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Abstract-In this paper, we propose the concept of involutive direction ss a vector representation 
for the concept of involutive division proposed by Gerdt and hi co-workers. With this representation, 
most of the properties of involutive divisions such as Noetherity, Artinity, and constructivity, can be 
greatly simplified. A new algorithm to compute the involutive completion is also given. Based on the 
vector representation, two new types of involutive divisions are found and proved to be Noetherian, 
Artinian, and constructive. These new divisions may lead to new methods of finding integrability 
conditions of partial differential equations and computing Grobner bases of polynomial ideals. @ 2001 
Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

There are three classical approaches to determine the integrability conditions of partial differential 

equations (PDEs): Janet’s theory [I], Thomas’ theory [2], and the formal theory of differential 

equations [3]. 
Baaed on Riquier’s theorem [4], Janet proposed the involutivity conditions for orthonomic sys- 

tems and designed an algorithm for their completion [l]. By his approach, independent variables 

are separated into two parts: multiplicative and nonmultiplicative, and in order to find new 

integrability conditions one need only to prolong given equations along with nonmultiplicative 

variables. The Riquier-Janet theory was developed by Ritt into the characteristic set method [5]. 

Schwarz clarified the Riquier-Janet theory and used it to develop programs for dealing with 

determining equations of symmetries of PDEs [6-81. 

Thomas introduced another separation method for dividing independent variables into multi- 

plicative and nonmultiplicative ones, and generalized the Riquier-Janet theory to nonorthonomic 

algebraic PDEs [2]. Combining Thomas’ completion method with Ritt’s characteristic set ap- 

proach, Wu proposed the well-order principle and zero decomposition algorithms for nonlinear 
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algebraic differential polynomial systems [9,10]. Wu’s method was developed and used to solve 

polynomial systems [9,11,12], to prove theorems in geometries [13-151, and to simplify partial 
differential equations [16,17]. 

The third method in the formal theory of differential equations [3] allows one to formulate the 

involutivity intrinsically, in a coordinates independent way. 

In [IS], Wu showed that the theory of Thomas can be modified to give a new method for 

computing the Grijbner basis for polynomial ideals, which is different from that of Buchberger [ 191. 

In [20], Zharkov and Blinkov extended Pommaret’s theory to compute the Grijbner basis under 

certain conditions. In [21-231, Gerdt and Blinkov extracted the common properties of the three 

classical theories to introduce a concept of the involutive division. Furthermore, they gave, for 

a general involutive division, algorithms on completion of polynomials and linear differential 

systems to an involutive base [24]. This involutive base is the Gr6bner basis under certain 

conditions. 

In order to reveal further essential properties and to find new involutive divisions, we introduce 

a new concept involutive direction, which is a vector representation of the involutive division. 

Using this representation, most of the properties of the involutive division such as Noetherity, 

Artinity, and constructivity, can be greatly simplified. Some new properties are also found. A new 

algorithm to compute the involutive completion is also given. Based on the vector representation, 

two new types of involutive divisions are found and proved to be Noetherian, Artinian, and 

constructive. These new divisions may lead to new methods of finding integrability conditions of 

PDEs and computing Griibner bases of polynomial ideals. 

The rest of this paper is arranged as follows. In Section 2, we give a vector representation 

of the involutive division. The basic properties such as Noetherity, Artinity, and constructivity, 

are discussed in Section 3. A proof of the equivalence between the involutive direction and the 

involutive division can be found in Section 4. In Section 5, we generalize the Thomas and Janet 

directions to two types of directions. In Section 6, we give conclusion remarks. 

2. BASIC NOTIONS 

For any real vector cr, we denote by CQ the ith component of a, and for any two n-dimensional 

vectors cr and ,f3, we call the vector (cY~/~I,. . . , a,~,) Hadamard product of (Y and p, denoted 

by a! o ,& In this paper, we mainly consider exponent vectors, i.e., vectors whose components are 

all nonnegative integers. The set of all such vectors is denoted by Nn. Let An = {LY E Nn 1 CI~ = 0 
or 1, i = 1,. . . , n}. We introduce the following concepts. 

DEFINITION 2.1. 6 is said to be a direction on Nn if, for every finite nonempty subset l?of Nn, 
a map dr : r --) A, can be given. 

For example, 6*, defined as: for every finite subset I? of N”, S*r (CX) = (1, 1, . . . , l), V (II E I’, is 

a direction on Nn. Clearly, the image s*r(cr) of a is independent of the set J? which cr belongs 

to, such directions are said to be global. 

DEFINITION 2.2. A direction 1.5 on Nn is called an involutive direction if the following conditions 

are satisfied. 

(i) Forcr,p E r, ~1,” E Nn, ifa+,u&(a) = p+voS’(P), then eitherp-a andSr(,)-dr(p) 

are both nonnegative, or (Y - p and #(j!?) - #‘(a) are both nonnegative. 
(ii) If a E C C I?, then S’((r) - sr(a) is nonnegative. 

It is easy to examine that 6* is not involutive for n 2 2. We now consider the three classical 

methods of variable separations [l-3]. In our terminoldgy they are called the Thomas direction, 

Janet direction, and Pommaret direction, respectively, which correspond in turn to Thomas 
division, Janet division, and Pommaret division, respectively, in [21]. For convenience, we define 

an operator b on Fn, the set of all finite nonempty subset of Nn, as follows: 

b:l?l+y, vrE3*, 
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where ^fi = max{a 1 ,d E J?}, i = 1,2,. . . , n. We call b the upper bound operator, and the set, 

B(r) = (0 E Nn 1 pi 2 bi(I’), i = 1,. . . , TX} 

the bound of l?. 

EXAMPLE 2.3. The Thomas direction can be defined as follows: 

va E r&(4 = 
{ 

1, if cxi = bi(l?), 
0 

9 
otherwise 

9 

i = 1,2,..., n, where 6:(a) and bi(l?) represent the ith components of sr(a) and b(r), respec- 

tively. 

EXAMPLE 2.4. The Janet direction can be defined as follows: 

vao, 

r, 
o<(a) = 

1, if al = bl(l?), 

0, otherwise, 

@) = 
1, if ai = bi (r,,...& , 

0, otherwise, 

where l? aI...ai_l = {P E r 1 flj = Lyj, j = 1,. . . ,i - l}, i = 2,. . . ,n. 

EXAMPLE 2.5. The Pornmar& direction is defined a~ 

vao, q(a) = 
1, if i 2 L(Q), 

0, otherwise, 
i= l,...,n, 

where L(a) represents the number k such that the kth component of CY is the last nonzero 

componentofaifcr#O. k=Oifo=O. 

We will show that the three directions defined above are involutive. For the Thomas and Janet 

directions, the equality 
a+~OSr(cY) =P+Y&@) (2.1) 

implies a = /?, where cw,p E I?. Thus, (i) of Definition 2.2 is valid. Otherwise, we may suppose, 

without loss of generality, ~1 = ,f?~, . . . , cq-1 = &_I, ai > pi. According to the definition 

bf the Thomas and Janet directions, we have s:(p) = 0, whence ai + I& = ,& 2 CQ 

by (2.1), a contradiction. As for condition (ii) of Definition 2.2, note the fact,: if (Y E C c r 

then Cj,...ji_, C rj,...jj-l. Therefore, bi(C> I hi(r), bi(Cj,...j;-1) I bi(rj,...ji_,), j = 2,. . . ,n. 
Hence, S,‘(a) = 1 implies 6F(cx) = 1, i.e., 6’ - 6r is nonnegative. So the Thomas and Janet 
directions are both involutive. 

Pommaret direction is clearly global, so the condition (ii) of Definition 2.2 is satisfied. For any 

two vectors cr, p E r, we suppose k = Ii(cr) 5 L(p) = j. Equation (2.1) implies (Y~ = PI,. . . , 

Q/c.-.1 = &.-I, @c + /& = ,&, and Qk+l = 0,. . . , CI, = 0 by the definition of Pommaret direction. 

Hence, @ - cx and dr (CV) - sr(fl) are both negative. Pommaret direction is also involutive. 

DEFINITION 2.6. A set r is called auto-reduced with respect to a direction 6, or &aut,reduced 
if (2.1) implies (Y = p for every pair of (Y, fl E r. 

Any finite set, is auto-reduced with respect to the Thomas and Janet directions. 

3. NOETHERIAN, ARTINIAN, AND 
CONSTRUCTIVE DIRECTIONS 

From now on, S represents an involutive direction, <lex represents the lexicographical order. 

3.1. Noetherian Directions 

For (Y E r and ~1 E N”, we call Q + p o Jr(~) a prolongation of cr. The set of all prolongations 

of cx is denoted by P,‘(a). Let Pa(a) = UaEr P,‘(a). 
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DEFINITION 3.1. A finite subset I? ofNn is called complete with respect to 6, if Pa(r) = P*(r), 

where P*(r) = {CX + ~1 a E IT, p E Nn}. 

Clearly, r’ = p6(r) n B(r) is complete with respect to the Thomas and Janet directions, 

and I” > P. For a finite set P, if there exists a finite set I” such that 

(a) l? is complete with respect to 6, and l? > P; 

(b) P6(rl) = p*(r). 
then I’ is said to be finitely generated with respect to 6, I” is called a completion of l?. If every 

finite set is finitely generated with respect to 6, then 6 is said to be Noetherian. 

The Thomas and Janet directions are Noetherian, but Pommaret direction is not. 

3.2. Artinian Directions 

For convenience, we often omit P and 6 in sr(a) and Pa(P), respectively. Denote by &(cr) 

the ith component of 6(a), and by 6ci) the vector whose ith component is 1 and the other 

components are 0. An index i is called a multiplier (or nonmultiplier) if &(a) = 1 (or &(cr) = 0). 

If i is a nonmultiplier of cr, we call Q + h(i) a nonmultiplicative prologation of ck. 

DEFINITION 3.2. cr, ,6 E I’, p is said to be a pseudo-divisor of Q if there’exists an index i and a 

vector p E N”, such that 

(1: + 6Ci) = p + p 0 S(P), &(cX) = 0. (3.1) 

LEMMA 3.3. If (3.1) holds, then 

(T) a + #l = /3 , i.e., cri + 1 = pi, CE~ = &, j # i, are valid for the Thomas direction. 

(J) (~1 =A,..., CQ-~ = ,&I, cri + 1 = ,!$, are valid for Janet direction. 

(P) L(Q) > L(P)7 or L(cu) = L(p) and (~1 = Pi,..., ai- = pi-r, cri -12 1 = &, are valid for 

Pommaret direction. 

PROOF. For the Thomas direction, if @j(p) # 0, then /3j < aj for j # i by (3.1). So flj < bj(I’), 

Sj(P) = 0, a contradiction. If &i(P) # 0, then pi 5 pi < bi(I’) since S,(a) = 0. So &(/3) = 0, a 

contradiction. We have CX~ + 1 = ,&, o,j = flj, j # i. 
For the Janet direction, pj 5 aj for j # i by (3.1). If there exists k < i, such that Pi = al,. . . , 

,&-I = arc-l, ,& < ak, then Pk < bk(rp,...p& whence Sk(@) = 0. we have ak = pk by (3.1), 
a contradiction. So aj = @j for j < i. Since &(a) = 0, p&(P) # 0 implies that pi 5 Cri < 

bi(17~1...~i_1). Hence, &i(p) = 0, a contradiction. 

For the Pommaret direction, if L(Q) 5 L(p), then &(a) = 0 implies i < L(a), whence aj 2 /9j 

for j > L(a) by (3.1). But aj = 0, whence /3j = 0 for j > L(a), SO L(a) = L(P). Since i < L(P), 

Sj(P) = 0 for j 5 i, we have ~1 = Pi,. . ., CI+~ = @i-l, CQ = ,$ by (3.1). I 

Consider a sequence 
+?, @)p, . . . , (“)p, . . . ( (3.2) 

where the ti)/3 E P. If ci+‘)/3 is a pseudo-divisor of ci)p for i = 1,2,. . . , then (3.2) is said to be a 

pseudo-divisor sequence of P. If for every finite set I’, every pseudo-divisor sequence of l? is finite, 
then b is said to be Artinian. Since l? is a finite set, the property that ‘every pseudo-divisor 

sequence is finite’ is equivalent to the property that ‘every pseudo-divisor sequence consists of 

distinct elements’. 
For the Thomas and Janet directions, p is a pseudo-divisor of a implies Q <iex ,0. For Pommaret 

direction, 0 is a pseudo-divisor of CY implies L(Q) > L(p), or L(cr) = L(p) and a <rex 0. So the 

three directions are Artinian directions since relations <iex and > are both transitive. 

THEOREM 3.4. Let 6 be an Artinian direction. A finite set I’ is complete with respect to 6 if 

and only if 

forallyEr. 

6i(y) = 0 + 7 + 6ci) E p(r), (3.3) 
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PROOF. The necessity is clear. For the sufficiency, we suppose P*(r) \ P(r) # 0, and consider 

any element y of it. Set 7 = (l)P + (‘IV, (l)P E l?. Since y $! P(I’), there is an index il, 

such that (l)yil # 0, and &,((l)/3) = 0. SO (l)p + (‘1~ = t1)/3 + 6(“l) + ((‘)Y - 6cil)). By (3.3), 

(1)~ + ~(“1) E p(r), i.e., there is a t2)/? E r, such that (l)fl+ fiti = (‘)p + c2)p o a((2)p), whence 

c2)fl is a pseudo-divisor of (l)p. We have (l)p+(‘)v = (2)p+(2)~ $ P(r). By this way we may get 

an infinite pseudo-divisor sequence of r. This is in contradiction with Artinian property of 6. I 

For a given I’, if (3.3) holds for all y E r, we say I’ is locally complete. In [17], the authors 

gave a proof of Theorem 3.4 for Janet direction only. A special kind of complete set, called 

closed set, was introduced. An algorithm to compute the minimal closed set l? such that r’ > l? 

and P(I”) = P*(r), w K h’ h is called closure of r, was given for a finite set I?. 

3.3. Constructive Directions 

DEFINITION 3.5. A nonmultiplicative prolongation Q + S ci) of l? E Fn is said to be critical if the 

following conditions are satisfied: 

(c) Q + 0 $ p(r) e 
(d) if (y + 6ci) = ,0 i b(j) + y, where /3 + S(j) * 1s also a nonmultiplicative prolongation of l? and 

y # 0, then /3 + 0) E p(r). 
A direction 6 is said to be constructive if, for every finite set l?, no critical prolongation (Y + 6ci) 

of I’ can be expressed as 

Ly + 0 = p + p 0 sr(p) + V 0 Sr’ (P’) , (3.4) 

where p E I’, ,@ = p + p o Jr(p), I” = r u {PI}. 

The Thomas, Janet, and Pommaret directions are all constructive. For the Thomas direction, 

we suppose that Q + 6 ’ is a critical prolongation and (3.4) holds. If ST(p) = 0, then $ = 

p. < b.(r) 5 b.(r ).(L I ence, 

p’+ (p +‘p’) 0 sr(;) E p(r), 
a,“(fl’) = 0. Setting $ = v o #‘(/Y), we have (Y + 6ci) = 

w IC 1s in contradiction with (c) of Definition 3.5. For Pommaret h’ h * 
direction, SF(p) = 0 implies j < L(p) I L(p’). So SF’@‘) = 0, and the remaining part is similar 

to the proof for the Thomas direction. 

As for Janet direction, choose a as high as possible with respect to <lex, such that cr + 6ci) is a 

critical prolongation, and (3.4) holds. We claim that cr <lex 0. Otherwise one may suppose cyl = 

A,..., ck’k-1 = ,6&l, ak > ,&. If k > i, then (21 = & = p’,. . ., ai-1 = ,&_1 = ,f&, ai 2 pi 

by (3.4). Since d:(a) = 0, (pi < bi(I’crl...cri_l) = bi(l?p,...pj_,), whence SF(p) = 0. Hence, 

/3, = Pi < bi(l?p,...p;_,) I bi(I’&;...pl_l),*and SF’@‘) = 0. By (3.4), (pi + 1 = Pi, a contradiction. 

If k < i, then by (3.4), al = /31 = /3’, . . . , Qk-_l = /&-I = &_+ Qk > pk. This implies s,‘(p) = 0, 

P; = pk, $‘(P’) = 0, and ak = &, which is a contradiction. 

Since cr + 6ti) $! P(r), there is a j such that vjSF’(p’) # 0 and Sjr(fl) = 0. Hence, p’ # p. (3.4) 
can be rewritten as 

(Y + SC”) = p + 6(j) + y, (3.5) 

where y = I_L o Jr(P) + (V o Jr’@‘) - S(j)) # 0. By (d) of Definition 3.5, /3 + 6(j) E P(r). Setting 
p + 6(j) = (l)Q + 0 0 #.((l),), (l)cy E l?, by Lemma 3.3 we have 0 <lex (l)(~, and 

Q + 6(i) =(I) &. +(I) y, cr <lex (%, (3.6) 

where (‘)y = a06~((‘),)+y # 0. Since CU+~(~) @. P(r), we have “‘yi, # 0, such that 6: ((l)cy) = 0. 

Rewrite (3.6) as Q + 6(i) = (I)(Y + 6ti1) + ((l)y - $“I)). By th choice of cr, (‘)y - 6ci1) # 0, whence 

(‘)a + 6(“‘) E P(r). Setting (‘)a + S(il) = c2)a + 7 o dr((‘),), 12), E I’. By Lemma 3.3 we have 
(1) cr <lex t2)cz, and 

a + b(i) = (2), + 9, (II <lex %, (3.7) 

where c2)y = 7 o 6r((2)~) + ((‘17 - St”‘)) # 0. In this Firay, we would get an infinite sequence 

CX <lex p <lex (l)(Y <lex C2)f2 <lex . . . 

of r, which is in contradiction with the finiteness of I?. 
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THEOREM 3.6. Let 6 be Artinian and constructive. Any completion l? of a finite set l? contains 

all critical prolongations of I?. 

PROOF. Suppose that there exists a critical prolongation Q + 6ci) of r, which does not belong 

to I”. Since Q + 6ci) E P*(r) = P(P), th ere is a p’ E I”, such that Q + 6ci) = p’ + Y o sr’(p’). 

Set V’ = Y o sr’(pl), I?” = r U {p'}. By (ii) of Definition 2.2, Jr”(p) - sr’(p’) is nonnegative. 

Hence, V’ = V’ o Jr” (p’), and 

Q + CGi) = p’ + u’, u’ # 0. (3.3) 

We claim that ,P E P(r). S ince p’ E I” E P*(F) = P*(r), it can be rewritten as 

p’ = (i)p + (Qy (l)p E r. (3.9) 
If there is a (l)yj # 0, such that SF((l)p) = 0, substituting p’ = (l)p+@ + ((l)y - S(j)) into (3.8) 

we have (Y + 6ci) = (l) /3 +6(j) + ((‘)y - b(j)) + u’. Then (l)p + 6(j) E P(r) since cr + 6ci) is critical 

and u’ # 0. Let (l)p + S(j) = c2)p + cr o Jr(c2)fl), c2)p E I. Then (‘j/3 is a pseudo-divisor of (l)p, 

and 
p’ = (9 + (2)7 (3.10) 

where c2)y = o o c~~((~)/Y) + ((l)y - b(j)). For /3’ = c2)/3 + c2)y, we discuss about c2)y as about 

(l)y for ,8’ -= (?)p + (‘)y, and so on. Because 6 is Artinian, we can achieve that, by a finite 

number of steps, there exits a p E l? such that p’ = 0 + ~1, and pk # 0 implies S:(p) = 1, 

k = l,..., n. So p’ = ,8 + p o br(p) E P(r). Substituting ,0’ = p + p o 6(p) into (3.8), we have 

cr + s(i) = p + p 0 S(P) + Y’ 0 P” (p’), which is in contradiction with the constructivity of 6. n 

4. EQUIVALENCE BETWEEN INVOLUTIVE 
DIRECTION 

4.1. An Equivalent Theorem 

In [21], an axiomatic definition 

n-variables monomials. 

AND INVOLUTIVE DIVISION 

on involutive division was given. Let M be the set of all 

DEFINITION 4.1. An involutive division L on M is given, if for any finite monomial set U c M 
and any u E U there is a submonoid L(u, U) of M satisfying the conditions 

(a) if w E L(u, U) and v 1 w, then TJ E L(u, U); 
(b) if u, 21 E U and uL(u, U) fl wL(u, U) # 0, then u E wL(v, U) or v E uL(u, U); 
(c) if w E U and Y E uL(u, U), then L(v, U) 5 L(u, U); 

(d) if V C U, then L(u, U) C L(u, V) for all u E V. 

For convenience, we denote by za: the monomial z$‘x~’ . . . CI$~~, where ~1 = (al, ~2,. . . , a,). 

It is clear that the map cp : (Y H xa is an isomorphism between monoids (Nn, +) and (M, .). We 

will prove the next theorem. 

THEOREM 4.2. The involutive direction in Definition 2.2 and the involutive division in Defini- 

tion 4.1 are equivalent under the map ‘p. 

PROOF. Let b be an involutive direction on N”. For any element u of a finite subset U of M, 

let l? = (p-l(U), and u = 9. We need to prove that the set 

L(u,U) = {zp 1 p = poSr(cx), Jo E N”} (4-l) 

is a submonoid of (M, .), and (a), (b), (c), (d) hold. Hence, L is an involutive division on M. 
Taking p = 0, then p = 0, ~0 = 1 E L(u,U). If V,WJ E L(u,U), let v = ~0, w = zy, 

wherep=p06~(a),y=vob~(a). ThenP+y=(p++)~S~(cu),whencevw=zo+YE L(u,U). 

Hence, L(u, U) is a submonoid of (M, e). 
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If w E L(u,U), w 1 w, set w = 27, y = v 0 sr(a). Then J:(o) = 0 implies @k = 0. Hence, 

p = ,8 o br(cz), TJ = zfl E L(u, U), and (a) holds. 

For u, v E U, set u = xa, V = x0, a,P E r. If uL(u, U) fl vL(v, U) # 0, supposing w = 

x7 E uL(u, U) CI wL(v, V), then y = (Y + /.L o Jr(o) = P + v o S’(p), /J, v E N”. By (ii) of 
Definition 2.2, we may suppose, without loss of generality, that sr(a) - br(p) and p - cr are both 

nonnegative. Let V’ = v o ar(j3). Then v o Jr(p) = u’ o sr(a). Hence, cr + (p - v’) o ar(a) = p. 

Let II’ = (cl - v’) o #‘(a). Then p’ E Nn, and p = (Y + p’ o Jr(a). We have u E uL(u, U), which 

implies (b) . 
For u,‘u E U let u = xa, v = x0, cu,P E I’. If TJ E uL(u,U), then ,8 = cr + ,u o sr(a), 

i.e., ,f3 + 0 o sr(p) = (I! + /J o Jr(o). By (ii) of Definition 2.2, #‘(a) - br(/?) is nonnegative 

since /3 - cr is nonnegative. For w E L(v, U), let w = x7. Then y = Y o Jr(p) = V’ o 6r(~) (v’, 

taken as above). Hence, w E L(u, U). We have L(v, U) C L(u, U), which implies (c). 

For u E V C U, let u = xa, C = (p-l(V). W e h ave cr E C S I’, and sC(a) - sr(a) is 

nonnegative by (ii) of Definition 2.2. Similar to the above proof, we derive L(u,U) 5 L(u,V), 

which implies (d). 

Conversely, given an involutive division L on M, we will construct an involutive direction S 

on Nn. For any element cr of any finite subset r of Nn, setting U = {so 1 /? E r}, u = P, we 
define sr(a) as follows: 

S,r(a) = 
1, if Xk effectively appears in some elements of L(u, u), 

0, otherwise, 
(4.2) 

Ic = 1,2,..., n. Clearly br is a map from I to A,. Now we begin to prove that conditions (i), 
(ii) of Definition 2.2 are satisfied. 

Let a,P E l?, and cr+po#‘((r) = /3+~06~(/3). Let u = xa, v = x0. Then u,w E U. We 

claim that ii = xP@(,) E L(u, U). In fact, if s;(o) = 1, xk effectively appears in some element, 

say u’, of L(v, U), whence Xk E L(u, U) by (a) of Definition 4.1. Since L(u,U) is a monoid, 

we have 6 = xy16f(“). . . xEk6r(a). . .x(““(~) E L(u, U). Similarly 5 = xyoar@) E L(v, U). 

So uti = VB E uL(u, U) nvL(v, U). By (b) of Definition 4.1, either u E vL(v, U), or v E uL(u, U). 
In the case v E uL(u, U), ,4 - CY is nonnegative and L(v, U) C L(u, U). Hence, P(a) - P(p) is 

nonnegative. And likewise for the case u E vL(w, U). Then (i) is satisfied. 

For o E C E l?. Let V = {x0 1 D E C}. Then u = xa E V G U. By (d) of Definition 4.1, 
L(u, U) C_ L(u, V). Hence, S’(o) - sr( ) CY is nonnegative. Then (ii) is satisfied. I 

Table 1. Corresponding relations between involutive directions and involutive divi- 
sions. 

(N”, +) L(M,.):a)-)u=P 

r - .!J, 6r -) Lu 

&(a) = 1, or 0 - 7mi = u x xi or not 

a + /406(cX) 4 u x ‘Ul, 2)1 = zpoJ(a) 

(cl 0 44 I P E N”) - L(u, V, pa(r) - C,W), p*(r) - C(V) 
6 is Artinian - L is continuous, 6 is Artinian and constructive - L is constructive 

4.2. An Improved Completion Algorithm 

In [21,22], the authors gave an algorithm to determine a minimal involutive completion for a 
given finite set of monomial. In their algorithm, a given finite set of monomials was enlarged 

to its completion by adding one monomial each step. By Theorem 3.6, we can enlarge a given 

noncomplete finite set, by adding all critical prolongations in each step, to a minimal completion 

of the given set. It is easy to see that deciding whether wj is critical is as simple as deciding 
whether uxj is the lowest element with respect to a given ordering. Based on these considerations, 
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we give an improved completion algorithm. A variable zi is called multiplicative is i is a mutiplier. 
Denote the set of nonmultiplicative variables of u in V by NML(u, V). 

IMPROVED COMPLETION ALGORITHM 

Input: U, a finite monomial set 
Output: 0, a minimal completion of U 

begin 
0 := u 

while exist u E fi and z E NML(u, e), 
such that u . x has no involutive divisors in 0 do 

choose all critical prolongations of 0, say, 8 

0:=0UrT 

end 
end 

For example, consider the Thomas division and a set U = {xy, y2, z}. By their algorithm, 

taking the lexicographical ordering with .Z < y < x, 

U = {XY,Y2,Z} -+ {XY,Y2,Z,YZ} --+ {zY,Y2,&Y&Y2~} -+ {zY,Y2,&Y6Y2%=} 

- {XY, Y2, -z, YZ, Y22, zz7 ZYZ} --+ {~Y,Y2,~,Y~,Y2~,~~,~Yz12Y2} 

-1 ZY,Y2,~,Y~,Y2~,x~,xYz,zY2,xY28) =uT. 

By the improved algorithm, 

u = {XY,Y2,Z} -+ {~Y,Y2,~,~Y2,~~,Y~} + {xY,Y2,~,xY2,x~,Yt,xyZ,y2Z) 

-4 XY, Y2, Z, Yz, Y2& za, zYZ,xY2, zY22} = UT. 

By adding a set of monomials in each step, our algorithm may finish the completion process 

in less number of steps. 

5. GENERALIZATION OF THE 
THOMAS AND JANET DIRECTIONS 

In [22], Gerdt et al. gave two new involutive divisions, Division I and Division II, different from 

that of Thomas, Janet, and Pommaret. We will show how to represent them using involutive 

directions. 

EXAMPLE 5.1. DIVISION I. Let U be a finite monomial set. The variable xi is nonmultiplicative 

for u E U if there is a v E U, such that 

x;; . . . xf;zi. = lcm(zl, w), ISm<[n/2], dj >0 (1 <j<m), 

and xi E {xii,..., xi,,,}. In other words, for a E I, Bf(a) = 0 iff there exists a /3 E l?, such 

that pi > ai and the number of positive components of p - a ranges from 1 to [n/2]. In the next 

section, we will generalize this concept. 

EXAMPLE 5.2. DIVISION II. For monomial u = xi1 . . . x2, the variable xi is multiplicative 

if di = d,,, (u), where d,,, = max{dl,. . . , d,}. In other words, for QI E l?, &F(a) = 1 iff cq is the 

maximal component of cr. 

5.1. The Thomas Type Directions 

We denote by NP(cr) the number of positive components of Q. Let 1 be an integer not less 
than [n/2]. For any finite subset l? of Nn, set 

B:(O) = {p E r 1 i 5 ~,(p - Q) 5 1). (5-l) 
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DEFINITION 5.3. A Thomas type direction, 6 on N” is defined as 

SF(a) = 1 8 @i 5 Qi, for all p E Bf(cr). (5.2) 

In other words, 6’(a) = 0 iff there is a p E Bf (a), s. t. pi > cq. This direction is denoted by Tl. 

Clearly, when 1 = [n/2], 6 is just the direction corresponding to Division I of Gerdt et al. 

The Thomas direction corresponds to the case I = n. 3 is Noetherian since P(I) n B(r) is a 
completion of I’. We will discuss the involutivity, Artinity and constructivity of Tl. 

Tl is involutive. Set 6 = Tl. For cr, p E I’, let 

cu+po6((r) =p+uoqp), (5.3) 

where /.J, v E Nn. If there are indices i and j, such that CQ > pi, and oj < pj, then either cr E 

Br(P) or p E Bf(cr) since 1 2 [n/2]. But a: E B:(p), with CQ > pi, implies S,(S) = 0, 

whence fli = oyi + pi&(o) 2 oi by (5.3), a contradiction. And likewise for p E B;(a). We proved 
either cy - fl or p - cr is nonnegative. Let us suppose that cr - ,S is nonnegative. If dk(P) = 0, 

by the definition, there exists a vector y E B:(p), such that -/k > pk. But by (5.3) ok < ,&, 
‘& > ok, y E B:(a) since cr - p iS nonnegative, whence Sk(o) = 0, a contradiction. Hence, 

S(p) - 6(a) is nonnegative, the condition (i) of Definition 2.2 is satisfied. The condition (ii) is 

clearly satisfied since BIC(a) E Br(cx) for Q E C C I. Therefore, S is involutive. 

Tl is constructive. For any critical prolongation cr + 6(“) of I’, let us suppose that 

(I!+6(“)=p+CLObr(p)+uo6r’(P’) (5.4) 

holds for some p E I, where p’ = ,6 + p o sr(fl), I’ = I U {p’}. If S:(p) = 0, then p;, = &, 

and there exists a vector y E B;(P), such that yk > Sk = pi. This implies y E Bf’ (p’) , 

and SL’(p’) .= 0. Setting Y’ = v o dr’(/3’), we have (Y + Sci) = ,f? + (CL + v’) o P(p) E P&‘), a 
contradiction. 

Tl is Artinian. To prove that we first give a lemma. For /3 E I’, 0 @ y means that there 
exists p E Nn, such that 7 = p o sr(p). 

LEMMA 5.4. Let S be a direction defined in Definition 5.3. If 

cr+a=PcBy, aoy=o, Y # 0, (5.5) 

where Q, p E I?, C, y E N”, then NP(y) > 1. 

It is easy to prove Lemma 5.4, since NP(y) I I implies (Y E B;(p), which would be in contra- 

diction with P @ 7. 

PROOF OF ARTINIAN PROPERTY OF Tl. Given any pseudo-divisor sequence S of l? 

W&, (2)(y (k) 
,***1 a,..., (5.6) 

where 
(k)o + fi(ikl = (k+i)o e &+I) Y, &, (‘k’cr) = 0, (5.7) 

Ic = 1,2,. . . . If all tk+‘)y are zero, then tk)o <lex lk+l)o for all k. Hence, cilcr # (j)o for i # j. 
Now we suppose that there is at least one (k+l)~ # 0. Extract from S such a subsequence S’ 

(‘)p, (2)p.. . (j)p.. .) (5.8) 

where (j)p = ckj+l)a E S’ satisfying ckj+l)y # 0. We will prove ci)p # (j)p for i # j. 



954 Y.-F. CHEN AND X.-S. GAO 

Consider (l)p and c2)p. Let 

@I)~ + ,j(%) - (hl+r)(y e (kl+l)y, (kl+lJa + &+‘) _ - - (k1+2)a , . . . 

(kz-1) a +,+-I) = (k&, (kz), + ,J(&) = (kz+Ua e (ks+l)_,_ 
(5.9) 

Then 
(kl+Ucr + @l+l) . . . + &) = (kz+l)Cy e (kz+l)y_ (5.10) 

Consider &ti”z) and (lez+l)y. If b(k) o(lez+i$ # 0, we may eliminate 6cikl) from both sides of (5.10), 

If ,$i”z) o &+l) 

y = o, we ;;t+;,oz;k;;;;l’ . . . + @z-d = (kz+l)a e y. 

7. Then consider 6(ikz-l) and y’, and so on. Let &z/t) be 

the last one eliminated. Then Ici + 1 5 h 5 k2, (5.10) is reduced to 

(h) Q + 0’ = (kz+i)a @ y, b(G) o (kz+ljy _+ 0, (5.11) 

or simply 
(i)p + D = Q)p @ y, aoy=o. (5.12) 

We claim that y # 0, and 5 o S((‘)p) = 0. 
If y = 0, then h < k2, ch)a + 5’ = (kz+l)a, (h+l)a + 5’ = (ka+lJa + &ij,), and $ij,.) o 5.’ = 0, 

whence (h+l)~i,L > (“+‘)~i,,, (h+l)(l. E Bl((“2f1)~), &,, (ck2+‘)~) = 0. This is in contraction 
with $i”)o(k2+‘)y # 0, and (k2+1)MB(kz+1)y. By Lemma 5.4, NP(y) > 1. If u # 0, then N,(a) 5 1, 
(2)p E B1((‘)P). so 5 0 S((l@) = 0. 

we may treat any pair of (j+i)p and (j+‘)fl, j = 1,. . . similar to (l)P and (2)/j. We have 

(1)p + (115 = (29 @ c+, . . . ) (j+l)p + cj+u, = Lf+yj $ (j+2)T 7 (5.13) 

where ck)5 o (kj7 = 0, (k-Q5 o (lc)~ = 0, Np((k)r) > 1, k = 2,3,. . . . Next we prove that for 

any j > 1, there are vectors (j)<, (j)c E Nn, such that 

(Up + (j,< = cj,p + (j)[ I &((j)J) > 1, W( o W[ = 0. (5.14) 

It is obvious for j = 2. Suppose, by induction, that (5.14) holds for j. Consider the case j + 1. 

BY (5.13) 

(Up + U), + ‘j’c = ( c.?+up @ u+l),) + q, w, o cj+u, = () (A , /; 0 (j)J = 0. (5.15) 

Let (j)C = X + (j)<‘, (j+l)r = X + (j+l)r’, such that (j)[’ o (j+l),’ = 0. Since NP((j)c) 5 
1 < NP((j+i)r), (j+l) r’ # 0. Similarly, we may reduce (j)5 and (j)[ to (j)u’ and (j)c’, such 

that (j)u’ o (j)<’ = 0, (j)<’ # 0, whence (5.15) can be rewritten as 

(1)p + (j+l)c = (j+l)p + (j+l)t, (5.16) 

where (j+l)C = (j),‘+(j)<‘, (j+l)c = (j+l)r’+(j)E’ # 0, (jfi)<o(j+r)[ = 0. IfN,((j+l)t) 5 1, then 

(l)p E &((j+l)p). For (j+l)?‘k # 0, bk( (j+l)p) = 1, since (j+l)p g+ (j+i),l and (1)~~ > (j+l)pk, 

we have &((j+‘)p) = 0, a contradiction. The assertion has been proven. And likewise for any 

pair of ci)p and (j)p, (j > i). So S’ consists of distinct terms, 

If there were two identical terms in sequence S, one would construct easily a sequence T, such 

that the subsequence T’(extract from T as S’ from S) contains two identical terms, which is in 
contradiction with what we proved above. So the sequence S consists of distinct terms, and Tl is 
Artinian. I 

Table 2. Examples for Thomas type directions. 

Exponent Directions 

vectors T4 = Thomas T3 T2 =Division II 

(2,2,2,1) (LLL1) WJJ) (LLL1) 

(LLW) w,w) (LLWN (LLW 

w,o,o) w4w) P,Lw (UL1) 

(LL~J) Nws41) @,O,O,~) (LLL1) 
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5.2. The Janet Type Directions 

To generalize the concept of Janet direction on Nn, we introduce ordered dissection of a positive 

integer. An ordered dissection with length 1 of a positive integer n is a vector (ni, n2,. . . , q), 
where the ni are positive integers, such that 

n=n~+m+~-.+nl. (5.17) 

Setso=O,sk=nl+...+nk,Ic=l,..., 1. 

DEFINITION 5.5. For any ordered dissection (ni, ns, . . . , nl) of n, we define a direction b on Nn: 

for every finite subset r of Nn, V/3 E l?, 

k= l,... ,1 - 1, where lY~~...p,,, is the same as in Example 2.4. 

We will prove that b is Noetherian, Artinian, and constructive. The direction such defined is 

called Janet type direction, denoted by J(,,,.,.,,,). 

At first, S is involutive. t/o, /3 E l?, if cx + p o sr(o) = P + Y o br(fl), then o = p. Otherwise, we 

suppose, without loss of generality, CQ = Pi,. . . , ai- = &_I, ai > ,&. If i I si, then SF(p) = 0, 

whence pi = cri + I& > o\li, a contradiction. If Sk < i I sk+l, then rg,...p,, = ral...aak, 
whence by(p) = 0, a contradiction. So the condition (i) of Definition 2.2 is satisfied. The 

condition (ii) is clearly satisfied. So b is involutive. 6 is Noetherian, since B(I’) n P*(r) is a 

completion of r for any finite set r. 
Secondly, we prove that 6 is Artinian. The following lemma is important. 

LEMMA 5.6. For all CY,~ E r, if Sk-1 < i < Sk, and 

a;(a) = 0, (Y + I+) = p + Y 0 IF(p) (5.19) 

PROOF. For j 2 i - 1, we claim aj = &, which implies CY E rPl...P.,_, since Sk-1 < i I Sk. 

Otherwise, suppose that or = Pi,. .., c+1 = &1, q > ,f3j. Then SF(P) = 0 (similar to the 
above argument). By (5.19), oj = @j, a contradiction. Similarly, crj = flj for i < j 2 sk since (Y E 

IB1...D.,_, . As for 6 if d:(P) # 0, then h(P) = 1, Pi I @i < bdral...a,k_-l > = bNp,...~,,_, 1. 

We derived SF(P) = 0, a contradiction. So CX~ + 1 = pi, and the proof is completed. I 

By Lemma 5.6, p is a pseudodivisor of a! implies cr <rex 0. Hence, 6 is Artinian. The proof of 

constructivity of 6 is similar to the proof for Janet direction; we omit it here. 

Table 3. Examples for Janet type directions. 
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6. CONCLUSION 

The vector representation of involutive division is useful to study the structure of involutive 

divisions and to find new divisions. So far we know the Thomas type, Janet type, Pommaret, 
induced divisions [23] and Division II. All divisions listed above are ‘good’ in the sense that they 

are Artinian and constructive. It is interesting to see whether there exist Pommaret type and 

type (II) divisions. 
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