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Abstract. This paper is an attempt to address the processing of non-
linear numerical constraints over the Reals by combining three di�erent
methods: local consistency techniques, symbolic rewriting and interval
methods. To formalize this combination, we de�ne a generic two-step
constraint processing technique based on an extension of the Constraint
Satisfaction Problem, called Extended Constraint Satisfaction Problem
(ECSP). The �rst step is a rewriting step, in which the initial ECSP is
symbolically transformed. The second step, called approximation step, is
based on a local consistency notion, called weak arc-consistency, de�ned
over ECSPs in terms of �xed point of contractant monotone operators.
This notion is shown to generalize previous local consistency concepts
de�ned over �nite domains (arc-consistency) or in�nite subsets of the
Reals (arc B-consistency and interval, hull and box-consistency). A �l-
tering algorithm, derived from AC-3, is given and is shown to be correct,
con
uent and to terminate. This framework is illustrated by the com-
bination of Gr�obner Bases computations and Interval Newton methods.
The computation of Gr�obner Bases for subsets of the initial set of con-
straints is used as a rewriting step and operators based on Interval New-
ton methods are used together with enumeration techniques to achieve
weak arc-consistency on the modi�ed ECSP. Experimental results from
a prototype are presented, as well as comparisons with other systems.

Keywords: Constraint Satisfaction Problem, local consistency, arc-consistency,
�ltering algorithms, non-linear constraint solving, Gr�obner bases, Newton meth-
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1 Introduction

The notion of Constraint Satisfaction Problems (CSP) was introduced in the sev-
enties [30, 23, 19] to address combinatorial problems over �nite domains and has
been heavily studied since then. A Constraint Satisfaction Problem is given by a
set of variables, a set of domains associated to these variables and representing
their possible values and a set of relations de�ned over these variables. Solving
of CSPs being a NP-hard problem, several approximations of the solution space,



computed by local consistency methods have been proposed, the most famous
being arc-consistency [19] and path-consistency [23].

Since the introduction of local consistency in Constraint Logic Program-
ming [29] various extensions have been proposed, among which methods to solve
so-called interval constraints [10, 8, 26, 15, 14, 5, 18, 3, 4, 28, 27]. More re-
cently several authors have studied various combinations of solvers in the case
of continuous real constraints [20, 22, 13] and, in particular, combinations of
techniques from computer algebra (Gr�obner bases), Interval Constraint meth-
ods and techniques from numerical analysis. Similar ideas for the case of 0/1
linear constraints are suggested in [2] which proposes to compute cutting planes
to prune the search space before applying a classical �nite domain constraint
solver.

We propose in this paper to formalize this combination by de�ning a generic
two-step constraint processing technique based on an extension of the Constraint
Satisfaction Problem, called Extended Constraint Satisfaction Problem (ECSP).
The �rst step is a rewriting step, in which the initial ECSP is symbolically trans-
formed. The second step, called approximation step is based on a local consis-
tency notion, called weak arc-consistency, de�ned over ECSPs in terms of �xed
point of contractant monotone operators. This notion is shown to generalize arc-
consistency [23, 19], arc B-consistency [18] and interval, hull and box consistency
[4]. A �ltering algorithm, derived from AC-3 is given and is shown to be correct,
con
uent and to terminate. This framework is illustrated by the combination of
Gr�obner Bases computations and Interval Newton methods. In order to maxi-
mize the trade-o� between pruning and computation time, Gr�obner Bases are
computed for subsets of the initial set of constraints in the rewriting step. Op-
erators based on Interval Newton methods are used together with enumeration
techniques to achieve weak arc-consistency on the modi�ed ECSP. These op-
erators are basically the ones proposed in [4, 28]. Experimental results from a
prototype are presented, as well as comparisons with other systems.

With respect to the related papers mentioned above, we believe that this
paper generalizes the local consistency notions addressing numerical constraints
processing that we are aware of, and proposes a novel combination of the use of
Gr�obner Bases as a preprocessing step applied to reasonably small subsets of the
initial constraint set and of state of the art local consistency techniques based
on Interval Newton methods. Finally, preliminary experimental results, detailed
at the end of the paper, show signi�cant speed-ups with respect to other recent
publications.

The remaining of the paper is organized as follows. Section 2 de�nes Extended
Constraint Satisfaction Problems. Section 3 de�nes weak arc-consistency and
the corresponding �ltering algorithm and gives the main theoretical results of
the paper. Section 4 introduces a rewriting step used to preprocess the initial
CSP and to generate an ECSP preserving the declarative semantics. Section
5 presents an instance of this framework combining Gr�obner bases and Interval
Newton methods. Section 6 gives experimental results and we conclude in section
7.



2 Extended Constraint Satisfaction Problems

2.1 De�nitions

We de�ne an Extended Constraint Satisfaction Problem over the Reals1 as a
�nite set of constraints (i.e. conjunctions of atomic constraints over the Reals)
S over variables fx1; : : : ; xng to which are associated contractant monotone op-
erators called constraint narrowing operators, de�ned over subsets of IRn called
approximate domains and an n-ary Cartesian product X of elements of IR rep-
resenting the domains of the variables. Note that to each constraint corresponds
a relation over IRn but that ECSPs are de�ned over formulae and not relations.
This will be used to de�ne symbolic transformations of ECSPs. In the rest of
the paper, when no confusion is possible, we will use constraints to denote the
relations they represent.

Before giving a more formal de�nition of ECSPs, we introduce approximate
domains and constraint narrowing operators, already discussed in [3] in the
framework of interval constraint programming.

De�nition 1 An approximate domain A over IR is a subset of 2IR, closed under
(eventually in�nite) intersection, such that IR 2 A, and for which the inclusion is
a well-founded ordering (an approximate domain contains no in�nite decreasing
sequence of elements).

Approximate domains, partially ordered by set inclusion, constitute complete
lattices in which the meet operation is de�ned by set intersection. The join of
sets is de�ned as the smallest set larger than all of them, i.e. the approximation
of their union. (For a discussion on a lattice theoretic view of interval constraints,
see [26]).

Given an approximate domain A, and an n-ary relation � over IR, a narrow-
ing operator for the relation � is a correct, contractant, monotone, idempotent
function N : An �! An. More formally,

De�nition 2 Let A be an approximate domain. Let � be an n-ary relation over
IR. The function N : An �! An is a constraint narrowing operator for the
relation � i� for every u; v 2 An, the four following properties hold:

(1) N(u) � u; (Contractance)

(2) u \ � � N(u); (Correctness)

(3) u � v implies N(u) � N(v); (Monotonicity)

(4) N(N(u)) = N(u): (Idempotence)

We can now introduce formally ECSPs.

1 This de�nition can be generalized to any set but it is not the topic of this paper.



De�nition 3 Let A be an approximate domain over IR.
An Extended Constraint Satisfaction Problem is a pair (S;X), where
S = f(C1; N1); (C2; N2); : : : ; (Cm; Nm)g is a set of pairs made of a real constraint
Ci and of a constraint narrowing operator Ni for Ci, and X is an n-ary Cartesian
product of elements of A.

Declarative and approximate semantics of ECSPs

First, note that classical CSPs, assuming that the relations are given intension-
ally, can be represented as pairs (S;X) where S is a set of constraints and X
the Cartesian product of the domains associated to the variables appearing in
S. It follows that to every ECSP E = (f(C1; N1); (C2; N2); : : : ; (Cm; Nm)g; X)
corresponds a CSP E0 = (fC1; C2; : : : ; Cmg; X).

The declarative semantics of the ECSP E, denoted E�, is then de�ned as
the declarative semantics of E0, that is the set of n-ary tuples (x1; : : : ; xn) 2 X
satisfying the conjunction of the constraints C1; C2; : : : ; Cm.

De�nition 4 (Declarative semantics of ECSPs)
Let E = (f(C1; N1); (C2; N2); : : : ; (Cm; Nm)g; X) be an ECSP. The declarative
semantics of E is de�ned as

E� =
m\
i=1

Ci \X

Unfortunately this set is generally either computationaly intractable or even
uncomputable. This leads to de�ne what we call the approximate semantics of
E, denoted E, as being the greatest common �xed point of the Ni's included in
X .

De�nition 5 (Approximate semantics of ECSPs)
Let E = (f(C1; N1); (C2; N2); : : : ; (Cm; Nm)g; X) be an ECSP. If fp(Ni) denotes
the set of �xed points of Ni, then the approximate semantics of E is de�ned as

E = max(fu 2

m\
i=1

fp(Ni) j u � Xg)

The proof of existence of E is constructive and based on properties of the
�ltering algorithm presented in section 3.1.

Due to the correctness property of narrowing operators with respect to their
associated constraints, we have the following, expected, result concerning the
two semantics:

Property 1 Let E be an ECSP. Then, E� � E.

We describe in the next section the local consistency notions related to the
approximate semantics of ECSPs.



3 Weak arc-consistency

As for CSPs, ECSPs are processed by local consistency techniques, that is prop-
agation. The local consistency used in ECSPs is an extension of arc-consistency,
called here weak arc-consistency.

We recall here �rst the de�nition of arc-consistency for Constraint Satisfac-
tion Problems. Intuitively, a CSP is said to be arc-consistent i� for every variable
appearing in a constraint C, there is no value of its associated domain which
cannot be \completed" with values from the domains of the other variables in
order to satisfy C. More formally:

De�nition 6 (arc-consistency)
Let E = (fC1; : : : ; Cmg; X) be a CSP. Then, E is arc-consistent i� 8i 2 f1; : : : ;
mg;8j 2 f1; : : : ; ng; Xi � �i(Cj \ X); where, for every n-ary relation �, �i(�)
denotes the ith projection of �:

Moreover a CSP E = (S;X) is said to be maximally arc-consistent with
respect to a Cartesian product of domains X 0 i� X is the greatest Cartesian
product (with respect to inclusion) such that E is arc-consistent and X � X 0:

These de�nitions are generally used, in a slightly di�erent formalism, for �nite
sets and binary constraints, but can be extended, at least theoretically, to in�nite
sets and n-ary constraints. We give below the de�nition of weak arc-consistency
for ECSPs.

De�nition 7 (weak arc-consistency)
Let E = (f(C1; N1); (C2; N2); : : : ; (Cm; Nm)g; X) be an ECSP. E is weakly arc-
consistent i� X = E .

The de�nition for maximal weak arc-consistency is expressed as follows:

De�nition 8 (maximal weak arc-consistency)
Let E = (S;X) be an ECSP. Let X 0 be a Cartesian product of domains such that
X � X 0. Then, if E0 is the ECSP (S;X 0), E is maximally weak arc-consistent
with respect to X 0 i� E is weakly arc-consistent and X = E0:

We then state without proof, due to size limitations, the following properties:
Let E = (f(C1; N1); : : : ; (Cm; Nm)g; X) be an ECSP over an approximate do-
main A. Let E0 = (fC1; : : : ; Cmg; X) be the CSP associated to E.

1. If for all i in f1; : : : ;mg; and for all u in An, Ni(u) is the Cartesian product
of the n projections of the relation u \ Ci; then E is weakly arc-consistent
i� E0 is arc-consistent.

2. If A is made of all intervals whose bounds are 
oating point numbers, and
if for all i in f1; : : : ;mg; and for all u in An, N(u) = apx(� \ u), where
apx is the function that associates to any subset � of IRn the intersection of
all the elements of A containing �, then E is weakly arc-consistent i� E0 is
hull-consistent (as de�ned in [4]) and i� it is arc B-consistent (as de�ned in
[18]).



3. if A is made of all �nite unions of intervals whose bounds are 
oating point
numbers and the Ni's are de�ned as above, then E is weakly arc-consistent
i� E0 is interval-consistent (as de�ned in [4]) .

4. weak arc-consistency generalizes also box-consistency [4] and the same type
of result as above can be shown as will be developped in section 5.2.

3.1 Filtering algorithm

The algorithm used to compute, from an ECSP E and a Cartesian product of
domains X , an equivalent ECSP maximally weak arc-consistent with respect to
X is essentially an immediate adaptation of AC-3 [19] and of the �ltering algo-
rithms used in interval constraint-based systems like BNR-Prolog [26], CLP(BNR)
[5] or Newton [4, 28].

filtering( in f(C1; N1); : : : ; (Cm; Nm)g ; inout X = X1 � : : :�Xn )

begin
S := fC1; : : : ; Cmg;
while S 6= ; and X 6= ; do

C := choose one Ci in S;
X 0 := Ni(X);
if X 0 6= X then

S := S [ fCj j 9vk 2 var(Cj) ^X 0

k 6= Xkg;
X := X 0

endif
S := S n fCg

endwhile
end;

Again, we state without proof the main properties of the algorithm:

1. if the computation of the constraint narrowing operators terminates, the
algorithm terminates due to the fact that set inclusion is a well-founded
ordering for approximate domains.

2. the algorithm is correct in the sense that the solution space de�ned by the
declarative semantics of the initial ECSP is included in the computed Carte-
sian product. In particular, if this Cartesian product is empty, the ECSP is
unsatis�able.

3. the algorithm is con
uent in the sense that the output is independant of the
order in which the constraints are chosen.

4. given as input E, the output is E.

4 Symbolic rewriting

Given a CSP over the Reals, it is often very e�cient to preprocess it with sym-
bolic rewriting techniques before applying the �ltering algorithm, to generate



redundant and/or surrogate constraints. Therefore, we introduce a preprocess-
ing step called constraint rewriting.

Constraint rewriting consists in two phases:

1. repeated syntactical transformations of the constraints of a CSP preserving
its declarative semantics,

2. association of constraint narrowing operators to the generated set of con-
straints.

Note that the �rst phase alone can solve the CSP when the rewriting tech-
niques are complete and computationaly tractable w.r.t. the problem at hand
(e.g. cylindrical algebraic decomposition for polynomials, syntactic processing
of 0/1 constraints, etc.). Another remark is that, in order to compute a usable
ECSP, to each generated narrowing operators must correspond a terminating
algorithm for the considered constraint.

The second part of this paper is devoted to an instance of this generic frame-
work addressing the approximation of solutions of multivariate polynomials over
the Reals.

5 Combining Gr�obner bases and interval Newton

methods

We describe in this section an instance of the framework introduced in the pre-
vious sections whose purpose is to approximate the solutions of systems of non-
linear polynomial equations. Di�erent programming languages and systems have
been designed to handle similar problems such as Newton [4, 28] based on interval
Newton methods and local consistency techniques, CLP(BNR) [5] implementing
interval propagationmethods, CoSAc [22] which combines Maple, a Gr�obner bases
module and a linear solver, the system presented in [20] based on Gr�obner bases,
the simplex algorithm and interval propagation methods, TKIB [14] introducing
an approximation notion called tightening and the Krawckzyk operator [16, 17].

In this paper, we propose to combine Gr�obner bases computations over sub-
sets of the initial system, used as a preprocessing step, interval Newton methods
to compute weak arc-consistency and enumeration techniques used to separate
the solutions. This combination was motivated by three main arguments. First,
syntactical transformations of the system by means of Gr�obner bases computa-
tions may speed up the resolution step by adding redundant constraints used to
reduce the search space. Second, computing Gr�obner bases over subsets of the
initial system still permits to generate redundant constraints while keeping the
algorithm memory and time consumption in reasonable bounds. Finally, propa-
gation based on interval Newton methods has been preferred to classical interval
propagation algorithms for their superior e�ciency.

5.1 Constraint rewriting

As mentioned above, the constraint rewriting step of our system consists in
computing Gr�obner bases for selected subsets of the initial system. We recall



�rst very brie
y some basics on Gr�obner bases.

Gr�obner bases

The concept of Gr�obner bases for polynomial ideals is due to Buchberger [6].
The main idea is to transform a multivariate polynomial set to obtain a new set
in a certain normal form which makes possible the resolution of many problems
in polynomial ideal theory and in particular the problem of solving polynomial
equations (see [7, 9] for more details).

The computation of Gr�obner bases essentially depends on the following three
notions:

1. Every polynomial is ordered using a total ordering on monomials � which
is Noetherian and compatible with the multiplication on monomials. The
maximal monomial of a polynomial p wrt � is called the leading term of p.

2. The reduction process of a polynomial f wrt a set of polynomials F computes
an irreducible polynomial obtained as a remainder after iteratively dividing
f by the elements of F .

3. The S-polynomial of two polynomials f and g, denoted S(f; g), is a combi-
nation of two polynomials that cancels their leading terms.

We de�ne Gr�obner bases by giving the algorithmic characterization proposed
by Buchberger in [7]:

De�nition 9 (Gr�obner basis)
Let G = ff1; : : : ; fng be a set of polynomials. G is a Gr�obner basis i� for all
pairs (i; j) 2 f1; : : : ; ng the reduction wrt G of the S-polynomial S(fi; fj) is equal
to 0.

The basic algorithm computing Gr�obner bases naturally follows from the
de�nition. Let F be a set of polynomials. Let F 0 be a set of polynomials ini-
tialized with F . The algorithm consists in successive computations of reduced
S-polynomials over F 0. These S-polynomials are added to F 0 at each step. The
algorithm stops, after a �nite number of steps, when no S-polynomial di�erent
from 0 can be computed. The resulting set of polynomials is a Gr�obner basis
and is denoted GB(F). A Gr�obner basis can be further simpli�ed into a reduced
Gr�obner basis (see details in [7]).

Another property which is of interest for this paper is that, given a system of
polynomial equations S = ff1 = 0; : : : ; fn = 0g and G = fg1; : : : ; gmg a Gr�obner
basis such that G = GB(ff1; : : : ; fng), the systems fg1 = 0; : : : ; gm = 0g and S
have the same solutions.

Rewriting step

The Gr�obner bases are used as a preprocessing step to generate redundant equa-
tions which may prune the search space. In what follows we choose the total



degree ordering for monomials and the usual lexicographic ordering for vari-
ables.

Let S = ff1 = 0; : : : ; fn = 0g be a constraint system. Let fF0; F1; : : : ; Fmg
be a partition of the set ff1; : : : ; fng. The rewriting step consists in the computa-
tion of reduced Gr�obner bases Gi such that for all i 2 f1; : : : ;mg Gi = GB(Fi).
The set F0 contains the constraints that are not rewritten. The correctness of
this computation is guaranteed by Gr�obner bases properties (see the previous
section). The termination comes from the termination of Gr�obner bases algo-
rithms. The order in which Gr�obner bases are computed do not change the
resulting system due to the independence of the sets Fi.

In some cases, inconsistency can be detected at this stage. By application
of the Weak Nullstellensatz theorem, if there exists i 2 f1; : : : ; pg such that the
constant polynomial 1 belongs to Gi then Gi is inconsistent and so is the whole
system.

Consider the set ff1 = x2 + y2 � 1; f2 = x2 � yg. The reduction of the S-
polynomial S(f1; f2) gives the univariate polynomial f3 = y2+y�1 whose roots
can be easily extracted. The elimination of x is possible because the leading
terms of f1 and f2 are equals. This suggests a heuristic to compute the partition
in such a way that its elements contain polynomials whose leading terms share
variables. In the current implementation the partition is computed by hand
however we believe that this process could be automated as suggested by the
previous example.

Example

To illustrate this constraint rewriting step, we present an example taken from
[14].

S =

8>><
>>:

� x21 + x22 + x23 + x24 � 2 � x1 � 3 = 0
� x21 + x22 + x23 + x24 � 4 = 0
� x1 + x2 + x3 + x4 � 1 = 0
� x1 + x2 � x3 + x4 � 3 = 0

S0 =

8>><
>>:

x22 + x23 + x24 � 3:75 = 0
x1 + x2 � x3 + x4 � 3 = 0
x3 + 1 = 0
x1 � 0:5 = 0

The system S is divided in two subsystems S1 and S2, materialized by two
di�erent kinds of bullets. The resulting set S0 is the union of GB(S1) and GB(S2).
In S0 the domains of variables x1 and x3, which are reduced to a singleton, can be
computed immediately. Moreover we remark that three polynomials from S were
removed during the computation of reduced Gr�obner bases for each subsystems.

5.2 Constraint solving

The approximate resolution of the system after the rewriting step is basically
the one proposed in [28] which corresponds to state of the art techniques in
constraint solving. We show here how this method can be expressed in terms of
computing weak arc-consistency over a certain ECSP.



Basics

We recall �rst some basic notions from [4, 28]. Due to space restrictions we do
not recall the basics of interval computations which can be found for example
in [24, 1]. We overload function symbols over the reals with function symbols
over the intervals when no confusion is possible. Let D be a set of 
oating point
intervals.

Given a real expression f , the natural interval extension F of f is the interval
expression which is a copy of f where operation symbols are replaced by interval
operations, variables by interval variables and constants by interval constants.
Interval constraints are of the form F = 0 where F is an expression over intervals.
The semantics of interval functions and constraints is quite natural and follows
the de�nitions given in [4]. An interval I is said to be canonical w.r.t D i�
8J 2 D; J � I implies I = J:

Let C = (F = 0) be a constraint where F is an interval expression on
variables X1; : : : ; Xn over D and let I1 � : : : � In be a Cartesian product of
elements of D. The ith projection of C is the constraint F 0 = 0 where F 0 is
obtained from F by replacing the variables Xj by the intervals Ij for all j 2
f1; : : : ; i � 1; i + 1; : : : ; ng and is denoted �i(C): We also de�ne the constraint
enclosure of C, denoted EN(C), as being the smallest subset of Dn such that,
for every n-ary tuple A made of canonical intervals, if A is a solution of C then
A 2 EN(C).

Interval Newton methods

Newton methods are numerical algorithms approximating zeros of functions and
derived from the mean value theorem. We present here two methods, one based
on the Newton interval function and other based on the Taylor series approxi-
mation.

Let f be a real function continuously di�erentiable between x and y and
consider that y is a zero of f . It can be deduced from the mean value theorem that
y = x � f(x)=f 0(a). The Newton method iterates this formula to approximate
roots of f . This method has been extended to interval functions [24, 16, 12, 1,
11, 17, 25]. Let X be an interval containing x and y and suppose that F 0 is
the natural interval extension of f 0, F the natural interval extension of f and
m(X) the approximation of the center of X . The Newton interval function is
the function

N(X) = m(X)� F (m(X))=F
0

(X)

From this de�nition one can design an interval Newton method enclosing roots
of interval functions. Given an initial interval X0 and an interval function F , a
sequence of intervalsX1; X2; : : : ; Xn is computed using the iteration step Xi+1 =
N(Xi)\Xi. Xn is either empty, which means that X0 contains no zero of F , or
is a �xed point of N .

The centered form is based on the Taylor series approximation. Let C =
(F = 0) be an interval constraint, X be a vector of variables, I = (I1; : : : ; In)
be a vector of intervals and J be the vector of the continuous partial derivatives



of F . We denote by M(I) the midpoint vector (m(I1); : : : ;m(In)). The centered
form is the interval expression F (X) = F (M(I)) + J(I)(X �M(I)). If X is a
zero of F it follows

F (M(I)) + J(I)(X �M(I)) = 0

In what follows this last constraint will be denoted TAY(C). Let Ci be the ith
projection of this constraint. One can remark that Ci is an unary constraint
over Xi. After a basic transformation of Ci, Xi can be expressed as a constant
interval expression G(I). The method based on the Taylor series approximation
computes Xi = Ii \G(I).

Generation and resolution of ECSPs

The main idea is to consider, for each non-linear constraint over p variables,
2p \copies" of the constraint. To each copy is associated a constraint narrowing
operator de�ned over closed 
oating point intervals and implementing one of the
two methods described above.

More precisely, let E = (fC1; : : : ; Cm)g; X) be a CSP over IR. The approxi-
mate domain D is the set of all closed intervals whose bounds are 
oating point
intervals.

Then, an ECSP E0 = (S [ S0; X) is computed from E by the following
algorithm:

generation( in E = (S;X) ; out E0 = (S0 [ S00; X) )

begin
S0 := ;; S00 := ;;
while S 6= ; do

C:= choose one constraint in S;
P:= arity(C);
for i:=1 to P do

S0 := S0 [ f(C;N 0

i)g;
S00 := S00 [ f(C;N 00

i )g;
endfor
S:= S n fCg

endwhile
end;

First let us remark that, in E0, to every constraint narrowing operatorN cor-
responds a variable from the initial set fX1; : : : ; Xng. The index of this variable
is denoted ind(N). Then, for every (C 0; N 0) 2 S0, for every (C 00; N 00) 2 S00 and
for every n-ary Cartesian product u of elements of D, N 0 and N 00 are de�ned as
follows:

N 0(u) = EN(�ind(N 0)(C))

N 00(u) = EN(�ind(N 00)(TAY(C)))

Finally, given such an ECSP E0, the (possible) solutions are computed using
a branch-and-prune algorithm [28] which is basically an iteration of two steps:



1. a pruning step which computes weak arc-consistency for E0 using the �lter-
ing algorithm presented in section 3.1. In this case weak arc-consistency is
equivalent to box-consistency.

2. a branching step which generates two subproblems by splitting one non-
canonical interval, when possible.

The following example (continuing the example developed in the previous
section) describes the constraint resolution process. It will give the underlying
intuition of the generic branch-and-prune algorithm. Consider that the initial
Cartesian product of domains is [�10; 10]4 and the required precision for the
resulting intervals is 10�12. Weak arc-consistency is computed, providing the
following intervals:

x1 2 X1 = [+0:5000000000000;+0:5000000000000]
x2 2 X2 = [�0:1583186821562;+1:6583186821562]
x3 2 X3 = [�1:0000000000000;�1:0000000000000]
x4 2 X4 = [�0:1583186821562;+1:6583186821562]

No more pruning can be done and the intervals X2 and X4 are not canonicals.
A branching step is applied and generates two subintervals (thus two Cartesian
products) fromX4 which is split. The pruning step on the �rst Cartesian product
gives immediately the �rst solution:

x1 2 [+0:5000000000000;+0:5000000000000]
x2 2 [+1:6513878188659;+1:6513878188660]
x3 2 [�1:0000000000000;�1:0000000000000]
x4 2 [�0:1513878188660;�0:1513878188659]

Then the second solution is derived from the second Cartesian product after
backtracking:

x1 2 [+0:5000000000000;+0:5000000000000]
x2 2 [�0:1513878188660;�0:1513878188659]
x3 2 [�1:0000000000000;�1:0000000000000]
x4 2 [+1:6513878188659;+1:6513878188660]

6 Experimental results

We have implemented a prototype of a polynomial constraint solver, which we
call here INGB, integrating the interval Newton method called IN described in
the previous sections and a Gr�obner bases module called GB. In order to compare
constraint solvers we propose two parameters. The computation time is the most
used computational parameter and permits to compare behaviours of rather
di�erent systems. This parameter is used here to compare our system with CoSAc

[22] and Newton [28]. The number of branchings is the second parameter and
illustrates the use of Gr�obner bases as a preprocessing step. In particular, INGB
is compared to TKIB [14].



The following computational results are given for a SUN Sparc20 and the
width of the resulting intervals are smaller than 10�12. The results of TKIB were
computed on a Silicon Graphics workstation with a 50 MHz processor MIPS
4000/4010. The results of CoSAc and Newton were computed on a SUN Sparc10.
The Gr�obner bases are computed using di�erent orderings for monomials and
the usual lexicographic ordering for the variables. Derivatives are computed sym-
bolically.

Example 1 This example comes from [14] and concerns the intersection of a
circle and a parabola. We compare INGB with the solver TKIB which implements
an approximation method called tightening, the Krawckzyk operator and enu-
meration methods. A reduced Gr�obner basis S0 is computed for the whole system
S.

S =

�
x2 + y2 � 1 = 0
x2 � y = 0

S0 =

�
x2 � y = 0
y2 + y � 1 = 0

The initial intervals for x; y are [�1:5; 1:5]. The experimental results show that
INGB has the best possible behaviour on the number of enumeration steps (one
branching for two solutions).

Example 2 This example was developed in the previous section and is also
taken from [14]. The initial intervals for the variables are [�10; 10]. The ta-
ble 1 shows again an improvement w.r.t. the number of branchings and a good
runtime behaviour.

Example 3 This example is taken from [21, 22] and consists in moving a rect-
angle through a right angled corridor. The system S is divided in three parts
materialized by di�erent bullets for the last two subsystems. GB is applied on
each of the last two parts.

S =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

y � b = 0
b� r � t = 0
w2 � 1 + t2 = 0

� x� l � t3 � L � w = 0
� y � L � t� l � w3 = 0
� L� 1 = 0
� l � 2 = 0
� x� a = 0
� 2 � a� 3 = 0

S0 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

t2 + w2 � 1 = 0
�r � t+ b = 0
L� 1 = 0
l � 2 = 0
a� x = 0
�b+ y = 0
t3 + 0:5 � w � 0:5 � x = 0
w3 + 0:5 � t� 0:5 � y = 0
x� 1:5 = 0

The initial intervals are [�106; 106] for x; y; l; t; L; b; r; a and [0; 106] for w. The
experimental results show that INGB has a better behaviour than CoSAc which
is due for the most part to interval Newton methods and to the partial use of
Gr�obner bases in our system.



Example 4 This example comes from [28] and describes an economics mod-
elling problem for which we consider the case of four variables. A reduced Gr�ob-
ner basis S0 is computed for the whole system S.

S =

8>><
>>:

� x1 � x4 + x1 � x2 � x4 � 0:35 = 0
� x2 � x4 + x1 � x3 � x4 � 1:086 = 0
� x3 � x4 � 2:05 = 0
� x1 + x2 + x3 + 1 = 0

S0 =

8>>>>>>>><
>>>>>>>>:

x1 + x2 + x3 + 1 = 0

x2 +
850
2593 � x3 +

500
2593 � x4 +

3311
2593 = 0

x3 +
10000
71463 � x

2
4 +

15240
23821 � x4 +

514433
595525 = 0

x34 +
1143
250 � x24 +

1543299
250000 � x4 +

2929983
200000 = 0

The initial intervals are [�108; 108] for each variables. The experimental results
in the table 1 show that the computation of Gr�obner bases speeds up interval
Newton methods. The reason is that the roots of the last polynomial can be com-
puted immediately using Newton methods. Then the propagation in S0 of the
values of x4 allows to solve the �rst three equations using the same process.

Benchs Methods CPU time (in seconds) Branching(s) Solution(s)
GB IN Total

Ex1 INGB 0.01 0.02 0.03 1 2
TKIB - - 0.03 3 2

Ex2 INGB 0.02 0.11 0.13 1 2
TKIB - - 0.78 10 2

Ex3 INGB 0.05 0.19 0.24 0 1
CoSAc 2 - 2 - 1

Ex4 INGB 0.13 0.07 0.20 0 1
Newton - 0.60 0.60 ? 1

Table 1. Experimental results.

7 Conclusion

In this paper, we have proposed an extension of the notion of Constraint Satis-
faction Problems, called Extended Constraint Satisfaction Problem, to formalize



the collaboration of di�erent solvers over continuous domains. We have de�ned
an extended notion of arc-consistency, called weak arc-consistency and shown
that it generalizes previous local consistency notions for �nite and continuous
CSPs. Weak arc-consistency is characterized by a �xed point semantics over the
lattice of approximate domains. To illustrate this framework we have proposed
a novel combination of the use of Gr�obner Bases as a preprocessing step applied
to reasonably small subsets of the initial constraint set and of state of the art
local consistency techniques based on Interval Newton methods. Finally, we have
reported experimental results and compared with other recent implementations.
We intend to continue these experiments and notably to automatize the process
which partition the initial system in the preprocessing step. We envisage also
to instantiate this framework to other combinations of symbolic and numeric
methods.
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