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Gröbner Bases in Orders of Algebraic Number Fields

DAVID ANDREW SMITH†
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We prove that any order O of any algebraic number field K is a reduction ring. Rather

than showing the axioms for a reduction ring hold, we start from scratch by well-ordering

O, defining a division algorithm, and demonstrating how to use it in a Buchberger
algorithm which computes a Gröbner basis given a finite generating set for an ideal. It is

shown that our theory of Gröbner bases is equivalent to the ideal membership problem

and in fact, a total of eight characterizations are given for a Gröbner basis. Additional
conclusions and questions for further investigation are revealed at the end of the paper.
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1. Introduction

In the 1960s Bruno Buchberger presented his first critical-pair-completion algorithm,
now called Buchberger’s algorithm. Since then Gröbner bases have become a powerful
tool in computational algebra and algebraic geometry. What is not as well known is that
Buchberger (1985, 1987) has also shown a way of computing Gröbner bases in the integers.
This is not as trivial as it may seem. In the polynomials, for example, it is possible to
separate every element into a head part and an other part, and then formulate Gröbner
bases. Overcoming this difficulty, Buchberger has given a list of axioms of every ring,
called a reduction ring, satisfying them, we are guaranteed that Gröbner bases can be
computed using a critical-pair-completion algorithm. Since then, Stifter (1985, 1987) has
generalized the notion of a reduction ring; with more freedom to formulate the theory
of Gröbner bases, she was able to show reduction rings can have zero divisors and that
the Gaussian integers are a reduction ring. Buchberger and Stifter also showed various
hereditary properties (see later); in particular, the reduction ring property is hereditary
from R to R[x1, . . . , xn].

An alternate version of reduction rings has appeared in Madlener and Reinert (1998);
however, the construction of a Gröbner basis is left as an assumption. We show that orders
of algebraic number fields are reduction rings in the sense of both papers; however, to
guarantee the construction of a Gröbner basis we more closely follow Buchberger and
Stifter’s approach. Yet we do not show their axioms hold, per se; we take a more hands
on approach similar to the exposition in Adams et al. (1994) and Cox et al. (1997) for
polynomial rings.

We define Gröbner bases in orders of algebraic number fields and show that com-
puting Gröbner bases solves the ideal membership problem. We base our exposition on
Buchberger’s landmark proof of the Generalized Newman Lemma which can be found
in Buchberger et al. (1983) together with Becker et al. (1993). Roughly, his lemma gives
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us a way to formulate a proof that a Gröbner basis can be computed in an order of an
algebraic number field, given a finite set as input.

We first describe a division algorithm, which works for any order O of any number field
and which is based on the algorithm in Stifter’s dissertation; namely, not every element
can be used as a multiplier. Only algebraic integers of the form aFi where a is a non-zero
integer and {F0, F1, . . . , Fd−1} is a Z-basis for O, will be allowed as multipliers. So we fix
a lexicographical ordering on the Z-basis of O and use a well-ordering on the integers and
extend these two orderings to O. Once an ordering is given, the division algorithm we
formulate is quite easy and natural. A side effect of this restriction upon the multipliers
is that not every singleton will be a Gröbner basis as is the case in the integers.

We define Gröbner bases as Buchberger did for general reduction rings; specifically,
a finite subset G is a Gröbner basis when →G has one of the equivalent properties in
the Generalized Newman Lemma (Buchberger–Newman Lemma presented later) where
→G can roughly be thought of as one step in the division algorithm. Having a Gröbner
basis G of an ideal Id(G) is proven to be equivalent to the ideal membership problem of
Id(G). We also define critical pairs as Buchberger and Stifter did for general reduction
rings. The crucial point is that we are able to show that the α that satisfies γ14α

i,j
γ2

has a certain form; and this will aid in computing Gröbner bases and in the proof of
Buchberger’s algorithm.

2. A Division Algorithm for Orders

To describe a division algorithm we fix a number field K = Q(θ) where θ is an algebraic
integer and deg(K) = d and an order O of K with Z-basis {F0, F1, . . . , Fd−1}.

Definition. Let <Z be defined on the integers as 0 <Z −1 <Z 1 <Z −2 <Z 2 <Z · · ·.
Then extend <Z to O by

d−1∑
k=0

akFk <O

d−1∑
k=0

bkFk ⇔ ∃ i such that ai <Z bi and ∀j > i, aj = bj .

Definition. A multiplier in O is any element of the form aFi where i ∈ {0, 1, . . . , d−1}
and a is a non-zero integer.

Given a γ in O we define a reduction (a strictly antisymmetric) relation on O by,

→γ := {(α, β) | ∃ a multiplier m such that β = α−mγ and β <O α}

and we write, α→(m,γ) β or sometimes α→γ β.
To have a division algorithm capable of supporting a theory of Gröbner bases we need

to have a way to compute α→γ β. That is, given algebraic integers α and γ, we want to
have a way of finding a multiplier m such that β = α−mγ <O α. Even more specifically,
given α, γ ∈ O and i we want to find a non-zero integer a such that for m = aFi we have
β := α−mγ <O α.

If there is such an m then we say that α is reducible modulo γ to β by m. Further, if
there is no m′ ∈ O such that β →(m′,γ) for any i, then β is called a normal form of α
modulo γ. Specifically, we denote →G to mean the (α, β) ∈ O×O such that there exists
m with α→(m,g) β for some g ∈ G. Following Becker et al. (1993) and Buchberger (1987)
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we denote ∗→G, ↔G, and ∗↔G as the reflexive-transitive closure of →G, the symmetric
closure of→G, and the reflexive-transitive closure of↔G, respectively. Buchberger (1985,
1987) discusses reduction processes on the integers using <Z. To obtain a normal form
for a given a modulo a given c Buchberger mentions a simple iterative function which
finds the multiplier.

For a division algorithm in O, we first compute the table of products,

FjFk = sj,k,0F0 + sj,k,1F1 + · · ·+ sj,k,d−1Fd−1

which puts FjFk in basis form. For a given i, we want to find a ∈ Z such that α −
aFiγ <O α. Writing α =

∑d−1
k=0 akFk and using the table to obtain integers tl with

Fiγ =
∑d−1

k=0 tkFk, we see that we want to find an integer a such that

d−1∑
k=0

(ak − atk)Fk <O

d−1∑
k=0

akFk.

Now we are led to find a such that ad−1 →(a,td−1). To do this reduction in the integers, we
can use Buchberger’s procedure mentioned earlier. But we actually have different cases
to consider. Suppose p is such that ap+1 = ap+2 = · · · = ad−1 = 0 and ap 6= 0. Then to
have reduction we must have tp+1 = tp+2 = · · · = td−1 = 0 and tp 6= 0. If there is no a
such that ap →(a,tp) (in the integers) then α is not reducible module γ w.r.t. this i. If we
cannot find a multiplier for any i then α is not reducible modulo γ.

Here is an example of one possible step in the division algorithm. Let θ = 3
√

19 and
K = Q(θ). Then we have an integral basis {1, θ, θ2+θ+1

3 } = {1, F1, F2} for O = ZK .
Reduce α = 15 − 24F1 − 35F2 modulo γ = −12 − 4F1 + 8F2 w.r.t. i = 1. We first
compute, F1F1 = −1− F1 + 3F2, F1F2 = 6 + F2, and F2F2 = 4 + 2F1 + F2. We want to
find a ∈ Z such that α− aF1γ <O α. Writing this in basis form,

(15− 52a) + (−24 + 8a)F1 + (−35 + 4a)F2 <O 15− 24F1 − 35F2.

Thus, we are led to find a such that −35→(a,−4). So we let a = 9 and obtain,

15− 24F1 − 35F2 →(9F1,−12−4F1+8F2) −453 + 48F1 + F2.

3. Gröbner Bases and Ideal Membership

If there exists γ ∈ O such that α
∗→G γ and β

∗→G γ, then we say α and β have a
common successor, denoted by α ↓G β. If γ, µ1, . . . , µt ∈ O with µi ≺ γ for i = 1, . . . , t
such that α = µ1 ↔G µ2 ↔G · · · ↔G µt−1 ↔ µt = β, then we say α and β are connected
below γ, denoted by α

∗↔≺γ,G β. The proof of the following theorem can be found in
Becker et al. (1993) and Buchberger et al. (1983).

Theorem 3.1. (Buchberger–Newman Lemma) The following are equivalent proper-
ties for →G. For any a, b, c ∈ O:

a. →G is locally confluent if (a→G b and a→G c)⇒ b ↓G c;
b. →G is confluent if (a ∗→G b and a

∗→G c)⇒ b ↓G c;
c. →G has unique normal forms if (a ∗→G b, a

∗→G c, and b and c are →G -maximal)
⇒ b = c;

d. →G has the Church–Rosser property if a
∗↔G b⇒ a ↓G b; and
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e. →G has the Buchberger property if (a→G b and a→G c)⇒ b
∗↔≺a,G c.

Definition. (Gröbner Basis) Let G be a finite subset of O. Then G is called a
Gröbner basis if →G has one of the equivalent properties in the Buchberger–Newman
Lemma. Moreover, a Gröbner basis G is a reduced Gröbner basis when every g ∈ G is in
normal form w.r.t. G\{g}.

Elementary observations. The converse to the Church–Rosser property always holds. If
α→(m,γ) β, then α+δ ↓γ β +δ, because either α+δ →(m,γ) β +δ or α+δ ←(−m,γ) β +δ
(<O is linear). In particular, for non-zero δ and γ, δ ↓γ δ−mγ holds for any multiplier m.

Theorem 3.2. Let C be a finite subset of O. Then ∗↔C and ≡C are equivalent.

Proof. Suffiency is straightforward. Conversely, suppose α ≡C β. Then there exists
αk ∈ O, and γk ∈ C such that β = α +

∑t
k=1 αkγk. Let M be the set of all multipliers

for O. Then there are m1,k, . . . ,ml,k ∈ M such that αk =
∑l

i=1 mi,k. So, β = α +∑t−1
k=1 αkγk + (

∑l
i=1 mi,t)γt. Using m1,t, . . . ,ml,t, we apply the rule δ ↓γk

(δ −mi,tγk), l
times to obtain,

β ↓γt

(
α +

t−1∑
k=1

αkγk +

(
l−1∑
k=1

mk,t

)
γt

)
↓γt

. . . ↓γt

(
α +

t−1∑
k=1

αkγk

)
.

Repeating this procedure t− 1 more times (i.e. for each γk) we obtain,

β =

(
α +

t−1∑
k=1

αkγk +

(
l∑

k=1

mk,t

)
γt

)
↓γt

. . . ↓γ1 α.

Applying the converse to the Church–Rosser property t×l times it follows that α
∗↔C β. 2

Theorem 3.3. (Ideal Membership) Let G be a finite subset of O. Then the following
are equivalent:

(i) G is a Gröbner basis;
(ii) α ∈ Id(G)⇒ α

∗→G 0; and
(iii) 0 6= α ∈ Id(G)⇒ α is reducible w.r.t. G

where Id(G) denotes the ideal generated by G.

Proof. Using Theorem 3.2, (i)⇒(ii) follows easily; and (ii)⇒(iii) is straightforward.
(iii)⇒(i): Suppose β

∗→G β1, β
∗→G β2, β1 and β2 are normal forms of β w.r.t. G, and

β1 6= β2. Then β1− β2 ∈ Id(G) and by assumption β1− β2 →G σ = β1− β2−mγ where
γ ∈ G. First suppose σ = 0. Then, β1 ↓ β2 implies β1 ↔G β2. This contradicts that β1

and β2 are normal forms of β w.r.t. G with β1 6= β2. If σ 6= 0, then it follows β1 ↓G β1−mγ
and β2 ↓G β2 −mγ. Also, (β −mγ) ↓G (β1 −mγ) and (β −mγ) ↓G (β2 −mγ). Then,



Gröbner Bases and Orders 213

β1
∗↔G (β1 − mγ) ∗↔G (β − mg) ∗↔G (β2 − mγ) ∗↔G β2. So we again contradict that

β1 and β2 are normal forms of β w.r.t. G with β1 6= β2. Therefore, (iii) implies →G has
unique normal forms. 2

4. Buchberger’s Algorithm

Notice that in order to check whether a finite subset G is a Gröbner basis one needs to
check that every element α has, for example, a unique normal form modulo a potential
G. Buchberger’s ingenious idea is to reduce the amount of checking to a finite set of
elements. As we will see, the correct definitions will be:

Definition. (Irrelative) Let γ1, γ2 ∈ O and suppose m1 = aFi and m2 = bFj

are multipliers. Then (m1, γ1) and (m2, γ2) are called irrelative when γ1 6= γ2 or when
γ1 = γ2 and i 6= j.

Definition. (Non-Trival Common Reducible) Let γ1, γ2 ∈ O and suppose there
exists an α in O such that there exist m1 = aFi and m2 = bFj with←(m2,γ2) α→(m1,γ1)

and (m1, γ1) and (m2, γ2) are irrelative; and there does not exist m′
1 and m′

2 with←(m′
2,γ2)

α →(m′
1,γ1), (α − m′

1γ1) →(m′
2,γ2) or (α − m′

2γ2) →(m′
1,γ1), (m′

1, γ1) and (m′
2, γ2) are

irrelative, and m′
1 = aFi and m′

2 = bFj in case γ1 = γ2. Then α is called a non-trivial
common reducible for γ1 and γ2 and is denoted by γ14α

i,jγ2. Further, if there does not
exist α′ <O α such that γ14α′

i,jγ2, then α is called the least non-trival common reducible
w.r.t. γ1 and γ2 and denoted by γ14α

i,j
γ2.

It is proven later that if γ14α

i,j
γ2, then α = aFk for some non-zero integer a and

some k. For now we will concentrate on computing such a and k and Gröbner bases.
Buchberger gave the following functions for computing an a such that c14ac2 in the
integers. Namely,

a = LCRInt(c1, c2) := max
<Z

{LRInt(c1), LRInt(c2)}

where

LRInt(c) :=

{
|c|
2 if c is even
− |c|+1

2 if c is odd.

Using these functions and the following proof of the lemma, we can easily compute the k
and integer a such that γ14aFk

i,j
γ2 in O. Here is an example: let θ = 3

√
19, K = Q(θ), and

O = ZK . Using the integral basis {1, θ, θ2+θ+1
3 } = {F0, F1, F2}, with γ = 6−3F1 +12F2,

i = 1, and j = 2, find the aFk such that γ4aFk

1,2
γ. We first compute, F1F1 = −1−F1+3F2,

F1F2 = 6 + F2, and F2F2 = 4 + 2F1 + F2. Then we compute F1γ = 75 + 9F1 + 3F2 and
F2γ = 30 + 24F1 + 15F2. We see that k must be 2 and a = LCRInt(3, 15) = −8.
Therefore,

6− 3F1 + 12F24−8F2

1,2
6− 3F1 + 12F2.

Theorem 4.1. (Buchberger’s Algorithm) Let C be a non-empty finite subset of O.
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Then the following algorithm computes a Gröbner basis for Id(C). Input: A finite subset
C of O. Output: A finite subset G such that Id(G) = Id(C) and G is a a Gröbner basis for
Id(G). Initialize: Set G = C and ∆ = {(γ1, γ2, α, i, j) | γ14α

i,j
γ2, γ1, γ2 ∈ G}. Loop: Do

while ∆ 6= ∅. Take an element out of ∆, say (γ1, γ2, α, i, j). Set ∆ = ∆\{(γ1, γ2, α, i, j)}
and compute, α→(m1,γ1) ζ1, α→(m2,γ2) ζ2 where m = aFi, m2 = bFj, and (m1, γ1) and
(m2, γ2) are irrelative and compute normal forms of ζ1 and ζ2 w.r.t. G, obtaining ζ ′1 and
ζ ′2, respectively. If γ := ζ ′1 − ζ ′2 = 0 then repeat loop. Otherwise, set G = G ∪ {γ} and
∆ = ∆ ∪ {(γ′, γ, α, i, j) | γ′4α

i,j
γ, γ′ ∈ G}.

Continuing with the previous example, we show one possible step in the computation
of a Gröbner basis for the ideal generated by γ = 6− 3F1 + 12F2. Initialize G = {γ} and
take out (6− 3F1 + 12F2, 6− 3F1 + 12F2,−8F2, 1, 2) of ∆. We compute (the multipliers
can be from the previous example):

−8F2 →(−3F1,6−3F1+12F2) 225 + 27F1 + F2

and
−8F2 →(−F2,6−3F1+12F2) 30 + 24F2 + 7F2.

Notice that 225 + 27F1 + F2 is already a normal form w.r.t. 6− 3F1 + 12F2. Compute a
normal form of 30 + 24F2 + 7F2 w.r.t. G:

30 + 24F2 + 7F2 →(−1,6−3F1+12F2) 24 + 27F1 − 5F2

→(−2F1,6−3F1+12F2) 174 + 45F1 + F2.

Since (225 + 27F1 + F2)− (174 + 45F1 + F2) 6= 0 we update G and ∆.
The proof of Buchberger’s algorithm uses the following two lemmas.

Lemma 4.1. If γ14α

i,j
γ2, then α = aFk for some non-zero integer a and some k.

Proof. We are assuming there exist multipliers m1 = a1Fi and m2 = a2Fj such that
α→(m1,γ1), α→(m2,γ2), and (m1, γ1) and (m2, γ2) are irrelative. Then we have

d−1∑
l=0

(αl − a1tl)Fl <O α >O

d−1∑
l=0

(αl − a2sl)Fl (1)

where the tl and sl are obtained by putting Fiγ1 and Fjγ2 in basis form, respectively.

Case 1. Assume that αd−1 6= 0 and at least one other αi is non-zero.

Subcase 1A: Assume that a1td−1 and a2sd−1 are both non-zero. Then we have
αd−1 →(a1,td−1) and αd−1 →(a2,sd−1). Therefore, αd−1Fd−1 →(m1,γ1) and αd−1Fd−1

→(m2,γ2) and (m1, γ1) and (m2, γ2) are irrelative.
Now assume for a contradiction that there exist multipliers m′

1 = a′1Fi′ and m′
2 = a′2Fj′

such that
←(m′

1,γ1) αd−1Fd−1 −m′
2γ2 ←(m′

2,γ2) αd−1Fd−1 →(m′
1,γ1)

and (m′
1, γ1) and (m′

2, γ2) are irrelative (also assume i′ = i and j′ = j incase γ1 = γ2).
But then,

←(m′
1,γ1) α−m′

2γ2 ←(m′
2,γ2) α→(m′

1,γ1)
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which is a contradiction to γ14α
i,jγ2. The case for when γ1 and γ2 are switched in the

above three sentences is analogous. So γ14
αd−1Fd−1
i,j γ2 and since αd−1Fd−1 <O α we have

a contradiction to γ14α

i,j
γ2.

Subcase 1B: Assume in (1) that a1td−1 and a2sd−1 are not both non-zero, then (1)
becomes

p∑
l=0

(αl − a1tl)Fl <O α >O

q∑
l=0

(αl − a2sl)Fl

where the p and q satisfy:

tp′ = 0 ∀ p′ > p, tp 6= 0, sq′ = 0 ∀ q′ > q, and sq 6= 0.

If we have p < q, then

(αpFp →(m1,γ1) and sFp = 0)⇒ α−m2γ2 →(m1,γ1) .

If we have q < p, then

(αqFq →(m2,γ2) and tFq = 0)⇒ α−m1γ1 →(m2,γ2) .

Both of these cases contradict γ14α
i,jγ2. Therefore p = q. But a contradiction for this

case is easily achieved as in subcase 1A. All subcases considered, it follows that if αd−1

is non-zero then all other αi must be zero.

Case 2. Suppose αd−1 = 0, αd−2 is non-zero and at least one of the other αi is non-zero
besides αd−2 . Then (1) becomes

d−2∑
l=0

(αl − a1tl)Fl <O α >O

d−2∑
l=0

(αl − a2sl)Fl.

Now apply case 1 with d− 1 replaced by d− 2, obtaining the conclusion that, if αd−2 is
non-zero then all other αi are zero.

Continue this argument until the last step, where we reach the conclusion that if α2

and α1 are both non-zero and all other αi are zero, then we have a contradiction. So
finally, we conclude that if any two of the αi are non-zero then we get a contradiction,
which implies that exactly one of the αi is non-zero. 2

Lemma 4.2. Let G be a finite subset of O and suppose that for any γ1, γ2 ∈ G and
α′ such that γ14α′

i,j
γ2 there exists n1 = a′Fi and n2 = b′Fj such that α′ →(n1,γ1),

α′ →(n2,γ2), α′ − n1γ1
∗↔<Oα′,G α′ − n2γ2, and (n1, γ1) and (n2, γ2). Then for any α in

O with γ14α
i,jγ2, there exists m1 = aFi and m2 = bFj such that α→(m1,γ1), α→(m2,γ2),

(α−m1γ1)
∗↔<Oα,G (α−m2γ2), and (m1, γ1) and (m2, γ2) are irrelative.

Proof. Suppose γ14αγ2. Since <O is a well-order there must exist α′ ≤ α such that
γ14α′

i,j
γ2. By assumption, there exist multipliers n1 and n2 such that α′ →(n1,γ1) ζ1,

α′ →(n2,γ2) ζ2, ζ1
∗↔<Oα′,G ζ2, and (n1, γ1) and (n2, γ2) are irrelative. Thus, there exist

µ1, . . . , µt in O and γ1, . . . , γt−1 in G such that µ1, . . . , µt <O α′ and

α′ − n1γ1 = µ1 ↔γ1 µ2 ↔γ2 · · · ↔γt−2 µt−1 ↔γt−1 µt = α′ − n2γ2. (2)
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Case 1. Suppose α′ = sFk and that α′ and α have the same sign in the kth component.
We know that (2) implies

α− n1γ1 = µ + µ1 ↓γ1 µ + µ2 ↓γ2 · · · ↓γt−2 µ + µt−1 ↓γt−1 µ + µt = α− n2γ2,

with µ = α− α′. From the converse to the Church–Rosser property we have

α− n1γ1 = µ + µ1
∗↔γ1 µ + µ2

∗↔γ2

∗↔γt−2 µ + µt−1
∗↔γt−1 µ + µt = α− n2γ2.

In this case it suffices to take m1 = n1 and m2 = n2, because if α′ and α have the
same sign in the kth component then α′ + (−α′ + µi) = µi <O α′ implies µ + µi =
α+(−α′+µi) <O α. Using m1 = n1, we have ζ2 →(m2,γ2) α→(m1,γ1) ζ1, ζ1

∗↔<Oα′,G ζ2,
and (m1, γ1) and (m2, γ2) are irrelative.

Case 2. Suppose α′ and α have different signs in the kth component. Multiplying (2)
through by −1, using µ = α + α′, and the converse to the Church–Rosser property, it
follows that

α + n1γ1 = µ− µ1
∗↔γ1 µ− µ2

∗↔γ2

∗↔γt−2 µ− µt−1
∗↔γt−1 µ− µt = α + n2γ2.

Letting m1 = −n1 and m2 = −n2 suffices because if α′ and α have different signs in the
kth component then α′+(−α′+µi) = µi <O α′ implies µ−µi = α− (−α′+µi) <O α. 2

Notice that in the proof, if n1 = aFi and n2 = bFj then m1 = ±aFi and m2 = ±bFj .
This is important for the next theorem.

Theorem 4.2. (Gröbner Basis Criterion) Let G be a finite subset of O. Then G
is a Gröbner basis if and only if for any γ1, γ2 ∈ G and α such that γ14α

i,j
γ2 there

exists multipliers m1 = aFi and m2 = bFj such that α →(m1,γ1), α →(m2,γ2), (α −
m1γ1)

∗↔<Oα,G (α−m2γ2), and (m1, γ1) and (m2, γ2) are irrelative.

Proof. Sufficiency is trivial by considering the definitions of Buchberger’s property and
γ14α

i,j
γ2.

To show necessity suppose α →(n1,γ1) ζ1 and α →(n2,γ2) ζ2 for γ1, γ2 ∈ G, n1 = aFi,
n2 = bFj , and α ∈ O. In all the subcases that follow it will be shown that ζ1

∗↔<Oα,G ζ2.

Case 1. Suppose γ1 = γ2 := γ.

Subcase 1.1: Suppose i = j. If ζ1 = ζ2 then done. Otherwise, either ζ1 <O ζ2 or
conversely. If the latter holds then α→(n1,γ1) ζ1 →(n1−n2,γ1) ζ2 follows and so ζ1

∗↔<Oα,G

ζ2. Similarly for ζ1 <O ζ2.
Subcase 1.2: Suppose there exists n′1, n

′
2 such that n′1 = a′Fi, n′2 = b′Fj and

(n′1,γ) ← α− n′2γ (n′2,γ) ← α→(n′1,γ) . (3)

Then α − n′1γ − n′2γ ↓γ α − n′2γ and α − n′1γ ↓γ α − n′1γ − n′2γ; so it follows that,
α−n′1γ

∗↔≺α,γ α−n′2γ. By subcase 1.1, and α→(n1,γ) ζ1, it follows that ζ1
∗↔≺α,γ α−n′1γ.

Similarily, ζ2
∗↔≺α,γ α− n′2γ. Whence, ζ1

∗↔≺α,γ ζ2.
Subcase 1.3: Suppose there exists n′1, n

′
2 such that α→(n′1,γ), α→(n′2,γ), α−n′1γ →(n′2,γ),

n′1 = aFi, and n′2 = bFj . Analogous to subcase 1.2.
Subcase 1.4: Suppose subcases 1.1, 1.2, and 1.3 do not hold. Then γ4α

i,jγ. Now
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Lemma 4.2 holds, so there exists multipliers m1 = aFi and m2 = bFj such that α→(m1,γ)

ζ ′1 and α →(m2,γ) ζ ′2, ζ ′1
∗↔<Oα,G ζ ′2, and (m1, γ) and (m2, γ) are irrelative. Moreover,

by the remark after Lemma 4.2, (m1, γ) and (n1, γ) are not irrelative and (m2, γ) and
(n2, γ) are not irrelative. Suppose ζ1 <O ζ ′1 and ζ2 <O ζ ′2. Applying the reasoning in
subcase 1.1, ζ ′1

∗↔<Oα,G ζ1 and ζ ′2
∗↔<Oα,G ζ2. For the other subcases we also obtain

ζ ′1
∗↔<Oα,G ζ1 and ζ ′2

∗↔<Oα,G ζ2. Therefore, ζ1
∗↔<Oα,G ζ2.

Case 2. Suppose γ1 6= γ2.

Subcase 2.1: Suppose there exists n′1, n
′
2 such that α →(n′1,γ1), α →(n′2,γ2), α − n′1γ1

→(n′2,γ2). Analogous to subcase 1.2.
Subcase 2.1: Suppose there exists n′1, n

′
2 such that α →(n′1,γ1), α →(n′2,γ2), α − n′2γ2

→(n′1,γ1). Analogous to subcase 1.2.
Subcase 2.3: Suppose none of the above cases hold. Then γ14α

i,jγ2. Again Lemma 4.2
holds, so there exist multipliers m1 = aFi and m2 = bFj such that α →(m1,γ1) ζ ′1 and
α→(m2,γ2) ζ ′2, ζ ′1

∗↔<Oα,G ζ ′2, and (m1, γ1) and (m2, γ2) are irrelative. Finally by case 1,
ζ ′1

∗↔<Oα,G ζ2 and ζ1
∗↔<Oα,G ζ ′2. Whence, ζ1

∗↔<Oα,G ζ2. 2

Proof. (Of Buchberger’s Algorithm) The correctness of the algorithm follows ex-
actly as in Buchberger (1985, 1987). Termination: Define Red(G) = {α ∈ O | α→G}. It
also follows from Buchberger (1985, 1987) that the algorithm, if it does not terminate,
gives rise to the following strictly ascending chain of subsets:

Red(G0) ⊂ Red(G1) ⊂ · · · ⊂ Red(Gk) ⊂ Red(Gk+1) ⊂ · · ·

which is impossible: note that Red(γ) has a finite complement for any γ (and hence
so does Red(G) for any finite subset G). Whence, the above strictly ascending chain
leads to the strictly descending chain of finite sets Red(G1)′ ⊃ Red(G2)′ ⊃ · · · which is
impossible. 2

5. Further Conclusions and Applications

Hereditary properties. As noted above, Stifter (1985, 1987) generalized the notion of a
reduction ring and showed that the reduction ring property is hereditary from R to R[X]
where X = {x1, . . . , xn}. Moreover, Stifter (1991) was able to show that the reduction
property is hereditary from R to Rm where Rm is the ring defined using (component-
wise) the operations from R; and also† to R/I where I is an ideal in R. Hence one can
compute Gröbner bases in the rings:

O,Om,O/I,O[X],Om[X], and (O/I)[X].

In a different direction, one can easily show how to compute Gröbner bases in O
as a module over a subring which contains the integers and show how to solve the
submodule membership problem. Simply move the multipliers. For example, suppose
K = Q(α) is a given algebraic number field with θ = 3

√
19, O = ZK , and S = Z[θ].

Then O 6= S and one can choose the multipliers as aθi where a is a non-zero integer and

†Assuming that the well-founded partial ordering on R is actually a well-order and that R/I has a
finite number of zero divisors. Both assumptions hold for orders of algebraic number fields.
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i ∈ {0, 1, . . . , deg(K)−1}. One could simply follow the above three sections in detail and
construct a theory of Gröbner bases in these (non-trivial) modules. Further, in this way,
we can compute Gröbner bases in any free finitely generated Abelian group.

One could also compute Gröbner bases in O[X]m as an O[X]-module, or even as a
O-module by simply following Adams et al. (1994) and adapting the theory to the case
for O instead of a field.

Apparently, one can construct Gröbner bases in R[X] as a R[U ]-module where U ⊆ X
and R is a field or any order of an algebraic number field. Simply move the multipliers;
that is, only let monomials in U be multipliers. Of course one has to modify the S-
polynomial, but this is easily achieved.

Finally, take any reduction domain R with R-basis {b1, . . . , bn}. Construct a theory of
Gröbner bases for Rb1 ⊕ · · · ⊕Rbn.

Ideal algorithms. The following algorithms for R[X] can be found in one or more of
Adams et al. (1994), Becker et al. (1993) and Cox et al. (1997) where R is a field or a
PID. We note that the proofs carry over to O[X] (recall O is not necessarily a PID) and
we make the important observation that the algorithms also hold for the coefficient ring
O. That is to say, we can compute the ideal intersection, quotient, saturation, and the
Chinese Remainder theorem in O by computing Gröbner bases in O[X]. In the following
theorem when X = ∅ we simply mean O[X] = O.

Theorem 5.1. Let ≺T be a term order on T (X) that is an elimination order on U ⊆ X.

a. [Elimination] If G is a Gröbner basis of I in O[X], then G ∩O[U ] is a Gröbner
basis of IU in O[U ].

b. [Intersection] Let I1, . . . , Im / O[X], and let J = Id({1−
∑m

i=1 yi} ∪
⋃m

i=1 yiIi) in
O[X,Y ], where y1, . . . , ym are indeterminates not in X. Then, ∩m

i=1Ii = JX .
c. [Quotient] To compute a basis for the ideal quotient I : J where I = Id(f1, . . . , fs)

and J = Id(g1, . . . , gt), first compute a basis of Id(f1, . . . , fs) ∩ Id(gi) for each
i = 1, . . . , t obtaining say {h1,i, . . . , hu,i}. Then divide each hi,j by gi obtain-
ing {h1,i

gi
, . . . ,

hu,i

gi
} a basis of I : Id(gi) for each i. Then J = Id(g1, . . . , gt) =∑t

i=1 Id(gi) and I : J = I :
∑t

i=1 Id(gi) =
⋂t

i=1 I : Id(gi).
d. [Saturation] Let I = Id(f1, . . . , fm) in O[X], 0 6= f ∈ O[X], and let J = Id(I, 1−

yf) in O[X, y]. Then, I : f∞ :=
⋃∞

i=1 I : f i = JX . Moreover, let JX have basis
{g1, . . . , gm} where each gi has the form hi(1− yf) +

∑k
j=1 hijfj where 1 ≤ i ≤ m

and hi, hi,j ∈ O[X, y]. Then s := max{deg(hij) | 1 ≤ i ≤ m, 1 ≤ j ≤ k} has the
property I : fs = I : f∞.

e. [Chinese Remainder Theorem] Given fi ∈ O[X] and ideals Ii in O[X], for 1 ≤ i ≤
m, let ≺T be a term order on T (X) that is also an elimination order on X ⊆ X∪Y
where Y = {y1, . . . , ym} are indeterminates not in X. Also let G be a Gröbner
basis of J = Id({1−

∑m
i=1 yi} ∪

⋃m
i=1 yiIi) w.r.t. ≺T in O[X,Y ], f = (f1, . . . , fm),

and finally let h be the unique normal form of f∗ =
∑m

i=1 yifi modulo G. Then the
following are equivalent: (i) Af =

⋂m
i=1(fi+Ii) 6= ∅, (ii) h ∈ O[X], and (iii) h ∈ Af.

Moreover, the following hold: (iv) Af = h +
⋂m

i=1 Ii, (v) h is the least element in
Af w.r.t. ≺T and �O, (vi) g ∈ Af ⇔ h is the normal form of g modulo G ∩O[X].

Primary decomposition. In fact, because we have shown that O is a reduction ring,
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Rutman (1992) has shown how to compute primary decompositions for submodules in
O[x1, . . . , xn]m as an O[x1, . . . , xn]-module.

We will outline how to compute the primary decomposition for a given ideal I in
ZK [x1, . . . , xn] = ZK [X].

The basic idea is that prime factorization of ideals in the maximal order is well-
understood and so one can rely on Kalkbrener (1998) to lift the unique factorization
algorithm in ZK to a primary decomposition algorithm in ZK [X]. In Cohen (1995, 2000)
there are algorithms, namely Algorithms 2.4.4, 4.8.17, and 6.2.9 in Cohen (1995) and
Algorithm 2.3.22 in Cohen (2000) which compute the unique factorization for an ideal
I in ZK . These algorithms have been implemented in Pari. Here is the main idea: let
N =

∏s
i=1 pai

i be the unique factorization, in the integers, of the norm of I, (i.e. the
cardinality of the finite ring ZK/I), let piZK =

∏t
j=1 Pij be unique factorizations, for

1 ≤ i ≤ s, and let vPij (I) be the valuation of I at Pij . Then, I =
∏

ij P
vPij

(I)

ij is
the unique factorization. Notice that this is actually a reduced primary decomposition
of I. To see this, reindex the Pij to get Pk, where 1 ≤ k ≤ s + t, and notice that

rad(Qk := P
vPk

(I)

k ) = Pk. Since a power of a maximal ideal P is P -primary and since
the Qk are pairwise comaximal (because the Pk are, see Zariski et al., 1958), we have the
reduced primary decomposition:

I = Q1 ∩Q2 ∩ · · · ∩Qs+t.

In Kalkbrener (1998), a system of representations, in any Nötherian commutative ring
with identity R, is defined. The usefulness of systems of representations is based on Kalk-
brener’s algorithm lifting theorem. For a well-motivated and constructive proof as well
as the directions for computing a primary decomposition from a system of representa-
tions in ZK [x1, . . . , xn] (see Kalkbrener, 1998). Note that since we can compute Gröbner
bases for the elimination, intersection, quotient, and saturation ideals in both ZK and
ZK [x1, . . . , xn] and since unique factorization computes the radical of an ideal as well as
a primary decomposition of an ideal, the assumptions of Kalkbrener’s algorithm lifting
theorem hold for ZK .

6. Questions

(1) [Orderings] In the earlier theory, we used the orderings <Z and <O. To see what
properties of these orderings we used consult Lemma 4.1 and Theorem 4.2. The question
is what other orderings can be used? Obviously, some other lexicographical ordering on
the Z-basis could be used and Buchberger (1985, 1987) has considered other orderings
on the integers. Which other orderings are possible?

(2) [Improvements] The Buchberger algorithm given previously is quite generic, so
what improvements can be made? Moreover, what role does coefficient explosion play in,
say, O[x1, . . . , xn]? Our division algorithm is different than the algorithm in Adams et al.
(1994). More specifically, the coefficients play a different role in reduction, for example,
see Adams et al. (1994, p. 203) and compare with the division algorithm given earlier for
O[x1, . . . , xn].

(3) [Integral-Basis] Can a theory of Gröbner bases be developed which solves the sub-
ring membership problem for subrings of orders which contain the integers (i.e. SAGBI-
bases)? If so, if we consider an order in which a Z-basis is not known as a subring of an
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order in which a Z-basis is known (i.e. cyclotomic orders), then can computing Gröbner
bases for subrings lead to an algorithm for finding a Z-basis for the order in question?

(4) [Primary Decomposition] Can the theory of Gröbner bases for orders be used to give
an algorithm for primary decomposition of ideals in (not necessarily maximal) orders?
If so, we can use Kalkbrener’s theorem again to extend such a decomposition to polyno-
mial rings over orders? Rutman’s theory shows how to compute primary decomposition
for O[x1, . . . , xn]m as an O[x1, . . . , xn]-module. Can we give a primary decomposition
algorithm for submodules in O[x1, . . . , xn]m as an O-module? Can these primary decom-
position algorithms (for both the ideal and submodule case) be realized under just one
general algorithm?

(5) [Relative Extensions] Let L be an algebraic number field extension of K. If we
know that ZL is a free ZK-module and if we have a ZK-basis, in fact Cohen (2000)
shows how to compute one, then can we construct a theory of Gröbner bases in terms of
the arithmetic of the relative extension, thus repeating the conclusions of this paper as
well as questions (1)–(4)?
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