
ELSEWIER Mathematics and Computers in Simulation 42 (1996) 509-528

Floating point Grijbner bases

Kiyoshi Shirayanagi ’

NlT Communication Science Laboratories, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Abstract

Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together
with error terms. Working in terms of bracket coefficients, an algorithm that computes a Grobner basis with floating point
coefficients is presented, and a new criterion for determining whether a bracket coefficient is zero is proposed. Given a finite
set F of polynomials with real coefficients, let G, be the result of the algorithm for F and a precision value p, and G be a
true Grobner basis of F. Then, as p approaches infinity, G, converges to G coefficientwise. Moreover, there is a precision
M such that if p 3 M, then the sets of monomials with non-zero coefficients of G, and G are exactly the same. The practical
usefulness of the algorithm is suggested by experimental results.

1. Introduction

This paper is a refined version of [121. Grobner basis (GB) techniques are a valuable tool for solving
many problems in polynomial ideal theory. As is well known, the process of computing a GB may involve
large numbers of intermediate coefficients - say from a field k - even when the final GB does not involve
many coefficients. In fact, the cost of performing exact arithmetic in k with the intermediate coefficients
is a major factor determining the computational cost of computing the GB. This paper proposes a new
approach using floating point computation that can be applied when k is a subfield of the real numbers. *

Basically we mimic Buchberger’s algorithm in [3]. However, the big question then would be “how small
must floating point coefficients be, to be considered zero ‘7’. The subject of this paper is to propose a criterion
for answering this question. Our key idea is to calculate and keep track of an error term for every coefficient
that occurs at each step of the S-polynomial calculation or polynomial reduction, and to judge coefficients
as zero by estimation of their accumulated errors. To keep track of the errors, bracket coefficients for
polynomials are introduced. These are like floating point numbers together with error terms. In place of
bracket coefficients, intervals in intewal arithmetic (see [1,9,10]) can also work well.

’ E-mail: shirayan@progn.kecl.ntt.jp.
*While our approach applies to the case where k is the field of rational numbers, several other approaches apply there as

well. We refer the reader to p-adic or modular approaches as found in [11,13,14].

0378-4754/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
SSDI 0378-4754(96)00027-4

510 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

The proposed algorithm gives a sort of approximate GB (or AGB), not a true GB. There are a number of
problems that are typically solved by computing a GB for which it is only necessary to compute an AGB.
Moreover, for numerous examples, it is much faster to compute an AGB than a GB.

In Section 2, a new notion for the convergence of a sequence of floating point polynomials and an
approximate GB are defined to describe what our algorithm does. We present an example illustrating why
the most naive approach does not work. In addition, possible applications are mentioned. In Section 3,
basic notions for our algorithm are provided as well as a key theorem. Bracket coefficient polynomials are
introduced. They play a central role in this paper. The key theorem presents a criterion for determining
whether a true coefficient is zero, in terms of the bracket coefficients. In Section 4, the algorithm is described
and the termination and correctness of it are proved. In Section 5, examples of running the algorithm
are presented. Observations are also included. Section 6 summarizes this paper. Finally, important open
problems are given.

Throughout this paper, we assume that the set of all floating point numbers is contained in the real field R.
When we simply say a polynomial, it denotes a floating point polynomial or a real polynomial in variables
Xl,xn.

2. Floating point Grabner sequence

In this section, we introduce a sequence of sets of floating point polynomials that converges to a true
Grobner basis in a strong way. First of all, we define the support of a polynomial or a finite set of polynomials.

Definition 1 (Support). The support of a polynomial

f = c Ui,,...,~,Xf~ . . .x::
i , () i,,

is the set of power products

[x’1’ . . . xk I ai,,...,i, # 01,

denoted Supp(f). The support of a finite set F = (fl , . . . , f,l} of polynomials is the set of subsets of the
set of power products: (supp(ft), . . . , Supp(fn)}, denoted Supp(F).

Note that Supp(0) = 0.

Examples
(1) For f = 2.99x2 + 0.999~~~ - 1.0022 + 0.249, Supp(f) = {x2, xy2, z, 1).
(2) For F = (3x2 + xy2 - z + i, ix + y2z + 4, x2z - ix - y2), Supp(F) = {{x2, xy2, z, 11, ix, y2z,

11, (X22,X, Y2H.

Next we discuss the general notion of (coefficientwise) convergence and the specialized notion of support-
wise convergence which we require.

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 511

The natural definition of the coefficientwise convergence of a sequence of polynomials is given by the
following.

Definition 2 (Coefficientwise convergence). Let (fv), be a sequence of polynomials and f be a polynomial.
Then, fv coefficientwise converges to f (fu -+ f coefficientwise) iff fv = Ci, ,.,,,i, a: ,,,.,i,,x~' . . .x2 and

f = Ci ,.,,,, i, ai ,,.,,, i,!xfl . * -x$ such that limv_,oo a:* ,,,, i, = ai, ,.,., i, for all il, . . . , i,.

The stronger property of supportwise convergence is one of the central themes of this paper.

Definition 3 (Supportwise convergence). Let {f"}, be a sequence of polynomials and f be a polynomial.
Then, fv supportwise converges to f (fv + f supportwise) iff
(1) (fv), is coefficientwise convergent to f, and
(2) there is an N such that Supp(f") = Supp(f) for all u 3 N.

Moreover let {F,], be a sequence of finite sets of polynomials and F be { fl, . . . , fn}, a finite set of
polynomials. Then, F, supportwise converges to F (F, --f F supportwise) iff there is an N such that for
all u > N, F, = {f,", . . . , f,"} where fi” + fi supportwise for all i E [1, n].

In other words, supportwise convergence emphasizes that coefficients that are going to converge to zero,
reach zero in aJinite number of steps.

Examples
(1) ((u + l)/u)x3y -+ x3y supportwise.
(2) (l/u)x3y + 0 coefficientwise, but (l/u)x3y f+ 0 supportwise, since Supp((l/u)x3y) # Supp(0)

for any u.
The aim of this paper is to provide an algorithm that computes a set G, for each p where {G,}, is

supportwise convergent to a true Grobner basis G. Let us call such a sequence {G,}, a jloating point
Griibner sequence. If (GCLJP is any floating point Grobner sequence, by definition there is an M where
Supp(G,) = Supp(G) for all p 3 M. For h > M we shall call G, afloating point Griibner basis with
precision CL, or simply an approximate Griibner basis.

Of course there is an obvious way to construct a floating point Grobner sequence. That is,
(1) compute a true Grobner basis G by the conventional Buchberger’s algorithm [3], and then
(2) for each CL, truncate the coefficients of G to precision p.
However, our algorithm avoids exact arithmetic and the associated memory requirements. On the other
hand, we must be able to compute with arbitrarily high precision coefficients.

For this purpose one naive idea may be first to take FcL, that is, the floating point approximation of F in
coefficients to precision p, and then to apply Buchberger’s algorithm to FP. However, such an approach
fails before the GB computation begins. This can be seen by a trivial example {3x - 1, x - 41. With any
truncation of 5, the first polynomial is no longer a scalar multiple of the second one, and the ideal generated
by them has changed to R[x]. See Section 5 for the result of our algorithm for a similar and less trivial
example.

Let V be the quotient algebra

R[Xl) . . . , xnllIdeal(F),

512 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

where Ideal(F) is the ideal generated by F. Once an approximate GrSbner basis G, is obtained, the follow-
ing problems can be solved not upproximateZy but strictly by the conventional methods, since Supp(GP) =
Supp(G) for a true Grijbner basis G; in particular, the sets of all the leading power products of both
coincide.
(1) Decide whether V is finite-dimensional or not as the R vector space,
(2) Compute an R-basis of V,
(3) Decide whether the system F of polynomials is solvable or not, etc.

Moreover, the system F may be approximately solved, since every coefficient of G, converges to the
corresponding one of G. See [3, Methods 6.6, 6.8-6.10, etc.], for the details on the conventional methods.

3. Theoretical foundation

3.1. Basic notions

It would be natural to mimic Buchberger’s algorithm but with floating point coefficients. However, the
biggest.problem then is “how small must coefficients be for us to consider them to be zero?‘. It should be
noted that if our algorithm can judge a coefJicient as zero iff the corresponding coeficient in Buchberger’s
algorithm is truly zero, then the results are exactly the same in supports. Thus we must provide a useful
criterion for this zero judgment. Our idea is to calculate and keep track of an error of every coefficient that
occurs at each step of the S-polynomial calculation or polynomial reduction.

To keep track of the errors, a bracket coeficient polynomial, or simply a BC polynomial with a given
precision p is introduced. This is 0 or a polynomial of the form

C [Ai, ,..., i,,Taii ,..., inIXi1 *..Xkt
il,...,i,

where Ai ,,_.. i, and ail ,..., i, are floating point numbers with precision /.L. Ai,,...,in and aii,,.,,i,, are intended
to be an approximation of a true coefficient and its error, respectively. A special symbol 0 denotes the BC
10, 01.

Next we have to define the S-BC polynomial and BC reduction for BC polynomials. In this paper, using
10 as the base, a floating point number A with precision p is expressed by

A = f.ala2.. .up x 10ecA),

where 1 6 al < 9,0 < ai < 9 (2 < i 6 p), and e(A) is the exponent of A. For floating point arithmetic, we
apply roundoflmanipulation, which means counting 0.5 and higher fractions as a unit and cutting away the
rest. In this paper we assume that transgressions of the range of numbers (underflow and overflow) do not
happen. Following [8], we use notations ecL, 811 and mti (or simply @, 8 and 8 when there is no confusion)
for floating point addition, subtraction and multiplication with precision /_L, respectively. Throughout this
paper, floating point division is not considered because of its complicated error analysis.

Furthermore we apply round up with precision CL, denoted Tb or simply f, see [l], for addition or
multiplication of errors. That is, f (a + /3) (respectively t (ap)) is the same as cx @ /I (respectively
a @I ,!I) except that it rounds the (,u + 1)th fraction upward-directly to 10. We assume that the result of t
is always not smaller than the exact result in absolute values. Note that when loss of information happens,

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 513

Q + ,!l > TV (a + jl) is possible. Thus, strictly speaking, we should devise a modified version of round up
so as to cope with such a case.

Note that floating point (and round up) addition, subtraction and multiplication with fixed precision have
difficulties in that the associative law or distributive law does not necessarily hold in general. Fortunately
these deficiencies will not cause a problem for our algorithm.

We define floating point arithmetic for bracket coefficients in BC polynomials. f (o + B + y + . . . + <)
denotes T (? (. . . t CT (a + B> + y> +. . .> + 6).

Definition 4 (BC arithmetic). With precision ,LL,
addition: [A, a] @ [B, p] = [A @I B, f (a + /I + 5 x 10e(A@B)-(fiLS1))];
subtraction: [A, a] 0 [B, p] = [A 8 B, t (a + ,f3 + 5 x 10e(AeB)-(~-tl))];
multiplication: [A, a] 63 [B, /I] = [A @ B, t (t (a$)+ t (crIBI)+ t @[AI) + 5 x 10e(A@‘B)-(~+l))].

Remark 1. In the above addition, if A 03 B = 0, then the term 5 x 10e(A@B)-(~Lf’) in the error is
dropped. In the case of general base b of floating point numbers, 5 x 10e(A@B)-(@+‘) is replaced by
[;bl x b e(A@B)-(w+I) 3 where rib1 is the minimal integer not less than ib. It is similar for the subtraction
and multiplication.

The adequacy of this definition will be clarified in Lemma 1 later. BC arithmetic may be a kind of
interval arithmetic [9], more precisely machine (or rounded) interval arithmetic [l] or circular arithmetic
[1,101, whose definitions slightly differ from ours. However, the emphasis of this paper is not on which
arithmetic to choose, but on the idea of keeping track of errors and more importantly on the zero criterion
of coefficients by estimation of the accumulated errors.

Consider BC polynomials with a given precision CL. We can add, subtract and multiply such polynomials
as well as usual polynomials as follows:

[A, alt + [B, BP = ([A, ~1 ep [B, Bl>t (or [A, aIt - LB, Bit = ([A, ~1 ep [B, Bl>t),

C[Ai, ailti . C[Bj, Bjluj = C([Aiv ai1 @g [Bj, BjI)tiujt
i j i,j

where t, ti , uj are power products. Here, for 0, we have

f+o=o+f=f,
for any BC polynomial f.

Moreover, as a convention, we apply the following laws:

O-t =o, -([A, a]t) = [-A, a]t.

Note that in general the set of BC polynomials is not a ring because, as mentioned above, the arithmetic
operators are not associative and distributive in the bracket coefficients.

Now we are prepared to define the S-BC polynomial and BC reduction. Given an admissible term
ordering, L P(f) denotes the leading power product of a polynomial or BC polynomial f. If we write
f = f' f rest (f), then f' is a term of f and rest(f) denotes the other terms of f.

514 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

Definition 5 (S-K polynomial). Let f and g be BC polynomials with precision p [A, a]L P(f) +rest (f)
and [B, p]LP(g) + rest(g), respectively. Also let LCM be lcm(LP(f), LP(g)). Then the S-BC polyno-
mial of f and g with precision I_L is the BC polynomial

+[A,c+=q,
LP(g)

(with precision p), denoted S-BCpoly,(f, g).

Definition 6 (BC reduction). Let f be a BC polynomial and F a finite set of BC polynomials with precision
p. Then

f 5~ h(“f BC reduces to h modulo F”) with precisionp

iff f Fg,U and h = [B, /3] . f - [A, a]u . g (with precision CL),

where f Tg,U (“f is BC reducible using g and u”) iff there are g E F and a power product u such that
f = [A, al . u . LP(g) + rest(f)([A, WI # O>, g = [B, BILP(g) + rest(g).

The BC normal form of f modulo F with precision p, denoted BC-NForm, (f, F), is defined using BC
reduction, in a manner similar to the conventional normal form.

Remark 2. The S-BC polynomial and BC reduction slightly differ from their conventional definitions
when using polynomials having coefficients in a field. However, they have their natural definitions when
working with polynomials having coefficients in a ring that is not a field, because the aim is to avoid a
division of bracket coefficients.

In both the S-BC polynomial
product type

[A, aI 8 [B, Bl

and product-difference type

and BC reduction, the resulting coefficients have only two types:

[A, ~1~3 [B, PI0 [C, VI ~3 ID, al.

Because in Buchberger’s algorithm, any transformation of polynomials is either an S-polynomial calculation
or a polynomial reduction, it suffices to consider these two types only as bracket coefficient calculations.

3.2. The key theorem

We introduce an algorithm called R-GB which we want to mimic. This is a slightly modified version
of Buchberger’s algorithm. Only the definitions of the S-polynomial and reduction are changed so that
they correspond to Definitions 5 and 6 for BC polynomials. That is, in R-GB, for real polynomials f =
A . LP(f) -6 rest(f) and g = B . LP(g) + rest(g), we define the S-Rpolynomial of f and g by

B .=!+A.~.g.
LP(f)

wuou4od x-s ue JO (uowou aAoqe q u! j- ((j)d7)/~37) . 8 3.3) le!ruouLIod a~e!patma~~! ue JO psaJ aq~ E

wuura~ 8ugollo3 aql amq ah4 ‘p2auaZ uf ‘Jorra aql 01 sv
‘L9999’0~O000S’08(98ZPT’O~~~~~8’08000SL’O~~~~~~~O)~~OO~~O3olInsaJaq~s~ %‘) Pue ‘f X f-(f
x~-~x~)x~dqsasur!3leylsueau1s!q~uaq]’(~).(:)-((L).(~)-(~).(~)).(~) = 33!‘alduwxalod

I _ r _ - - _
*(2) “D 30 llnsal aql se

PUE ‘(d(!v))aOI
x c,+rl)_ol x 5 loua33opunoI SJ! s! !x) ‘ti uoys!DaJd 01 !v 30 uogeu+xo.rddv lured 8ugeo~ ay, so rl(!v) aJaqM

‘[!x,‘fl(!v)] = (!y)%

dew B auyap aM rl uo!s!Dald r! .IO+J *sa~y&!au .qaql pue sluag3aoD laywq 30 las aql aq 3~ ial ‘laAoalom

‘8 - y 30 ilnsal aqi sr jl3! a-!/
‘(8 v- *dsal) 8 v 30 qnsal aql s! 2 3! (a . y- .dsal) a . y

I
= a

:s~o1103 SB dIagDnpu! x 3 2 auyap
uw aM 2 “0.13 uaqL .suoynpaI-8 pw sle!wouLIod 8-s dq sasue TJ asnwaq ‘dais lag-lea UB IB w&y3aoD
alaM p put! 3 ‘q ‘v alaqM pc~ = g pw qv = v a_IaqM (adiO ama.@p-unpo.&) g - v JO dais lagma ut?
IV sluag3ao3 alaM g pw y alaqm (ad4 ~mpoxf) gyy= .Iaql!a 30 tInsa aw sy (Z < u) dais qw ue N 2
(‘x 3 x- uaqi ‘,y 3 x31 ‘y il?qJ, .Jowado bun r! SE q.10~ OSIE? h.?w Lc-,, s!qi ‘cyaurqiy2 Ivnsn u! ,,snu!w,,

aql sv) bl PUN k., suogtqal Lnmq orkli qlr~ 3 /Iq paimaua8 (L1p.x.mo3) ias aqi aq x pur! [l’I13!{ !v} = 3
lay ‘3 3 !V qlIM au0 01 au0 spuodsa.uoD qD& !V aleu~uI.Ialapu~ Mau B ampo.rlu~ ‘[I ‘I] 3 ,J q&a _10k
.[I’I]~!(!v} = 3 Ia? y+uouQod mdu! aqi u! slua$y3aoD 11e 30 las aqi aq 3 lay sasg 2 Moq lap!suoD
sn ia? *a~-8 30 dais L.mmq.m ue 1~ E IE!wouAlod t? 30 luag3aoD Isal (olaz Alq!ssod) B aq 2 Ia1 MON

.a=!) uogezqsu~.~ou maicg3ao3 01 dn urql~o@ s,~a%aqqm~ SB llnsal awes aql say% as-8 wql nal:, SI 11
*S.n.v-J.g=y

pur! ‘(8)isar + (8)d7. 8 = 8 ‘(0 # v)(J)~sa~ + (8)d7. n . v = 4 layi qms n impold JaMod r! put?
d 3 8 am aJay JJ! (uoympa.4-y) q “; J ‘sle!wouQod 30 ,J las alyy I! pm 4 p+woulClod e 103 OSIV

516 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

Base case: k = & . Obvious since I(Ai)P - Ai 1 < cxi = cw.

hhdtiplication case: l? = A” . b or -A” . 6. It suffices to see the case l? = A” . l? only. Let 1 (A), - A(< (Y
and I (B), - B I < /3 by induction hypothesis. Let fl refer to the equation: I (A)P @I (B)W - A B I.

When (A), 63 (B)@ # 0:

ft = I((A)p - A)(B - (B),) + W,(W, - A) + M),W, - B) + ((A)p 8 Wp - W,(B),)l
@$I + czll(B)Wj + /31(A)Pl + 5 x 10-‘P+t) x 10e((E)~) < Ed.

When (A)@ 63 (B)P = 0: (A),(B), = 0 and so

tt = I(M)@ - A)(B - (B)J + (B)F((A)F - A) + (A),(@), - @I 6 4 +4Wpl + BI(A)til
<E/l (By Remark 1).

Subtraction case: E = A - 6. Let I (A), - A 1 < a and I(B)CL - B 1 < ,?I by induction hypothesis. Let fig
refer to the equation: 1((A), 8 (B),) - (A - B)(.

When (A), 8 (B)k # 0: If (B)b # 0, then there are two cases:
(1) (AjP 8 (BjP # (AjP (normal case), and
(2) (A)@ 8 (B)@ = (A)fi (loss ofinformation).

In case (l),

tttt = I((A)p - A) + (B - (B),) + {((A), 0 (B)J - ((NP - (B),)lI
<a! +/j + 5 x lo-(p+t) x l@(E),)

<Ep.

In case (2), it is easy to see from floating point arithmetic that e((B)J < e((A)J - p and when the
equality holds,

Imantissa of (B)Pl < 0. joo...od
P G

(i.e. < .O. 500. . .od if (B)y is positive, and -C .O. joo...od otherwise).

Hence when the equality holds, (B), < 0.5 x lOe(= 0.5 x 10e((A)p)-p. Then fig = 1((A), - A) +
(B - (B)/J + @),I <a + b + I(B)Pl <a + j3 + 5 x 10e((E)~)-(p+‘) < Ed. If the equality does not hold,
111 < Q! + /I + I (B)J < CY + /3 + 1 x 10e((E)+‘p+‘) < tK.
On the other hand, if (B), = 0, then tffl = (((A), - A) + (B - (B)P)I 6 cx + j3 < ew.

When (A), 8 (B)P = 0: we have (A), - (B)P = 0 from floating point arithmetic, and hence dfl =
l((A)~--A)+(B-(B)~)I~a!+B~~~ 0

Lemma 2 (Error convergence). For the notation as above,

lim Ed = 0.
ML--f*

Proof. By induction on the structure of E.

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 517

Base case: I? = A”i. Since oi = 5 x lO-(w+l) x 10e((Ai)@) and e((Ai)b) is bounded on p, eCL = ai -+ 0.

Multiplication case: l? = A . i or -A . b. It suffices to see the case E = 2 . i only. Let u and
/I be the errors of (A)P and (B)P, respectively. When (E)w # 0, Ed =T (f ((~j3+ t (c~j(B)~[)+
t (/!?I(A)III) + 5 x 10e((E)fi)-(@+l)). B y induction hypothesis, we have (II + 0 and B + 0. Since 1 (A), 1,
I(B)Pl and e((E),) are bounded on p, Ed + 0. Similar for the case (E)p = 0.

Subtraction case: k = j - b. Let cx and p be as above. When (E)K # 0, ep =t (a! + ,8 + 5 x
10e((E)p)-(p+‘)). In the same way, ep -+ 0 is implied by that a! + 0 and fi + 0 by induction hypothesis
and that e((E)p) is bounded on I_L. Similar for the case (E), = 0. •I

Remark 3. In general, {~~]~a 1 may not be monotonically decreasing, as can be seen in the multiplication
case, since when p’ > p, 1 (A),/ 1 > 1 (A), 1 may often occur.

The following is a key theorem for our algorithm.

Theorem 1 (Zero judgment). Let E be a real coeficient of a polynomial at any step of R-GB. Then

E =0 iff I(E),I 6ePforallp.

Remark 4. The following also holds: “Let E be a real coefficient of the product-d@erence type of a
polynomial at any step of R-GB. Then E = 0 iff 1 (E), I < cF for all p”. In fact, if E is of the product type,
E cannot be zero by the structure of R-GB.

Proof of Theorem 1. (=+) is immediate from Lemma 1.
(~):Forany~,~EJ~~E-(E)~~++(E)CL~.~E-(E)~~I~~byLemma1and~(E),,~~~,byassumption.

Thus, I E) < 2~~ for all /.L. But by Lemma 2, cl* + 0 as I_L approaches infinity. Therefore, E must be 0. 0

4. The algorithm

4.1. Description

For simplicity, we describe the algorithm FP-GB that computes an approximate Grobner basis; it is
based on the crude version of Buchberger’s algorithm [3, Algorithm 6.21. Thus here R-GB is the algorithm
obtained by replacing S-polynomials and reductions in Algorithm 6.2 by S-R polynomials and R-reductions,
respectively.

In light of Theorem 1, we propose a zero criterion for BC in FP-GB as follows:
For any bracket coefficient [A, a] such that A is of the product-difference type,

The zero criterion: [A,cr]=O iff [A(<aa.

This criterion will be shown to be adequate for our purpose in the correctness (Section 4.2) of FP-GB.
Now let us describe FP-GB.

518 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

An admissible term ordering <T is given.

Algorithm FP-GB
Input: a finite set F of real polynomials and a natural number p.
Output: a set G, of floating point polynomials with precision p, such that {GCLJP makes a floating point
Grobner sequence of F.

G := R-to-BC (F, p) % Data conversion to initialize
B := {Ifl, f21 I _fi, f2 E G, fi # f21
While B # 0 do

(j-1, f2) := a pair in B
B := B - ({fit f211
h := S-BCpoly (fi, f2, ~1

h’ := BC-NForm (h, G, p)
if h’ # 0 then

if h’ = a bracket without the variables then Return ({ 1 }) else
B := B U {{g, h’} 1 g E G)
G := G U {h’}

BC-to-FP(G) % Data conversion to finish
% If necessary, the final errors can be viewed from G.

Subalgorithm R-to-BC (F, p)

BCF := 0
For f in F do

% F is a finite set of real polynomials

IZ := the number of terms in f
BCf := 0
Fori = 1 tondo

Ai := the ith coefficient in f
c := the ith power product in f
(Ai)w := the floating point approximation of Ai to precision p
o,i := 5 X lo-@+I) X lOe((&),) (*)

BCf := BCf + [(Ai),, ai]7j
BCF := BCF U {BCf)

Remark (*): If an input coefficient Ai is initially given by a floating point number with precision p, then

we can set CXi := 0 for it.

Subalgorithm S-BCpoly (fl , f2, p) % fi and f2 are BC polynomials with precision p

f := S-BCpoly,(fi 9 f2>
n := the number of terms in f
fZ:=O
For i = 1 to n do

[EL, $1 := the ith b racket coefficient in f
z := the ith power product in f

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 519

if EL is of the product-difference type and (El 1 < $
then fZ := fZ % the zero criterion
else fZ := fZ + [El, $]c

Subalgorithm BC-NForm (f, G, p)
with precision I_L

% f is a BC polynomial and G is a finite set of BC polynomials

h := f
BC

While 3g E G, u such that h -+g,u do

choose g E G, u such that h “,c g,u and u . LP(g) is maximal (w.r.t. <r)
[A, cx] := the bracket coefficient of L P (g) in h
[B, p] := the leading bracket coefficient in g
h := [B, /I] . h - [A, c~]u . g (with precision /_L)
n := the number of terms in h
hZ:=O
For i = 1 to IE do

[El, $1 := the ith bracket coefficient in h
Ti := the ith power product in h
if El is of the product-difference type and 1 EL 1 < of,
then hZ := hZ % the zero criterion
else hZ := hZ + [El, $17;.

h := hZ.

Subalgorithm BC-to-FP (G)

FPG := fl
For g in G do

% G is a finite set of BC polynomials

n := the number of terms in g
FPg := 0
For i = 1 to n do

[Ei , ri] := the ith coefficient in g
7;: := the ith power product in g
FPg I= FPg + Ei. c

FPG := FPG U {FPg].

4.2. Termination and correctness

The termination of FP-GB can be shown in exactly the same manner as Buchberger’s proof [4] for the
conventional algorithm using Dickson’s lemma [7], because the termination depends only on a property of
a sequence of power products, not on coeficients.

Theorem 2 (Termination). For any finite set F of real polynomials and any natural number I_L. FP-
GB (F, p) terminates.

520 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

Proof. Let ri be the leading power product of the ith BC polynomial hi adjoined to G in the course of
FP-GB(i = 1,2,. . .). Assume 3j such that tj is a multiple of tk for some k < j. Then hj is reducible
using hk. However, by the structure of FP-GB, hj is a normal form modulo the (j - 1)th set G including
hk. This is a contradiction. Thus the sequence II, t2, . . . has a property that, for all j, tj is not a multiple of
any of its predecessors. Hence, by Dickson’s lemma, this sequence must be finite. 0

The correctness of FP-GB is the following.

Theorem 3 (Correctness). Given a jnite set F of real polynomials and a natural number p, let G, =
FP-GB (F, p). Then {G,}, is afloating point Griibner sequence of F.

Proof. By comparison with R-GB. Let G be the result of R-GB (F). First of all, we prove that there is an
M such that Supp(G,) = Supp(G) for all p > M. As mentioned in Section 3, it is obvious that if at any
stage of R-GB, a coefficient E is zero iff FP-GB judges that the corresponding [(E)P, cp] is zero, then
Supp(G,) = Supp(G). Here we could consider four cases:

R-GB FP-GB
(1) E = 0 [(E)P, E,J = 0
(2) E = 0 [(E)P, ~~1 # 0
(3) E #O [bQ,~~l =O
(4) E #O UE)p,~J #O

Cases (1) and (4) are desired for our purpose. Case (2) is impossible by Theorem 1. However, the undesirable
case (3) is possible. Therefore, it suffices to prove that there is an M such that for all p > M, case (3) does
not occur throughout FP-GB (F, p).

Let N be the sum of the numbers of S-R polynomial calculations and R-reductions in R-GB (F). Note
that N is finite. Here when N = 0, it means ffF = 1, and hence we are done with this by FP-GB (F, l),
i.e. taking 1 as M. Thus we assume N 3 1.

Let {sl, ~2, . . . , SN} be the sequence of S-R polynomial calculations and R-reductions such that they are
serially performed in R-GB (F) in this order. Put Sk = (sl , . . . , Sk} for 1 < k 6 N.

We prepare the following lemma. 4

Lemma 3. For any k E [1, N], iffor some MO, FP-GB (F, MO) causes no case (3)for Sk, then there is an
M’(>Mo) such thatfor all p 3 M’, FP-GB (F, w} causes no case (3) for Sk.

Proof. Assume the if part. If moreover no case (4) occurs in Sk, then it means E = 0 for every coefficient E
and hence no case (3) can occur for any CL. Otherwise, let { Ei, [(Ei)k, $]}I ~i<t be all the pairs in case (4)

in Sk. Put C = mini,[l_ll()Eil). Since C # 0 and 1 is finite, there is an Ml such that p 3 MI =+ 6; < ;C
foralli,byLemma2.Fori E [l,Z]andp>M1,wehavec’ cL 3 IEi - (Ei),l> IEil- I(Eijlll byLemma 1
and the triangle inequality. Thus, 1 (Ei)w 1 3 1 Ei 1 - EL 3 C - ??L > EEL. Therefore, M’ = max(MO, Ml)
satisfies the subject of Lemma 3 by the zero criterion. •I

4 We need this lemma, since for an E, (c~)~ may not be monotonically decreasing as mentioned in Remark 3.

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 521

Proof of Theorem 3 (continued). Now if FP-GB (F, 1) causes no case (3) for SN, then we are done
by Lemma 3. Otherwise, let sk, be the first process such that case (3) occurs. Let Et, . . . , E, be all the
coefficients in case (3) immediately after the process ~kr. By an argument similar to the proof of Lemma 3,
there is a ,Uk, such that p 3 pk, =+ 1 (Ei)cLI > CL for all i E [1, m]. Moreover, since FP-GB (F, 1) causes
no case (3) for Sk, _ 1, by Lemma 3 there is an /t!!k, such that for all p > Mk,, FP-GB (F, CL) causes no
case (3) for Sk, -1. Therefore, when putting iik, = maX(pk, , I&,), FP-GB (F, tik,) causes no case (3)
for Sk,.

Next, if FP-GB (F, tik,) causes no case (3) for SN, then we are done. Otherwise, let Sk2 be the first
process such that case (3) occurs. Repeating this argument makes a strictly monotone increasing sequence
kl < k2 < k3 < But since N is finite, this sequence is finite and hence it proves the existence of M.

Moreover, as p approaches infinity after M, by Lemmas 1 and 2, every coefficient of {G,}fi2M converges
to the corresponding one of G. 0

5. Examples

We can also consider an improved version of FP-GB, based on the improved version of Buchberger’s
algorithm [3, Algorithm 6.31, in a manner similar to FP-GB. In fact, the optimum choice of a pair for
the S-polynomial, and Criterions 1 and 2 for detecting unnecessary reductions are all expressed only by
the terminology of power products, not of coefficients. Obviously the termination and correctness of the
improved FP-GB can be proved in the same manner as those of FP-GB in Section 4.2.

The original versions of FP-GB and R-GB are so costly in computing time that they are not appropriate
for our experiments. Thus, in this section, we compare the experimental results of the improved FP-GB
and the improved R-GB, where the latter algorithm gives a reduced Griibner basis except that the resulting
polynomials are not necessarily manic. Let us here call them simply FP-GB and R-GB as well.

We implemented them in Maple V/Sun SPARC [5]. For brevity and convenience on Maple, we coded
the parts of error terms in Definition 4 by floating point arithmetic instead of round up arithmetic, assuming
that the errors between them are negligible. We did not use the built-in function gbasis5 in Maple for
computing Grobner bases even in the case of rationals, for the sake of fairness of the comparison between
FP-GB and R-GB. Tables l-7 show G := R-GB (F) and G I-L := FP-GB (F, p) (1 <p ,< 10 or 20) with cpu
times for F in Examples l-7 below, respectively. (CPU times are not described in Tables 3 and 4. They were
all within 1 s. for Example (3) and within about 3 s. for Example (4).) To preserve space, in Tables 6 and 7,
each coefficient of G is a floating point expression with precision 10. tdeg (respectively plex) denotes total
degree lexicographic (respectively purely lexicographic) term ordering. In the tables except for Table 7, the
first precision k satisfying Supp(Gk) = Supp(G) is marked in bold. Note that k may not necessarily
satisfy the condition that Supp(G,) = Supp(G) for all p 3 A?. In Table 7, the precision such that from it
on, the series of supports seems to be stable is framed by a box. Here are the examples:
(1) F = (x(3x - l), x - i}, tdeg.
(2) F = {x(3x - l), x - 0.3333333333}, tdeg.
(3) F = ((x2 - i)‘, (x2 + ix + $)5)}, tdeg.
(4) F = (x2 - x3 + 1, :xt + 4x2 - x3 + 2, -x1 + x2 + x3 - 2), plex with x1 > x2 > x3.

5 This function can be applied only over the rationals, but it was often much faster than the author’s implementation of
R-GB.

522 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

Table 1
Example 1

G={x-5) cputime(s)=0.130

GLL cpu time (s)

1 (1.x - 0.3) 0.233
2 (1.X - 0.33) 0.167
3 (1 .x - 0.3333 0.200
4 (1 .x - 0.3333) 0.184
5 (1 .x - 0.333331 0.184
6 (1 .x - 0.333333) 0.183
7 (1 .x - 0.3333333} 0.167
8 (1.x - 0.33333333) 0.150
9 { 1 .x - 0.333333333) 0.167

10 (1.x - 0.3333333333) 0.183
11 (1 .x - 0.333333333331 0.200
12 (1.X - 0.333333333333) 0.183
13 (1 .x - 0.3333333333333) 0.200
14 (1.x - 0.33333333333333) 0.200
15 (1.x - 0.3333333333333331 0.183
16 (1.x - 0.3333333333333333) 0.200
17 (1.x - 0.333333333333333331 0.216
18 (1.x - 0.333333333333333333) 0.184
19 (1 .x - 0.33333333333333333331 0.200
20 (1.x - 0.33333333333333333333) 0.200

Note: G, gives an approximate GCD of the input polynomials.

(5) F = {ft , f2, f3}, plex with x > y > z, where
f, = ;x2 _ 3;67yg3gg;;g2X + 12;;;;;y;*ly2 + '7"3",';2p8','228;;z2,

L
12367812638123

f2 = $y + 763812368213132= -
63812638126
77263812831y'

327091270979304
f3 = h + 24122375460421 y +

18467031595309203z _ 3S6318063693141319
318405459032 6436561806418109 .

(6) F = {1/Zex3y+&xy+fi/e, (&/e)x2y2-fixy+Aefl}, tdeg withx > y, WhereeisNapier’s
number (2.71828.. .).

(7) F = (fi, f2). tdeg’with x > y, where fr = z/Ze/nx3y + (fi + n)xy + 2/5/(e - rr), f2 =
(1 - e&)/e . nx2y2 - (l/;i - e)xy + elfi.

Remarks and observations

(1)

(2)

Example (3) is given in [6] as an example where, with any precision, using naive floating point
computation always leads to an incorrect answer (1). FP-GB gave a correct support from precision 7.
Example (4) is a system of ill-conditioned linear equations as well as Example (1). That is, with any
precision, naive floating point computation (Gaussion elimination) always makes x2 non-zero, whereas
the correct solution for x2 is x2 = 0. For example, in Maple, fsolve gave x2 = -0.10 x 10V8 with
precision 10, and x2 = -0.10 x 1O-998 with precision 10 3 FP-GB gave a correct support with the .
correct solution x2 = 0 from precision 3.

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 523

Table 2
Example 2

G = (1) cpu time (s) = 0.200

p G, cpu time (s)

1 (1.X - 0.3) 0.150
2 (1 .X - 0.33) 0.183
3 [1.X - 0.333) 0.134
4 { 1 .X - 0.3333) 0.134
5 (1 .X - 0.33333) 0.116
6 (1 .x - 0.333333) 0.150
7 (1 .x - 0.3333333) 0.134
8 (1 .X - 0.33333333) 0.150
9 (1 .X - 0.333333333) 0.150

10 (1 .x - 0.3333333333) 0.150
11 (1 .X - 0.3333333333) 0.150
12 (1) 0.217
13 (1) 0.200
14 (1) 0.217
15 (11 0.216
16 11) 0.233
17 (1) 0.217
18 (1) 0.217
19 11) 0.200
20 (11 0.200

Table 3
Example 3

G= { 7625597484987

Floating point expression of G with precision 10

{0.208839347&- + 0.3480655785~~ + 0.232043719Od + 0.07734790633~+ + 0.01289131772~ + 0.0008594211815)

1

2

3

4

5

6

7

8

9

10

(0.210192 +0.348555x4 + 0.23214592 + 0.077361652 + 0.01289275~ + 0.0008595170)

{0.209028x5 + 0.3481360~~ + 0.23205825~~ + 0.077349832~~ + 0.012891517~ + 0.00085943445)

(0.2088578~~ + 0.34807241~~ + 0.232045147~ + 0.0773480939~~ + 0.0128913372~ + 0.000859422479)

(0.20884360~~ + 0.348067163~~ + 0.2320440460~~ + 0.07734794993~~ + 0.01289132226~ + 0.0008594214843)

Note: For reference, in the case of p = 10, the resulting set of BC polynomials before applying BC-to-FP was [[0.20884360,
0.0001874976625]~~+[0.348067163, 0.00006354676445]x4 +[0.2320440460, 0.00001245452526]x3 +[0.07734794993,
0.1524493493 x lO-5] x2 + [0.01289132226, 0.1445756578 x 1O-6] x + [0.0008594214843, 0.9638601869 x lO-8]).

524 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

Table 4
Example 4
G=(fX1+5.-~x2,-~x3+3,

1

2
3
4
5
6
7
8
9
10

{-1.X1, 1.X2 - 1.q + 1.)
(0.67x1,-0.67x2, -0.67~~ +0.6)
(0.445x1 +0.449,0.667x2,0.667x3 - 0.667)
(0.6663x, +0.666,-0.6663.x2, -0.6663~~ + 0.6663)
(0.44445.q + 0.44449,0.66667_rr,0.66667xJ - 0.66667)
{0.444445x1 +0.444449,0.666667x2.0.666667x3 - 0.666667)
{0.4444445x1 +0.4444454,0.6666667~~,0.6666667.q - 0.666666)
(0.66666667~1 +0.6666668,-0.66666667x2,-0.66666667x3 +0.6666666}
10.444444445~1 +0.444444449,0.666666667x2,0.666666667x3 -0.666666667)
10.4444444445~1 +0.4444444449,0.6666666667~~,0.6666666667~~ - 0.6666666667}

(3)

(4)

In general Ref. [l] gives a sufficient condition for the feasibility of the Gaussion elimination with
intervals. We expect that using intervals and (the interval version of) the zero criterion will always
make the Gaussion elimination successful, provided we apply our versions of the S-polynomial and
reduction without division.
In Example (5), the reason why only the leading coefficients have small numerators and denominators
is that fi(= 6) was small. According to our experiments, fi was 14 when they were all replaced by a
rational number with numerator and denominator of about 1.5 digits. (It took 261.150 s. for fi = 14,
whereas R-GB required 1278.63 s.) In the case of rationals, in general, we have a conjecture that I!?
depends largely on the sizes of the numerators and denominators of the leading coefficients of input
polynomials.
Our approach could be useless if input polynomials contain a polynomial of too high degree or with too
many terms, because even using floating point computation does not solve the problem of the number of
reductions or the number of polynomials that we must retain to make S-polynomials. In fact, it was not
possible to compute a lexicographic floating point Griibner basis of the”Rose system” (see [2]) which
has a polynomial with 21 terms (3 variables, total degree 8), using FP-GB within a reasonable time.
Our approach will be useful when rke growth ofcoefJicienfs is the main reason why the computation
of a Grijbner basis by the usual Buchberger algorithm is slow (see Examples (5)-(7)).

6. Conclusion

Our algorithm FP-GB is often more efficient than the conventional R-GB algorithm, in particular when
the coefficients of input data are complicated, such as real numbers including irrational or transcendental
numbers, and the growth of intermediate coefficients is the major factor determining the computational cost.
Moreover, FP-GB can give a correct support even for an ill-conditioned system from a finite precision. In
other words, using bracket coefficients and the zero criterion stabilizes Buchberger’s algorithm which is
numerically unstable. This method could be extented to other approximations as well.

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 525

Table 5
Example 5

Floating point expression of G with precision 10
= (-0.7486148880 x 103'X+0.2938720185 x 104'2 f0.1954874591 x lO39$ -0.3745685851 x 1036z+O.l768674726 x 1033,

-0.1684383498 x 1032y-0.2167251711 x lO39$ -0.14.41683806x 1038zt -0.4442206312 x 1035Z+0.5572270445 x 1032,

-0.5081835293 x lO76Z4 -0.3068656908 x lO75g f0.8958744250 x lO722 -0.8274384887 x 1069Z+0.2446596580 x IO@]

cpu time (s) = 369.16

cpu time (s)

1 (-0.4 -20.y lm.2) x IO"22 , -8.x + low., -

2 1-0.46 x lO168, -0.48 x 10'73,+0.61 x 1017',-0.10 x 10169y.0.24 x 10'52,2 f0.14 x 10'5',-o.18 x IO)

3 (-0.349 x 10'2622,0.136x 10~~~~+0.478 x lO'46,-O.464x lO143,O.6O7x 10142x)

4 I.3025 x 10'576y+0.7964 x 101579, -0.1002 x 101577,

0.1344 x 10'576,+0,6750 x 1015802 -0.3169 x 10'~~~,-0.9180 x 10771,2)

5 (-O.ll3OO x 10259'y+0.37380x 10259',0.12153 x 10"06,,-0.50220 x lO259ox+O.ll864 x lO2592t

6 (0.537759 x lO25X - 0.211101 x lO3423 - 0.140427 x lOa? f0.269066 x 103'Z -0.127046 x 1027,

0.120996 x 1026J'+0.155683 x lO33t3 f0.103562 x 10 32~+0.319102x lO29Z -0.400280 x 1026,

-0.262230 x 10HZ4 -0.158347 x lO63Z3 +0.462286 x 106'$ -0.42695 x 1057Z+0.12621 x lO54)

7 (-0.5377591 x 1025,+0.2110991 x lO34,3 +0.1404259x 1033,2 -0.2690671 x lO3o,+O.l27O5lOx 1027,

-0.1209958 x 1026y-0.1556817 x IO 33 z 3 -0.1035615 x 1032,2 -0.3191010 x lO29,+O.4oO2777x 1026,

-0.2622272 x 1O6424 -0.1583455 x lO6323 +0.4622788 x 1060,2 -0.426967 x 1057,+0.126248 x lO54)

8 (-0.74861510 x lO31x+O.293872l2 x 1040,3 +0.19548753 x 1O39:2 -0.37456868 x lO36,+O.l7686754x 1033,

-0.16843840 x 1032y -0.21672524 x lO39z3 -0.14416843 x 103%2 -0.44422077 x lO35, +0.55722718 x 1032,

-0.50818387 x lO76z4 -0.30686591 x 1075,3 +0.8958751 x 1072,2 -0.8274391 x lO69,+O.24466o2x 1O66)

9 (0.115073820 x 102*.r -0.451727265 x 1036,3 -0.300494807 x 1O35,2+O.57577O523x lO32z -0.27187297 x 1029,

0.258916096 x 1028y+0.333140493 x lO35,3 +0.221609356 x lO34z2 +0.68283661 x 103', -0.85654515 x 1028,

0.12OO76142 x lO69,4+O.725O77583x 1067,3 -0.211681686 x lO65,2 +0.19551130 x 1062, -0.5780940 x lo581

10 (0.5377596431 x lO25~ -0.21lO998780 x lO34z3 -0.1404263631 x lO3322 +0.2690674097 x 103'z -0.1270508920 x 1027,

0.1209959197 x 1026y+0.1556822505 x lO33z3 +0.1035618421 x lO32z2 +0.3191012~54 x lO29z -0.4002781954 x 1026,

-0.2622286133 x lO64Z4 -0.1583462665 x lO63z3 +0.4622816264 x 1060~2 -0.426967888 x 1057z+0.126247231 x lO54)

1.833
12.000
8.817
102.600

128.216
24.650

24.567

30.100

27.483

24.617

Note. Even for ,LL = 100, it took only 35.250 s.

Unfortunately, up to now, we have not had a reasonable upper bound on A4 such that Supp(G,) =
Supp(G) for all p B M. That is, we could not strictly determine M in advance where GM is an approximate
Grijbner basis. Another important issue would be finding a good test for deciding if Supp(GJ = Supp(G)
for a resulting G,. In practice, currently, one should guess M by detecting a subsequence of {GCLJII that
seems to be stable on supports or seems to converge coefficientwise.

We want to stress, however, that our approach is not only theoretically well-founded, but also could
be applied to solve many problems correctly or efficiently which have never been solved satisfactorily
before using naive floating point computation, in approximate algebraic manipulation from gcd or Gaussian
elimination to Grijbner basis calculation.

526 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

Table 6
Example 6

Floating point expression of G with precision 10

= (-0.1325528855 x 109y3 - 0.1085028162 x 10’“~ - 0.3879281551 x lO”y,

0.3443764079 x lo92 + 0.8401300998 x 107y2 + 0.4145701265 x 109,

0.3975253926 x 1O’xy + 492680.0344~~ - 0.1293658022 x 10’)

cpu time (s) = 43.21

M G,,

6

7

8

9

10

(-80.x + 3o.y, 7000.y4 + 20000.y2 + 500000.}

[83.x2 + 100.. -24OO.xy - 690.~~ + 730., -63000.~~ - 620000.x)

(1)

(11
(-229890.~~ - 0.18815 x 10’~ - 0.67274 x IO’y,

-597 150.x2 - 14570.~~ - 7 18900.,

-6892.6~~ - 854.35~~ + 2243. I]
(-0.132550 x 109y’ - 0.108499 x 10”~ - 0.387913 x lO”y,

0.344366 x 109x’ + 0.840125 x IO’y’ + 0.414559 x 109,

0.397519 x 10’~~ + 492664.~’ - 0.129365 x IO’}

(-0.1325529 x 10”~” - 0.1085029 x 1O’Ox - 0.3879282 x 10’“y,

0.3443766 x 109x2 + 0.8401299 x 107y2 + 0.4145703 x 109,

0.3975255 x IO’xy + 492680. I y2 - 0.1293659 x 10’)

{-229800.22~~ - 0.18810585 x 10’~ - 0.67253136 x lO’y,

-597027.96~~ - 14564.909y’ - 718719.25,

-6891.6968~~ - 854.13454~’ + 2242.7495)

[--0.132552891 x 109y’ - 0.108502819 x 10”‘~ - 0.387928170 x 10’“y,

0.344376416 x 10’~~ + 0.840130139 x IO’y’ + 0.414570140 x 109,

0.397525401 x 10’~~ + 492680.049~’ - 0.129365806 x lo’]

(-0.1325528856 x I09y3 - 0.1085028160 x 1O’Ox - 0.3879281549 x lO”y,

0.3443764073 x 109x’ + 0.8401301011 x 1O’y’ + 0.4145701258 x 109,

0.3975253922 x 10’~~ + 492680.0346~’ - 0.1293658021 x 10’)

cpu time (s)

2.267

2.567

2.900

2.700

3.550

4.583

4.983

3.566

4.583

4.967

Note. Even for p = 100, it took only 8.517 s.

Acknowledgements

This research is supported in part by the United States Army Research Office through the Army Center
of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences
Institute of Cornell University, Contract DAAL03-9 I -C-0027.

The author is grateful to Moss Sweedler for his helpful discussion and valuable comments in preparing
this paper. Also the author wishes to thank James Davenport, Jerry Marsden, and Dana Scott for their
suggestion of some relationship to interval arithmetic, and Tateaki Sasaki, Matu-Tarow Noda, and Vilmar
Trevisan for their encouragement.

K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528 527

Table 7
Example 7

G = ? cpu time (s) > 3600 (s).

CL G, cpu time (s)

2

3

4

5

cl
6

7

8

9

10

(-12.x2 - 55., 48000.~~ + 16OOOO.y* + 7700., -0.38 x logy3 +580000.x)

(-0.2929 x lO’*x, 0.9853 x 10’9y2 - 0.1421 x 10’8)

(1)
I-O.304467 x logy3 - 57296.6~ + 0.177025 x IO’y,

57131.5x2 - .349660 x 10sy2 + 503082.,

-586O.Olxy + 134278.~~ - 958.949)

(523698.7~~ + 985.5738x - 30450.19y,

982.7229x2 - 601411.7~~ + 8653.376,

- 100.7948~~ + 2309.56~~ - 16.49430)

{ -0.30449275 x logy3 - 57303.400x + 0.17704401 x lO’y,

57 1 37.690x2 - 0.34967823 x logy2 + 503 126.47,

-5860.4880~~ + 134285.50~~ - 959.02183)

(-0.304493527 x logy” - 57303.5247x + 0.177044409 x lO’y,

57137.8102x* - 0.349679197 x logy2 + 503127.527,

-5860.49750~~ + 134285.767~~ - 959.023145)

(-0.3044934742 x logy3 - 57303.51814~ +0.1770443855 x lO’y,

57137.80337~~ - 0.3496791346 x logy2 + 503127.4531,

-5860.497OOlxy + 134285.7486~~ - 959.0230326)

3.200

1.550

3.883

3.133

4.367

3.883

4.750

4.767

4.316

Notes. (1) R-GB (F) was not obtained after 3600 s.
(2) For p = 1, the constant term of ft is ill-defined since e - rr.
(3) Even for p = 100, it took only 7.950 s.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Computer Science and Applied Mathematics
(Academic Press, New York, 1983).

[2] W. Boege, R. Gebauer and H. Kredel, Some examples for solving systems of algebraic equations by calculating Groebner
bases, J. Symbolic. Comput. 1 (1986) 83-98.

[3] B. Buchberger, Grobner bases: An algorithmic method in polynomial ideal theory, in: N.K. Bose, ed., Multidimensional
Systems Theory (Reidel, Dordrecht, 1985) Chapter 6, 184-232.

[4] B. Buchberger, An algorithmical criterion for the solvability of algebraic systems of equations (German), Aequationes
Mathematicae 4 (3) (1970) 374-383.

[5] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S. M. Watt, First Leaves: A Tutorial Introduction
to Maple V (Springer, Berlin, 1992).

[6] J.H. Davenport, Y. Siret and E. Toumier, Computer Algebra, Systems and Algorithms for Algebraic Computation
(Academic Press, New York, 1993).

[7] L.E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math.
35 (1913) 413426.

[8] D.E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading, MA, 1969).
[9] R.E. Moore, Interval arithmetic and automatic error analysis in digital computing, Ph.D. Thesis, Mathematics Dept.,

Stanford Univ., October 1962.

528 K. Shirayanagi/Mathematics and Computers in Simulation 42 (1996) 509-528

[lo] M. PetkoviC, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Lecture Notes in Mathematics, 1387
(Springer, Berlin, 1989).

[111 T. Sasaki and T. Takeshima, A modular method for Grobner-basis construction over Q and solving system of algebraic
equations, J. Inform. Process. 12 (4) (1989) 371-379.

[121 K. Shirayanagi, An algorithm to compute floating point Grobner bases, in: T. Lee, ed., Mathematical Computation with
Maple V: Ideas and Applications (Birkhluser, Basel, 1993) 95-106.

[131 W. Trinks, On improving approximate results of Buchberger’s algorithm by Newton’s method, SIGSAM Bull. 18 (3)
(1984) 7-11.

[141 F. Winkler, A p-adic approach to the computation of Grobner bases, J. Symbolic. Comput. 6 (2-3) (1988) 287-304.

