves

that E⊆ Exp≺L′
(h(I)), and consequently that E = Exp≺L′

(h(I)). Finally, V (L)⊆UE .
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This proves our assertion. Conversely, if L is in an open cone of UE , then for any L′

in a neighbourhood of L and for all k, �L
′
(Qk) = �L(Qk). This implies that �L(Qk) is

a monomial.

De�nition 4.6. E is called the standard fan of h(I), or, with the notations of [14], the
extended Gr�obner fan of I .

Remark 4.7. (i) Let U ′ ⊆U be the set of linear forms L : R2n → R with coe�cients
in R+. Consider on N2n the set of -total well ordering- ¡L ; L ∈ U ′, de�ned as in
Section 3.3. Then the notion of reduced standard basis of I w.r.t. ¡L is well de�ned
in this case. With these notations the result of Theorem 4.1 holds if we consider the
set of grL(I); L ∈ U ′. The associated fan E′ is called the restricted Gr�obner fan of I .
Obviously, E′ is re�ned by �′(EU ′), where EU ′ denotes the restriction of E on U ′ and
�′ denotes the natural projection.
(ii) The result of Theorem 4.1 holds for the set of grL(I); L ∈ U because of the

relationship between grL(h(I)) and grL(I) given in the proof of 3:6. Nevertheless,
the analogous set of UE with respect to I is not necessarily a convex set, as it can
be shown in the following example: Consider in A2(C) the left ideal generated by
P1 = x1 − x21 ; P2 = x1D2 − x1. If e1¿ 0; f2¿ 0, then EL(I) is generated by (2; 0; 0; 0)
and (0; 0; 0; 1), whereas EL(I) is generated by (1; 0; 0; 0) elsewhere.
(iii) The Gr�obner fan as introduced in 4.6 can be re�ned in order to satisfy the

boundary conditions (if two strata satisfy Ci ∩ Cj 6= ∅, then Ci⊂Cj). We can use to
this end the universal standard basis of h(I) which is the union of all reduced standard
bases of h(I).
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