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We describe two parallel versions of the Buchberger algorithm for computing Grébner
bases, one for the general case and one for homogeneous ideals, which exploit coarse
grain parallelism. For the general case, to avoid the growth in number and complexity of
the polynomials to reduce, the algorithm adheres strictly to the same strategies as the
best sequential implementation. A suitable communication procotol has been designed
to ensure proper synchronization of the various processes and to limit their idle time. We
provide a detailed analysis the maximum potential degree of parallelism that is achiev-
able with such architecture. The analysis corresponds to the results of our experimental
implementation and also explains similar results obtained by other authors.
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1. Introduction

The Buchberger algorithm for the computation of Grébner bases is one of the funda-
mental algorithms for polynomial system solving. From the perspective of computational
complexity the algorithm is intractable, but in practice it can solve a considerable num-
ber of interesting problems and there are good indications that problems arising from
real situations are far from the worst case of the algorithm.

Increases in computer performance have made more problems practically solvable;
however the most striking progress has been made in the algorithm itself: a better un-
derstanding of some key points, and a better tuning of the strategies have produced
advances well beyond those due to the hardware.

Parallel variations of the Buchberger algorithm have been attempted in different con-
texts, but usually with marginal success; most likely because a naive use of parallelism
destroys the organizing effect of a good strategy, and leads the computation toward the
theoretical worst-case complexity, making it unfeasible. Most parallel implementations
concentrated on the speed-up of concurrency but exhibit disappointing performance in
absolute speed, inferior to an efficient sequential implementation.

In this paper we describe two parallel formulations of Buchberger algorithm, one for

T This research has been funded in part by the ESPRIT Basic Research Action, project no. 6846,
PoSSo (Polynomial System Solving).
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Table 1. Number of pairs with different strategies.

Benchmark Lex  RlLex Benchmark  Lex  RlLex
cyclic4 24 12 pavelle4d 30 34
cyclich 464 157 pavelleb 124 83

katsurad 76 39 robbiano 43 44
lazard 145 53 rose 44 44
morgenstern 53 57 trinks 58 32

the general case and one for homogeneous ideals. The common characteristic of these
formulations is that the algorithm strictly simulates a sequential implementation. This is
an unusual approach for designing a parallel algorithm, but it turns out to be appropriate
for the Buchberger algorithm: it is well known that the efficiency of a computation with
Buchberger algorithm depends on the application of proper strategies, which determine
the order of polynomial reductions, and even an occasional deviation from the strategy
may lead to a dramatic coeflicient or combinatorial growth. Adhering to a strategy which
imposes an ordering seems to restrict parallelism; this antinomy is solved through a “pro-
cess manager” , which subdivides the whole computation in many independent tasks, and
has the responsibility of “pasting” the different parallel activities into the proper se-
quence, sometimes even discarding intermediate results not complying with the strategy.
The same type of concern has been raised in Biindgen et al. (1994) for the Knuth-Bendix
completion procedure.

In order to validate our approach, we performed both a theoretical analysis and some
experiments with an implementation of the algorithm. The theoretical analysis considers
an ideal computational model with an infinite number of processors and no communica-
tion costs. From simulated traces of executions on such a model we show that there is a
finite limit to the potential speed-up achievable with any parallel implementation of the
Buchberger algorithm. This limit is moreover fairly small and therefore this constitutes
a somewhat negative result on the possibility of obtaining significant improvements from
parallelism, at least from coarse grain parallelism.

Apparently this result is in contrast to previous related work (Vidal, 1990; Chakrabarti
and Yelick, 1994), which claim almost linear or superlinear speed-up. A more careful look
at those results provides an explanation.

The results by Vidal (1990) and Sawada et al. (1994) show that the speed-up stops
farly soon with a small number of processors (12 to 16) for all the test cases considered.

The results by Chakrabarti and Yelick (1994) seem influenced by a non-optimal choice
of term ordering. Table 1 for example presents a comparison between the number of
pairs generated with the ordering used in their algorithm (total degree ordering with ties
resolved by lexicographic order) and the one used in our implementation (degree ordering
plus reverse lexicographic order).

Consider, for instance, the lazard benchmark which is discussed in Chakrabarti and
Yelick (1994) as exhibiting more than linear speed-up. Clearly a large number of irrelevant
pairs is produced in their implementation and therefore a parallel algorithm appears to
perform better with more processors since it has good chances of sidestepping irrelevant
computations.

An algorithm exploiting better strategies will show less striking improvements with
the increase in the number of processors.
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Table 2. Comparison of parallel and sequential implementations.

algorithm  Chakrabarti—Yelick  Sawada et al. PoSSo
machine CM-5 PIM/m SparcStation5
processors 20 16 1
cyclich 10 4.5 0.84
cyclic6 102 23.52
katsura4d 4.1 1.8 0.28
katsurab 9.5 3.55
pavelleb 15 0.39

That margins for improvements are smaller when better strategies are employed is
confirmed if we compare the effective runtimes of the Chakrabarti-Yelick implementation

on a 20 processor CM—5T, with the implementation by Sawada et al. (1994) on a PIM/m
with 256 nodes, and with our own sequential implementation in C++ (Attardi and
Traverso, 1995) on a single SparcStation5, as shown in Table 2 (times are in seconds).

Sawada et al. (1994) report results for up to 256 processors, but they consistently get
worse beyond 16 processors.

Since results from benchmarking can be quite misleading, the theoretical analysis that
we present later provides some useful insights.

Besides the analysis, we report our experiments with a prototype implementation which
confirm the results of the analysis.

The algorithm has been implemented on a network of independent processors for rea-
sons of availability but it would perform quite better on a shared-memory architecture
where communication costs are lower.

2. A Sketch of Buchberger Algorithm

We recall the basics of Buchberger algorithm, in order to establish the notation. A
more complete description may be found in any of the standard references e.g. Becker
and Weispfenning (1993), Buchberger (1985), Cox et al. (1991), Mishra (1993), Pauer
and Pfeifhofer (1988), and in particular Gebauer and Mdller (1988) for the most efficient
version.

Let k£ be a field, and assume that we have a term-ordering in a polynomial ring
k[X] = k[z1,...,z,]; a power-product in k[X] is a product of indeterminates, a monomial
is a product of a non-zero constant € k and a power-product. The leading power-product
Lpp(f), the leading monomial Lm(f) and the leading coefficient Le(f) of a polynomial
f are defined with respect to the term-ordering. The leading power-product of a pair of
polynomials (f, g) is the least common multiple of Lpp(f) and Lpp(g). The S-polynomial
of polynomials f and g, is defined as Spoly(f,g9) = (Lc(g)/ ged(Lpp(f), Lpp(g))f —
(Le(f)/ ged(Lpp(f), Lpp(g))g. We say that f reduces to f' by f; at 7, and write -5, f’
if f=ar+ pand f; = a;7; + p;, with a, a; € k constants, 7 and 7; power-products such
that 7, = Lpp(f;) and 7;u = 7, then [/ = a;p—aup;. I 7 = Lpp(f) the reduction is called
Lpp-reduction. f | g is the irreducible form of polynomial f w.r.t. polynomial set R.

Let (f1,..., fm) =1 C k[X] =k[z1,...,z,] be a finitely generated ideal.

T We show the comparison on the three benchmarks that have been reported in Chakrabarti and
Yelick (1994) with 20 nodes, but the difference appears in all of them.
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The computation of a Grébner basis of I is done in two phases:

(1) add elements to R = {f1,..., fm}, obtaining a redundant Grébner basis;
(2) discard redundant elements and interreduce R, obtaining the (uniquely determined)
reduced Grébner basis of 1.

Phase (1) is the most expensive part of the algorithm, and consists of an initialization
and a main loop. The main loop is governed by a set of critical pairs, called the pair
queue, which consists of pairs of elements of R, called reducers.

Each iteration of the loop selects one pair (f;, f;) from the pair queue, computes its
S-polynomial Spoly(fi, fj) = f, reduces f to h, then, if & is not zero, adds h to R and
updates the pair queue, whereby some pairs are deleted, and some pairs involving the
new element h are added. When the pair queue becomes empty, the loop ends and R
contains a redundant Grébner basis.

Phase (2) consists in sorting R with increasing leading power-product, discarding the
elements whose leading power-product is multiple of some other one, then reducing each
element using only the preceding ones.

The reduction of an S-polynomial f has two phases: the Lpp-reduction and the to-
tal reduction, which does not affect correctness, but usually improves performance in
practice. Both phases consist in rewriting f with elements of the basis.

A rewriting step consists in finding an f; € R such that f-5 . f’ and replacing f with f’.

In the Lpp-reduction, the power-product 7 is usually the highest rewritable power-
product, while in the total reduction any rewritable power-product is considered. Hence,
whenever Lpp(f) is rewritable, it is rewritten during the Lpp-reduction and it remains
unchanged during the total reduction. Other rewriting schemes may be applied: the
algorithm will remain correct, but in general the number of rewritings necessary to obtain
a non-rewritable polynomial will increase.

When 7 can be rewritten with more than one f;, a simplification strategy is applied
to select one of them. Several simplification strategies are possible, but experimentally
the best one seems to be the trivial strategy (Giovini et al., 1991): select the polynomial
which was inserted earlier into the basis. This is because earlier polynomials tend to be
less complicated than newer ones, which undergo many more reductions. The experiments
confirm that this strategy leads to lower coefficient growth.

After simplification, if h is non-zero, it is added to the basis (optionally after making
it monic—or primitive, if k is a quotient field of a factorial ring A and we want to use A-
arithmetic) and the pair queue is updated using the following function UpdateQueue(f, Q,

(1) delete from the queue @ each pair (f;, f;) such that both Lpp(f;) and Lpp(f;)
strictly divide Lpp(f) [this is the B-criterion of Gebauer and Moller (1988)];

(2) consider the set P of all pairs (f;, f), f; € R; discard from P all elements (f;, f) such
that Lpp(f;) and Lpp(f) are coprime, as well as any other pair having leading power-
product equal or multiple to the leading power-product of {f;, f) (T-criterion);

(3) sort P in a convenient order (selection strategy), and discard every pair whose
leading power-product is equal or multiple of a preceding leading power-product
(M-criterion);

(4) merge P with the pair queue, using again the selection strategy;

(5) return the list of pairs removed from Q.
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The initialization phase builds the initial basis R and the initial pair queue @ by
iteratively adding to R f; | r, and invoking UpdateQueue.

Note that to perform UpdateQueue, just the leading power-product of f needs to be
known. Hence, in the perspective of parallelization, the pair queue could be adjusted
as soon as the Lpp-reduction of f is completed, without waiting to perform the total
reduction.

In summary, the algorithm is as follows:

0
0

R:
Q:
for each f; € {f1,..., fm}
UpdateQueuve(f; | r, @, R)
R:= RU{f; lr}
while Q # ()
(f,g) := First(Q)
Q:=Q\{{f.9)}
h := LppReduce(Spoly(f, g), R)
h:=hlgr
if h # 0 then
UpdateQueuve(h, Q, R)
R:=RU{h}

procedure LppReduce(f, R)
for each f; € R
let 7 = the highest power-product of f s.t. fl>fi f’ then
f=r

return f

There are two degrees of indeterminacy in the Buchberger algorithm: the selection
strategy for pairs and the simplification strategy for reducers. We assume that both
strategies are induced by an ordering, i.e. we sort the set of pairs (or of reducers) and
choose the first one.

It is well known that a correct choice of the strategies is critical for the performance
of the algorithm. A wrong choice, even a single apparently harmless modification, may
lead to an incredible growth of coefficient values and of number of pairs to process. See
Giovini et al. (1991) for a description of a good strategy and a striking example.

The Buchberger algorithm offers opportunity for parallelization because of the expo-
nential number of reducers produced by the algorithm. Coarse-grain parallelism can be
exploited to perform as many reductions as possible in parallel.

A simple-minded parallelization is the following: assign different pairs to different pro-
cessors, and add to the basis new elements as soon as they are produced by any of the
processors. In this way however, reduced polynomials are produced in an order which
deviates from any proper strategy and all benefits of concurrency are lost.

On the other hand, a strategy accurate implementation where a processor must wait
for all previous reductions to be completed, may waste a lot of time since the computing
time of different pairs is uneven. Apparently, up to now most parallel versions of the
algorithm have fallen into these two categories.

A notable exception is the solution in Sawada et al. (1994), where several nodes proceed
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independently performing reductions: each node works on a disjoint subset of the simpli-
ficands. A manager node selects the minimum among the reduced polynomials computed
by the nodes, adds it to the basis and sends it to all nodes for use in further reductions.
Such algorithm has been implemented on a distributed memory parallel machine and
the results reported are consistent with the analysis on the potential speed-up that we
present in Section 4.

Our parallel algorithm tries to avoid both difficulties; the strategy is followed strictly,
and a processor is only idle when all currently feasible reductions have been completed:
since complex problems generate hundreds of simplificands which outnumber the proces-
SOTS.

When the input is homogeneous the influence of the strategy is considerably lower,
provided that the selection strategy proceeds in increasing degree. An algorithm for this
case is presented in Section 7.

3. Parallelizing the Main Loop

We describe a parallel Buchberger algorithm exploiting coarse grain parallelism on
multiple independent processors. One of the processors (the process manager) performs
a special task while the others (the simplifiers) all perform the same task.

We concentrate on the part of the algorithm that computes a redundant, non-reduced
Grdobner basis.

The communications are always between one processor and the process manager, in
a star-like topology. Each processor has a local copy of the current basis: experience
has shown that the size of the basis is small with respect to the total amount of data
produced during a computation.

We describe separately the process manager and the simplifiers. In the descriptions we
will use the following operations which are typical in the Buchberger algorithm:

FindReducer(m, R): find a reducer that can reduce monomial m (i.e. whose leading
monomial divides m). Returns NIL if none exists.
/

Reduce(m, p,r): return p’ such that p~%,p'.
3.1. THE SIMPLIFIERS
Each simplifier maintains two lists of polynomials and related status variables:

R: the list of reducers;

S the list of simplificands;

c¢s: the current simplificand from S;
cm: the current monomial within cs.

Each reducer can be identified by its position in the list, since it will never change;
each simplificand, which initially is the S-polynomial of a critical pair (r;,r;), can be
identified by the pair (i, 7).

We assume that communication occurs over a reliable stream protocol like the one
provided by sockets over TCP, without discussing the specific format of messages. More
sophisticated libraries like MPI (Message Passing Interface Forum, 1994) might be used
to achieve portability to a wide class of distributed memory architectures.
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A simplifier executes a loop, listening at an input channel to requests from the manager.
According to the request received an action is performed, while if no request is received
one reduction step is performed.

The list of possible requests and their parameters is the following, with the correspond-
ing actions:

INIT init-data
Set R and S to {}, ¢s to NIL; the parameter init-data conveys information about
the current ring (number of variables, coefficients, ordering, ... ).

POLY polynomial
Append polynomial to R.

PAIR pair
Let p be Spoly(pair) and insert it in S, in the proper position according to the
ordering for pairs specified by the simplification strategy.

START
Set ¢s to First(S) and em to Lpp(cs). Perform one reduction step.

FINISH pair
Suspend simplification, let p be the simplificand corresponding to pair in S if al-
ready present, otherwise let p be Spoly(pair). Compute the polynomial h = p | g.
Send message DONE pair h. Set c¢s to NIL.

DISCARD pair
Delete the polynomial corresponding to pair from S. In case the polynomial being
discarded is cs, set ¢s to NIL.

SUSPEND
Suspend simplification, set ¢s to NIL and send back message INPUT to the
manager, signaling to be ready to receive next polynomial.

END
Terminate the activity of the simplifier.

If no message is received and cs is not NIL, then one reduction step is performed,
which consists in the following;:

(1) r := FindReducer(cm, R)
(2) If r # NIL then

(2.1) ¢s:= Reduce(cm, cs, )
(2.2) If ¢s = 0 then send a ZERO pair message, where pair is the pair which origi-
nated cs, and delete ¢s from S

(3) advance
(4) If ¢cs = NIL, send an IDLE command.

The advance step can be performed in two ways, one of which is completely strategy-
accurate, but does not fully exploit parallelism, the other is partially strategy-accurate,
and can be used only in some cases. We will refer to the first variant as totally accurate,
to the second as partly inaccurate.

In the first case advance sets cs to the next simplificand and e¢m to Lpp(cs), in the
second case it sets ¢m to the next monomial of ¢s, and if no such monomial exists, sets
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¢s to the next simplificand and ¢m to Lpp(cs). In both cases the next simplificand of the
last simplificand is NIL.

Note that when cs is NIL, after sending an IDLE message, the simplifier remains idle
waiting for requests by the manager from the network.

It is possible that an IDLE message is sent while a request from the manager is
already underway. The protocol has been designed to take into account such asynchrony
of communications, as discussed later.

3.2. THE PROCESS MANAGER

The task of the process manager consists in maintaining the queue of pairs, distributing
tasks to the simplifiers, and dispatching messages.

The process manager performs the usual initializations of Buchberger algorithm, sends
an INIT command to each simplifier, then for each polynomial pol in the basis sends
a message POLY pol to each simplifier. Then it partitions the set of pairs in as many
subsets as the simplifiers and distributes each subset to a different simplifier by means
of messages PAIR pair. It them sends a FINISH request with the first pair to the
simplifier to which it is assigned, and a START to each of the remaining simplifiers.
Then the manager waits for messages form the simplifiers.

For each critical pair in ), the manager maintains the address of the simplifier to which
it has been assigned, if any. It also maintains information on whether each simplifier is
idle or not.

The manager reacts to messages as follows:

DONE pair pol
Remove pair from @; transmit POLY pol to all the simplifiers. Update the queue
with removed := UpdateQueue(pol, @, R). For each pair p € removed already as-
signed to a simplifier, transmit DISCARD p to that simplifier. Add pol to the basis
R. If @ is not empty and ¢ is the first pair, then transmit request FINISH ¢
to the simplifier to which the ¢; assigned, or to the first idle simplifier in case the
first pair is yet unassigned. Partition the set of unassigned pairs in () among the
remaining simplifiers and distribute each subset to them by transmitting PAIR
messages.

IDLE
Send to the simplifier any pending messages.

ZERO pair
Remove pair from Q.

When @ becomes empty, the manager sends an END request to each simplifier and
the algorithm terminates, with the current basis (present in all the nodes) as a redundant
Grobner basis.

Notice that we use two different primitives for communication: send and transmit. Send
is an immediate form of communication which can be used when it is ensured by the
protocol that the receiver is listening. Transmit is a buffered primitive which involves an
exchange to synchronize with the receiver. In fact the receiver might be busy performing
a complex reduction and may not read immediately the message: if the sender tries to
send a long message (e.g. a long polynomial), the operation on the socket would block
and the manager would wait.
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To overcome these problems, we implement buffered transmission through the oper-
ation transmit(message, dest), which involves an exchange of messages. The message is
recorded in a queue for dest, and if queue was empty the request SUSPEND is sent to
dest. When the message INPUT is received back from dest, then all messages present
in the queue for dest are sent to dest.

Note that it is possible that a ZERO and a DISCARD message are issued at both
ends at the same time; the protocol described ensures that no inconsistency may result,
but a simplifier must accept requests for discarding a non-existing pair.

4. Simulation

We have organized a simulation of the parallel algorithm from traces of a sequential
implementation.

We assume that: 1. an unlimited number of processors is available, so each pair can be
assigned to a different processor; 2. reduction steps take the same amount of time, called
a tick; 3. communication takes no time.

These assumptions are not met in practice, but they allow us to compute a theoretical
maximum speed-up for the algorithm.

We compute, for every processor and every tick, whether the processor is idle, or
is performing an Lpp reduction, or a total reduction. If the reduction involves a basis
element that is not yet available, the processor is considered idlef. A computed basis
element is made available in one extra tick to the other processors, and only after all the
previous elements have been made available.

We consider:

1. the parallel run time, i.e. the number of ticks necessary for all the processor to stop
(the depth);

2. the sequential run time (in which each processor starts only when the former ones
have finished), i.e. the number of reduction steps necessary (the length);

3. the maximum number of processors simultaneously active (the width).

The quotient of length and depth is the theoretical speed-up, and the width is an
estimate of the number of processors necessary to achieve this speed-up.

Figure 1 provides a graphical display of the state of each processor throughout the
execution of one typical example. Table 3 reports depth, width and speed-up for this and
other standard benchmarks [from Boege et al. (1986) and Faugere et al. (1993)].

In the figures, a dotted line (———) is an initial idle state, a thick line (wmmm) is an Lpp
reduction, a medium line (=) is a total reduction, a thin line ( ) is an intermediate
idle state.

Figure 1 shows that three pairs are generated initially and assigned to three distinct
processors. After the first processor completes the total reduction, the 4th element of the
basis is produced, which allows the second processor to proceed and generate the 5th
element, and so on.

T In the algorithm presented earlier a processor should be considered idle also if a total reduction is
needed and a preceding pair is still unfinished; but the algorithm can be modified allowing earlier total
reduction. The implementation of this variant is however more difficult, since it may be necessary to
back up a (strategically) wrong reduction to use a previously unavailable element.
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Figure 1. Pavelle4.

Table 3. Simulation summary.

Benchmark Depth ~ Width  Speed-up Benchmark  Depth  Width  Speed-up
cyclic4 18 4 2.11 ceva 81 17 7.42
cyclich 197 29 7.84 valla 676 159 41.64
cyclic6 818 91 16.10 fateman 344 14 4.02

cyclic7 (-last) 9399 136 11.08 pavelled 88 10 5.50
katsurad 119 15 5.03 caprasse 131 25 6.67
katsurab 405 32 7.49 gerdt 401 61 13.68

liu 80 11 5.49 cassou 147 31 9.53
butcher 463 50 9.70

5. Heuristic Considerations

In this section we explain the experimental findings that support our choices in the
design of the parallel Buchberger algorithm. These findings come from experimentation
with the sequential Buchberger algorithm implemented in the AIPI program (Traverso
and Donati, 1989).

USELESS COMPUTATIONS

When adding a polynomial, some pair may get deleted from the queue. Experimentally,
this does not happen often, and the pairs deleted are often not the first in queue. Hence
useless computations should be infrequent.

IDLE PROCESSORS

This may happen only when a simplifier has completed all its partial reductions and
no new pairs are available.
Experimentally, for the long-running computations in which we are interested, the
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queue has often hundreds of elements, enough to keep all the simplifiers continuously
busy. The queue is short only briefly in the very first and very last phase.

In an earlier implementation of the algorithm, we had arranged that the manager would
send pairs to simplifiers on demand, whenever they had completed all their previously
assigned reductions. This turned out to slow down the computation, since the latency
in communication over the network meant that simplifiers would be often waiting for
receiving new pairs. For instance the benchmark valla would take 77.83 seconds instead
of 24.75 seconds with the current implementation on 29 simplifiers.

BALANCE BETWEEN MANAGER AND SIMPLIFIERS

Experimenting with the algorithm we have compared the reduction time and the pair
managing time. We noticed a significant difference between ideals generated by binomials
(difference of monic monomials) and other ideals: for the former kind the pair managing
time often exceeds one half of the total computing time, while for other ideals the pair
managing time is usually less than 2% of the total computation time. Hence for binomial
ideals one should consider parallelizing the process manager task as well.

Keeping low the influence of managing pairs in the total computing time also depends
on a correct implementation: marginal changes in the algorithm may cause the pair
managing time to raise to a considerable fraction of the total computing time.

6. Implementation

The algorithm has been implemented in ECoLisp, an embeddable Common Lisp, which
can be linked with C based applications (Attardi, 1995), in our case with the socket
library for communication. The core of the implementation derives from AIPI (Traverso
and Donati, 1989).

Table 4 shows the results of the experiments with up to 29 simplifier nodes. For each
benchmark we present the computation time (Comp.), the time for transmission of poly-
nomials (Comm.) and the difference between the two (Diff.). We also report the to-
tal number of messages (# msg) and the number of messages exchanging polynomials
(P. msg).

The relative timings should be considered, since the Lisp implementation is inherently
slower than a C++ implementation (Attardi and traverso, 1995) by a factor of 2 to 6 in
the sequential version of these benchmarks.

It is apparent that the cost of transmission of polynomials over the network becomes
dominant as the number of processors increases. Nonetheless if we factor out this cost we
can notice a speed-up which for some benchmarks (katsurab, ceva, cyclic6) approaches
the predicted theoretical limit.

7. A Degree-accurate Algorithm for Homogeneous Ideals

When an ideal is homogeneous, it is known that the strategies have much less influence,
provided that the pairs are chosen in increasing degree. The reason is that higher degree
elements in the Grobner basis cannot reduce lower degree ones, and that the degree of
a polynomial does not change during the reduction. Hence when all the critical pairs of
degree lower than n have been processed, we have all the elements of the Grébner basis of
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Table 4. Execution times.

Benchmark 2 simp. 4 simp. 8 simp. 16 simp. 29 simp.
Comp. 9.45 6.95 5.35 5.98 8.85

Comm. 1.31 1.88 2.66 4.45 7.11

katsurab Diff. 8.14 5.07 2.69 1.53 1.14
# msg 225 332 485 739 1097

P. msg 21 63 147 315 588

Comp. 90.65 47.21 38.20 38.95 59.58

Comm. 4.36 7.08 10.97 29.02 52.81

ceva Diff. 86.29 40.13 27.23 9.93 6.77
# msg 408 580 823 1172 1724

P. msg 27 81 189 405 756

Comp. 39.60 26.06 20.30 25.98 24.75

Comm. 4.95 6.09 6.05 10.6 13.20

valla Diff. 34.65 19.97 14.25 15.38 11.50
# msg 1847 2360 3182 4376 5988

P. msg 78 234 546 1170 2028

Comp. 81.66 79.66 31.88 41.16 50.33

Comm. 6.60 9.55 15.06 30.93 40.36

cyclic6 Diff. 75.06 70.11 16.82 10.23 9.97
# msg 1177 1687 2449 3731 5761

P. msg 93 279 651 1365 2418

degree lower than n, and if the elements obtained are interreduced, they are the elements
of the reduced Grobner basis of degree up to n.

This allows to describe a completely different form of Buchberger algorithm, that is
easily parallelizable.

We divide the algorithm in blocks, one per degree, and each block is divided in three
parts. We name these three parts A,,, 5, C,. In a sequential implementation, we proceed
degree-wise, and for each degree n we perform first A,,, then B,,, then C,,. In a parallel
implementation, some form of parallelism between blocks is possible, and the blocks
themselves are highly parallelizable.

The Grébner basis G under construction, is divided degree-wise; G, is the set of
elements of degree n of G, G, is the set of elements of degree < n. The set P of critical
pairs too is divided degree-wise, and P, is the set of pairs of degree n (the degree of a
pair is the degree of the lem of the leading monomials), and Ps,, is the set of pairs of
degree > n.

We allow in P also singleton pairs, i.e. polynomials; the S-polynomial of a singleton
pair is the polynomial itself. This gives more uniformity to the algorithm.

Now we describe A,,, B, C,, as partly independent processes; each one is intrinsically
parallelizable.

o A, takes the elements of P,, computes their S-polynomial, and reduces them with
the elements of B.,. The result is sent to B,.

e 3, interreduces the elements obtained from 4,,, producing elements of G,,.

e C, gets the input from B, and outputs elements of P-,,.

In particular,
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o A, requires G-, and P,; it can start as soon as there is an element of P, , it can
output as soon as B,_1 is complete, and stops as soon as C,,_1 is complete and P,
is empty.

e B, gets the input from A,,, and produces G,, as output; it can output only when
A, is complete.

e can be completed only after the completion of 5,,.

If the Hilbert function of the result is known, or at least an upper bound, we can
use the Hilbert-driven algorithm described in Traverso (1996), and there is a fourth
series of blocks H,,, that has input from G.,, and B,,, and can send an interrupt to A,.
Moreover A,, and B,, are slightly modified. To avoid describing two different versions of
the algorithm, we describe directly a unique version, containing H.,.

The Hilbert-driven algorithm computes, from the Hilbert function upper bound given
as input and G .,,, the maximum expected number of elements of G,,; when this number is
attained, one can discard the other elements of P,, and all the computations in progress
in the current degree can be aborted. If instead for some degree this number is not
attained, for higher degree a guess is impossible, and one reverts to the usual algorithm.

The algorithm starts with B = (), and P equal to the input generators as singleton
pairs. We describe the algorithm as sequence of A,,, H,, B,,C,. The algorithm stops
when at the end of C,, we have that P~, is empty. We discuss first the definition and
parallelization of each step, we will discuss later the possibilities of concurrency for the
various steps.

A, takes P,, computes the S-polynomial of each pair, and reduces it with B.,,. The
procedure is easily parallelized since each reduction is independent from the others. The
output of each reduction is sent to H,.

‘H.,, if active, knows the number h of expected elements of G,,. We do not describe
the algorithm, which uses G,, and initial data, see Traverso (1996) for a complete de-
scription. H,, contains a probabilistic checker of linear independence: a test to determine
whether a polynomial is linearly independent from previous ones, when whose answer
is “YES” then the polynomial is linearly independent, when it is “NO” the polynomial
is probably dependent (there are plenty of such algorithms, and of parallel ones t00).
‘H,, sends the polynomial to B, if it is independent, and after sending h polynomials, it
interrupts A,,, discarding further output from A4,,.

If, at the end of A,,, H, has not detected h linearly independent polynomials, then
the Hilbert-driven algorithm is declared inactive, and the remaining (probably linearly
dependent) polynomials have to be discarded with a deterministic algorithm (or accepted
if the probabilistic algorithm has been unlucky).

If 'H,, is inactive, then it simply forwards the input to 5,,.

B,, gets a set of polynomials (linearly independent if H,, is active), and reduces them
to Gauss—Jordan reduced echelon form. This is linear algebra, for which parallelization
is well studied.

C,, computes, for every element g of G,,, the useful critical pairs of g with the preceding
basis elements. This can be done in parallel for the elements of ,,, and moreover there
are further parallelization possibilities for each g. But this would require a description
of the implementation of the criteria, which is outside the scope of the present paper.
Remark that it is not necessary to sort the pairs in a prescribed strategy order, but only
to divide them in different degrees; and all pairs of which a g of degree n is an element are
of higher degree, (since g is not reducible by the previous elements), hence are in Ps.,,.
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The correctness of the algorithm is easy to prove, being just a variant of Buchberger
algorithm.

From the description of A,,H,,B,,Cy, it is clear that they need not wait for the
previous step to be completed to begin their work:

e A, can start as soon as P, is non-empty; an output however can be delivered only
after GG,, becomes available; hence it is probably too complicated to take care of
this possibility. Hence it is better to wait for B,,_1, but it is not necessary to wait
for C,,_1. The end of C,,_1 is necessary for the end of A,.

e H, can start as soon as A,, gives an output, and it is mandatory not to wait that A,
is ended (otherwise the interrupt to A, is useless). In a sequential implementation
it is reasonable to mix a step of A4,, and a step of H,,.

e B3, can begin to work as soon as an element of input arrives. The output can
be sent immediately to C,,, that works on the leading power products only, even
before the tail reduction is completed. If this is done, it is however necessary that
B,, operates destructively on its data, so that a polynomial sent to C,, can continue
to be modified by B,,, and the critical pairs refer automatically to the polynomials
updated by B,.

This discussion shows that the global parallelization of the algorithm will be fruitful
if several critical pairs are present in each degree. This is often the case if the ordering is
a DegRevLex, and is much less likely for a Lex ordering.

If the ideal is zero-dimensional, this is a further reason to resort to the FGLM algorithm
of Faugere et al. (1993), that is linear algebra hence highly parallelizable; in higher
dimension the algorithm sketched in Faugere (1994) should be analysed for possible
parallelization.

8. Conclusions

The Buchberger algorithm seems to lend itself quite naturally to parallelization. Par-
allelism may arise at fine grain in polynomial arithmetic, or at medium grain in the
reduction of polynomials, working on different monomials in parallel. Most attempts at
parallelization so far have chosen, however, the coarse-grain parallelism of performing
independent reductions in parallel.

We claim that to achieve the most benefit from coarse-grain parallelism the algorithm
must exploit good strategies for reductions as those developed for the sequential version
of the algorithm. While this may limit the overall amount of parallelism, it avoids the
combinatorial growth of reductions which offsets the benefits of parallelism.

To substantiate this claim we designed parallel versions of the Buchberger algorithm
which adhere to a reduction strategy. We reported on our experiments with an imple-
mentation of one of these algorithms.

A second question which we tried to answer is about the speed-up achievable from
coarse-grain parallelism. Our analysis of simulated traces provides estimates on the speed-
up and the number of processor necessary to achieve it for various classical benchmarks.
The speed-up is significant in some cases but not unlimited.

This confirms and explains our findings and those by other authors, notably Sawada et
al. (1994), that the speed-up from coarse-grain parallelism in the Buchberger algorithm
tops with a relatively small number of processors (16 to 32).
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So while strategy accurate parallel algorithms perform better than straightforward ag-
gressive parallel search algorithms, further possibilities for improving the performance of
the Buchberger algorithm might come from the exploitation of finer grains of parallelism.
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