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Chapter 6

B. Buchberger

Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory

6.1. INTRODUCTION

Problems connected with ideals generated by finite sets /' of multivariate
polynomials occur, as mathematical subproblems, in various branches of
systems theory, see, for example, [6.1]. The method of Grobner bases is a
technique that provides algorithmic solutions to a variety of such
problems, for instance, exact solutions of F viewed as a system of
algebraic equations, computations in the residue class ring modulo the
ideal generated by F, decision about various properties of the ideal
generated by F, polynomiai solution of the linear homogeneous equation
with coefficients in F, word problems modulo ideals and in commutative
semigroups (reversible Petri nets), bijective enumeration of all poly-
nomial ideals over a given coefficient domain etc.

For many years, the work of G. Hermann [6.2] was the only algo-
rithmic method for tackling problems in polynomial ideal theory. Still,
her paper is a rich source. However, as pointed out in [6.3] and [6.4], the
solution of her main problem ‘is a multivariate polynomial fin the ideal
generated by F?”’ does not yet give a feasible solution to the “‘simplifica-
tion problem modulo an ideal” (i.e. the problem of finding unique
representatives in the residue classes modulo the ideal) and to the
problem of effectively computing in the residue class ring modulo an
ideal. '

The method of Grobner bases, as its central objective, solves the
simplification problem for polynomial ideals and, on this basis, gives easy
solutions to a large number of other algorithmic problems including
Hermann’s original membership problem. Also, when compared with
Hermann'’s algorithms, our algorithm that constructs Grobner bases is of
striking simplicity and, depending on the example considered, may get
through with intermediate computations using polynomials of relatively
low degree. On the other hand, as shown in [6.5] and [6.6], the decision of
polynomial ideal congruence intrinsically is a complex problem. In the
worst case, therefore, also the method of Grobner bases may lead to
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exploding computations. Much work is going on to analyze and predict
these phenomena and to extend the applicability of the method.

The method of Grébner bases was introduced 1965 by this author in
[6.7], [6.8] and, starting from 1976, was further refined, generalized,
applied and analyzed in a number of papers [6.91-{6.35]. The basic idea of
the method is the transformation of the given set of polynomials ¥ into a
certain standard form G, for which in [6.9] the author introduced the
name ‘Grobner bases’, because Prof. W. Grobner, the thesis advisor of
[6.7] stimulated the research on the subject by asking how a multipli-
cation table for the associative algebra, which is formed by the residue
ring modulo a polynomial ideal, can be constructed algorithimically and
by presenting a first sketch of an algorithm: He proposed to ‘complete’
the basis F by adjoining the differences of different representations of
power products (modulo the ideal). This, however, is no finite procedure.
It was the author’s main contribution to see and prove in [6.7],[6.8] that it
suffices to adjoin the differences of (the reduced forms of) certain ‘critical
pairs’ (or, equivalently, the reduced form of the ‘S-polynomials’ [6.7]),
which are finite in number.

In retrospect, it seems that the concept of ‘Grobner bases’ under the
name “‘standard bases” appeared already one year earlier (1964) in
Hironaka’s famous paper [6.36]. However, Hironaka only gave an in-
constructive existence proof for these bases, whereas in [6.7], together
with the concept of such bases, we also presented an algorithm for
constructing the bases and only this algorithm allows an algorithmic
solution to the various problems shortly mentioned above. An incon-
structive existence proof for Grobner bases may also be found in [6.37].
Hilbert’s basis theorem, then, follows as a corollary.

Later (1967) the two basic ideas of our method, critical pairs and
completion, where also proposed by Knuth and Bendix [6.38]in the more
general context of equations between first order terms. The Knuth-
Bendix algorithm now plays an important role in various branches of
computer science (abstract data type transformations, equational
theorem proving and applications in automated program verification).
Recently, the Knuth-Bendix algorithm and the author’s own algorithm
for constructing Grobner bases were brought together under a common
algorithm structure by R. Llopis de Trias [6.32] and, independently, by P.
Le Chenadec [6.39]; see also [6.3] for a general introduction to the
““critical-pair completion” algorithm type. On the other hand, the
improvements of the author’s algorithm were carried over to the Knuth-
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Bendix algorithm, see [6.40]. A lot of challenging questions remain to be
treated, which, in the near future, might also affect systems theory (for
example, decision methods for boolean algebra based on the critical-pair/
completion approach, see [6.41].)

In the present paper, a survey on the method of Grobner bases is given.
In Section 6.2, the concept of Grobner bases is defined and, in Section
6.3, the basic form of the algorithm for constructing Grobner bases is
described. In Section 6.4 an improved version of the algorithm is pre-
sented. The improvements are important for the practical feasibility of
the computations. In Section 6.5, the algorithm is applied to the simpli-
fication problem, the congruence problem and related problems in poly-
nomial ideal theory. In Section 6.6, the algorithm is applied to the exact
solution of systems of algebraic equations and related problems. In
Section 6.7, it is demonstrated that the S-polynomials have also a signi-
ficance as the generators of the module of solutions for linear homo-
geneous equations with polynomial coefficients and an algorithm for a
systematic solution of such equations is presented. Grobner bases for
polynomial ideals with integer coefficients are treated in Section 6.8.
Some other applications are summarized in Section 6.9. Finally, in
Section 6.10, some remarks about specializations, generalizations, imple-
mentations and the computational complexity of the algorithm are made.

The emphasis of this paper is on explicit formulation of algorithms (in
an easy notation) and on examples. With the exception of some sketches,
no proofs of the underlying theorems can be given. However, complete
references to the original publications are provided.

6.2. GROBNER BASES

Notation

K afield.

K[x,, ..., x,] ring of n-variate polynomials over K.

The following typed variables will be used:

f, & h, k, p, ¢ polynomialsin K[x,, . . ., x,].

F, G finite subsets of K[x,, . . ., x,].

s, t, u power products of the form xt . . . xin.

a, b, ¢, d elements in K.

i, j, [, m natural numbers.

Let F ={f,, . . ., f,}. By ‘Ideal(F)’ we will denote “the ideal generated

Nt
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by F”’ (i.e. the set

{ Y h-flheKlx,, .., x](=1,....m).

I<i<m
Furthermore, we will write ‘f =, g’ for “‘f is congruent to g modulo
Ideal(F)” (i.e. f-geldeal(F)).

Before one can define the notion of Grébner bases the notion of
‘reduction’ must be introduced. For this it is necessary to fix a total
odering <, of the power products x¥ . . . xir, for example, the ‘total
degree ordering’ (whichis 1 <, x <,y <;x* <;pxy <;y* <;x* <;x% <;
xy? <, y* <, ...in the case of two variables) or the ‘purely lexico-
graphical ordering’ (whichis 1 <,x <;x* <;x’ <. ..y <gxy <, Xy <,

. <, ¥y? <gxy* <,...in the case of two variables). In fact, any total
ordering is suitable, which at least has the following two properties:

(T1) 1<,t forall t=+1,
(T2) ifs<,t then su<;tu.

A total ordering satisfying (T1) and (T2) will be called ‘admissible’. For
the sequel, assume that an arbitrary <, has been fixed. With respect to
the chosen <, we use the following notation.

Notation

Coefficient(g, ?) the coefficient of tin g.

LeadingPowerProduct(f) the maximal power product (w.r.r. <;)
occurring with non-zero coefficient in f.

LeadingCoefficient(f) the coefficient of the LeadingPower-
Product(f).

DEFINITION 6.1[6.7], [6.8].
g — h (read: ‘g reduces to h modulo F) iff there exists feF, b and u such
that

g b and h=g—-b-u-f

g > b u (read: ‘g is reducible using f, b, w’) iff Coefficient(g, u -
LeadingPowerProduct(f)) # 0, b = Coefficient(g, u - LeadingPower-
Product(f))/LeadingCoefficient(f) °
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Hence, roughly, g reduces to h modulo F iff a monomial in g can be
deleted by the subtraction of an appropriate multiple b - u - f of a poly-
nomial fin Fyielding . Thus, the reduction may be viewed as one step in
a generalized division.

EXAMPLE 6.1. Consider F: = {f,, f,, fs}, where
f1:=3x2y+2xy¥y+9x2+5x—3,
fy: = 2% —xy —y+ 6x* —2x* = 3x + 3,
fii = xy + x%y + 3x° + 2x%. ‘

The polynomials f,, f,, f; are ordered according to the purely lexico-
graphical ordering. The leading power products are x%y, x*y, x’y, respect-
ively, and the leading coefficients are 3, 2, and 1. Consider

g: = 5y + 2x*y + 5/2xy + 3/2y + 8x? + 3/2x — 9/2.
Modulo F, g reduces, for example, to

h: = 5y* + 7/6xy + 5/6y + 2x* — 11/6x — 5/2.
Namely,

g ;. fOr f = f, b: = 2/3, u: =1

because Coefficient(g, 1 - x2y) =2 # Oand b = Coefficient(g, 1 - x*y)/
LeadingCoefficient(f,),
and

h:g'—(z/?’)'l'fl'

DEFINITION 6.2.
h is in normal form (or reduced form) modulo F iff there is no A’ such that

h—.h'.
h is a normal form of g modulo F iff there is a sequence of reductions

g=ky—pk —pk,—p. . .—pk,=h

and A is in normal form modulo F.
An algorithm S is called a normal form algorithm (or simplifier) iff for all
Fandg:

S(F, g) is a normal form of g modulo F.
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LEMMA 6.1[6.7][6.9].
The following algorithm is a normal form algorithm:

ALGORITHM 6.1 (h: = NormalForm(F, g)).
h: =g
while exist feF, b, u such that h —;, , do choose feR, b, u such

that h —;, , and u - LeadingPowerProduct(f) is maximal
(w.r.t.<;)

h:=h-b-u-f ' L
The correctness of this algorithm should be clear. For the correctness, the
selection of the maximal product u - LeadingPowerProduct(f) is not

mandatory. However, this choice is of crucial importance for efficiency.
The termination of the algorithm is guaranteed by the following lemma.

'LEMMA 6.2 [6.7], [6.9]. For all F: —is a noetherian relation (i.e. there is
no infinite sequence k, =, k, =k, =5 . . .).

EXAMPLE 6.2. h in the Example 6.1 is in normal form modulo F: no power
product occurring in 4 is a multiple of the leading power product of one of
the polynomials in F. Thus, no reduction is possible. Another example:

xy =, — 2/3x%y — 1/3xy — 3x3 — 5/3x + x = :g,.
g, can be further reduced:
g~ 19y +2/9y — 3x* + 1/3x* + 19/9x — 2/3 = :g;.

g’ is in normal form modulo F. g/, hence, is a normal form of x*y modulo
F. Actually, g/, may be the result of applying the algorithm ‘NormalForm’
to x*y (depending on how the instruction ‘choose feF, such that . . .”in
the algorithm is implemented). In this example, a second reduction is
possible:

xby = 1/2xy + 1/2y — 3x* + x* + 3/2x — 3/2 = :g,.
g, is already in normal form modulo F.

From the example one sees that, in general, it is possible that, modulo
F, g, and g, are normal forms of a polynomial g, butg, = g,. Those sets F,
for which such a situation does not occur, play the crucial role for our
approach to an algorithmic solution of problems in polynomial ideal
theory:
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DEFINITION 6.3[6.7], [6.9]. Fis called a Grobner basis (or Grobner set) iff
forall g, h,, h,:

if 4, and h, are normal forms of g modulo Fthen h, = h,. °
It is the central theme of this paper to show that

(a) for those sets F that are Grobner bases, a number of important
algorithmic problems (that are formulated in terms of Ideal(F)) can be

solved elegantly and

(b) those sets F, which are not Grobner bases, can be transformed into
sets G, that are Grobner bases and generate the same ideal.

Most of the algorithmic applications of Grobner bases are based on the
following fundamental property of Grobner bases.

THEOREM 6.1[6.7],[6.9], [6.22] (Characterization Theorem for Grobner

bases). Let S be an arbitrary normal form algorithm. The following

properties are equivalent:

(GB1) Fis a Grobner basis.

(GB2) Forallf, g: f =, g iff S(F, f) = S(F, g). ®
(GB1) is also equivalent to:

(GB3) —has the ‘Church-Rosser’ property.

(GB3) links Grobner bases with analogous concepts for equations of first

order terms and the Knuth-Bendix algorithm. For details see [6.3].

(GB3) is not needed in this paper. The following lemma is helpful in

establishing this link.

LEMMA 6.3 [6.22], [6.30] (Connection between reduction and con-
gruence): For all F, f, g:
f=rg iff forg
(Here, <>} is the reflexive, symmetric, transitive closure of =, 1.€.
fer g iff there existsasequence

f:koefklé—)sz(—)F"'é_)ka:gs
where
ferg iff (f—rg or g§—¢f) o

(GB2) immediately shows that, for Grobner bases F, the decision
problem ‘f=.g Iis algorithmically decidable (uniformly in F). For
Grobner bases, other computability problems will have similarly easy
solutions: see Sections 5-9.
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6.3. ALGORITHMIC CONSTRUCTION OF GROBNER BASES

Before we give the algorithmic applications of Grobner bases we show
how it may be decided whether a given set F is a Grobner basis and how
Grobner bases may be constructed. For this the notion of an “S-poly-
nomial’ is fundamental:

DEFINITION 6.4 [6.7],[6.8], [6.9].

The ‘S-polynomial corresponding to f,, f,’ is

SPolynomial(f,, f,): = u, - fi = (eifey) - uy - fo

where ¢; = LeadingCoefficient(f)),

u, is such that s, - u; = the least common multiple of s,, s, and

s; = LeadingPowerProduct(f)) (i=1,2).

EXAMPLE 6.3. For f, f, as in Example 6.1, the SPolynomial(f,, f) is
2x%y + 5/2xy + 32y + 8x* + 3/2x — 9/2. L

Note that the least common multiple of s, and s, is the minimal power
product that is reducible both modulo f, and modulo f,. The algorithmic
criterion for Grobner bases is formulated in the following theorem, which
forms the core of the method:

THEOREM 6.2 (Buchberger [6.7], [6.8], [6.9], [6.22]; Algorithmic
Characterization of Grobner bases). Let S be an arbitrary normal form
algorithm. The following properties are equivalent:
(GB1) Fis a Grobner basis.
(GB4) For all f,, f,eF: S(F, SPolynomial(f,, f,)) = 0. °
(GB4), indeed, is a decision algorithm for the property ‘F'is a Grobner
basis’: one only has to consider the finitely many pairs f,, f, of poly-
nomials in F, compute the corresponding S-polynomials and see whether
they reduce to zero by application of the normal form algorithm S. In
addition, Theorem 6.2 is the basis for the central Algorithm 6.2 of this
paper for solving the following problem.

PROBLEM 6.1.
Given F.
Find G, such that Ideal(F) = Ideal(G) and G is a Grobner basis.
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ALGORITHM 6.2 (Buchberger [6.7], [6.8]) for Problem 6.1.
G.=F
B: = {f. fllf- [, € G fi # fo
while B + ( do
{f,, f.}: = apairin B

B =B {{f. i}
h . = SPolynomial(f,, f,)
h' : = NormalForm(G, h)
if h' # 0then
/ B: = BU {{g, h'}geG}
”"”/ G: = GU {h'}. e

o

The partial correctness of this algorithm, essentially, relies on
Theorem 6.2. The termination can be shown in two ways, see [6.8],
[6.17]. (Sketch of the first method [6.17]: One considers the sequence of
ideals Ideal(P,) C Ideal(P,) C . . . ,where P, is the set of leading power
products of polynomials in G, and G, is the value of G after G has been
extended for the i-th time. It is easy to see, that the inclusions in this
sequence are proper. Hence, by Hilbert’s theorem on ascending chains of
idealsin K[x,, . . ., x,], see [6.42], the sequence must be finite. Sketch of
the second method [6.8]: One uses Dickson’s lemma [6.43], which,
applied to the present situation, shows that a sequence ¢, t,, . . . of power
products with the property that, for all j, ¢, is not a multiple of any of its
predecessors, must be finite. Actually, if ¢,is the leading power product of
the i-th polynomial adjoined to G in the course of the algorithm (i = 1,2,
. . .), then the sequence ¢, t,, . . . has this property and, hence, must be
finite. This is the way, the termination of the algorithm was first proven in
[6.8], where Dickson’s lemma was reinvented. Hilbert’s basis theorem

can be obtained as a corollary in this approach, see [6.37].)

EXAMPLE 6.4. Starting from the set F of Example 6.1, we first choose, for
instance, the pair f,, f, and calculate

SPolynomial(f,, f,) =
2x%y + 5/2xy + 3/2y + 8x* + 3/2x — 9/2.
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Reduction of this polynomial to a reduced form yields
7/6xy + 5/6y + 2x* — 11/6x — 5/2.

We adjoin this polynomial to G in the form
fio = xy + 5/7y + 12/7x* — 11/7x — 15/7,

where we normalized the leading coefficient to 1. (This normalization is
not mandatory. However, as a matter of computational experience, it
may result in drastic savings in computations over the rationals.
Theoretically, this phenomenon is not yet well understood. Investiga-
tions of the kind done for Euclid’s algorithm should be worthwhile, see
[6.44] for a survey on these questions.)

Now we choose, for example, the pair f, and f;:

SPolynomial(f,, f,) = 1-f, — 3/1) - x - f, =
—1/7xy + y — 36/7x* + 96/7x* + 80/7x — 3.

Reduction of this polynomial, by subtraction of —(1/7) - f, (and normal-
ization), yields the new polynomial.

fio =y — 14/3x* + 38/3x* + 61/6x — 3.

Furthermore, SPolynomial(f,, f,) = 1 - f, — (1/1) - x - f;. By subtract-
ing (5/7) - f, and normalization we obtain

fii = x* — 2% — 15/4x* — 5/4x. .

Finally, the reduction of SPolynomial(f,, f,) = x - f, — (3/1) - 1 f;
leads to

fir = x* — 5/2x* — 5/2x.
The reduction of the S-polynomials of all the remaining pairs yields

zero and, hence, no further polynomials need to be adjoined to the basis.
For example,

SPolynomial(f,, f,) = 1/2x* — 5/4x* — 5/4x
reduces to zero by subtraction of 1/2 f.. Hence, a Grobner basis corres-
ponding to F'is

G:={f,..., [

DEFINITION 6.5 [6.10]. F is a reduced Grébner basis iff F is a Grobner
basis and for all feF: f is in normal form modulo F — {f} and
LeadingCoefficient(f) = 1.
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EXAMPLE 6.5. G in Example 6.4 is not a reduced Grobner basis: For
example, f, reduces to zero modulo {f,, . . ., f,}. By successively reducing
all polynomials of a Grobner basis modulo all the other polynomials in
the basis and normalizing the leading coefficients to 1, one always can
transform a Grobner basis into a reduced Grobner basis for the same
ideal. We do not give a formal description of this procedure, because it
will be automatically included in the improved version of the algorithm
below. In the example, also f,, f,, f,, and f, reduced to zero and f; reduces
to

fii=y+x*—32x — 3.
Hence, the reduced Grobner basis corresponding to F'is

G':={f,, £} ={y + x* — 3/2x — 3,x* — 5/2x* — 5/2x}.

THEOREM 6.3 (Buchberger [6.10]: Uniqueness of reduced Grobner
bases). If Ideal(F) = Ideal(F’) and F and F’ are both reduced Grobner
bases then F = F'.

DEFINITION 6.6. Let GB be the function that associates with every Fa G
such that Ideal(F) = Ideal(G) and G is a reduced Grobner basis. °

By what was formulated in Theorems 6.2, 6.3, Algorithm 6.2 and the
remarks in Example 6.5 we, finally, obtain the following main theorem,
which summarizes the basic algorithmic knowledge about Grobner bases.

MAIN THEOREM 6.4 (Buchberger 1965, 1970, 1976).

G B is an algorithmic function that satisfies for all F, G:
(SGB1) Ideal(F) = Ideal(GB(F)),

(SGB2) if Ideal(F) = Ideal(G) then GB(F) = GB(G),
(SGB3) GB(F) is a reduced Grobner basis.

6.4. AN IMPROVED VERSION OF THE ALGORITHM

For the tractability of practical examples it is crucial to improve the
algorithm. There are three main possibilities for achieving a compu-
tational speed-up:

(1) The order of selection of pairs {f,, f,} for which the S-polynomials
are formed, though logically insignificant, has a crucial influence on the
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complexity of the algorithm. As a general rule, pairs whose least common
multiple of the leading power products is minimal with respect to the
ordering <, should be treated first. This, in connection with (2), may
drastically reduce the computation time.

(2) Each time a new polynomial is adjoined to the basis, all the other
polynomials may be reduced using also the new polynomial. Thereby,
many polynomials in G may be deleted again. Such reductions may
initiate a whole cascade of reductions and cancellations. Also, if this
procedure is carried out systematically in the course of the algorithm, the
final result of the algorithm automatically is a reduced Grobner basis. The
reduction of the polynomials modulo the other polynomials in the basis
should also be performed at the beginning of the algorithm.

(3) Whereas (1) and (2) are strategies that need no new theoretical
foundation, the following approach is based on a refined theoretical
result [6.19], which has proven useful also in the general context of
‘critical-pair/completion’ algorithms, in particular for the Knuth-Bendix
algorithm: The most expensive operations in the algorithm are the reduc-
tions of the 4’ modulo G in the while-loop. We developed a ‘criterion’
that, roughly, allows to detect that certain S-polynomials & can be
reduced to zero, without actually carrying out the reduction. This can
result in drastic savings. Using this criterion, in favourable situations,
only 0(/) S-polynomials must be considered instead of 0(/*), where /is the
number of polynomials in the basis. (Of course, in general, / is dynamic-
ally changing and, therefore, the effect of the criterion is very hard to
assess, theoretically).

Strategy 1. was already used in [6.7], [6.8]. Also, the correctness of the
reduction and cancellation technique sketched in (2) was already shown
in [6.7], [6.8]. The criterion described in (3) was introduced and proven
correct in [6.19], details of the correctness proof may be found in [6.20].

Before we give the details of the improved version of the algorithm
based on (1)—(3) we present a rough sketch:

In addition to G and B, we use two sets R and P. R contains poly-
nomials of G, which can be reduced modulo the other polynomials of G.
As long as R is non-empty, we reduce the polynomials in R and store the
resulting reduced polynomials in P. Only when R is empty, we adjoin the
reduced polynomials in P to G and determine the new pairs in B for which
the S-polynomials have to be considered. If an S-polynomial for a pair in
B is reduced with a non-zero result #’, A’ is put into P and, again,
polynomials in G are sought that are reducible with respect to A’. Such
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polynomials are put into R and we continue with the systematic reduction
of R. We now give the details.

PROBLEM 6.2.
Given: F.
Find: G, such that Ideal(F) = Ideal(G) and G is a reduced Grobner

basis.

ALGORITHM 6.3 (Buchberger [6.19]) for Problem 6.2.
R:=F,P.=0;G:=0;B: =0 ‘
Reduce All (R, P, G, B); New Basis (P, G, B)
while B # 0 do
{f,, f.}: = apair in Bwhose LCM(LP(f), LP(f,)) is minimal
w.r.t. <r
B: = B — {{f,, £,}}
if (not Criterionl(f,, f,, G, B) and
not Criterion2(f,, f,)) then
h: = NormalForm(G, SPolynomial(f,, f,))
if h # 0 then
G, = {geG|LP(h) < ,LP(g)}
R: =G, P: =1{h}; G: = G — G,
B: = B — {{f,, f,}lf.€G, or f,eG,}
ReduceAll(R, P, G, B); NewBasis(P, G, B).
Subalgorithm Reduce All (transient : R, P, G, B):

while R #+ 0 do
h: = anelementin R; R: = R — {h};
h: = NormalForm(G U P, h)
ifh # 0then
G,: = {geG|LP(h) <, LP(g)}
P,: = {peP|LP(h) <, LP(p)}
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G:=G- G,
P:=P-P,

R:=RUG,UP,

B : = B — {{f,, f,}eBlf,eG, or f,eG}

P : =P U{h}
Subalgorithm New Basis (transient : P, G, B):
G:=GUP

B: = B U {{g, pligeG, peP. g # p;
H:=G;K: =0
while H #+ ¢ do
h: = anelementin H; H: = H — {h}
k: = NormalForm(G — {h}, h); K: = K U {k}
G: = K.
Subalgorithm Criterion1(f,, f,, G, B): < there exists a peG such that
L#Fpp+h
LP(P) <, LCM(LP(f,), LP({,)),
{f,, p} notin B and {p, f,} notin B.
Subalgorithm Criterion2(f,, f,): ©
LCM(LP(f)), LP(f,)) = LP(f,) - LP(f,).

Abbreviations

LP(g) the leading power product of g,
LCM(s, t) the least common multiple of s and ¢,
s <)t t is a multiple of s.

The correctness of this improved version of the algorithm is based on

the following lemma and theorem.

LEMMA 6.4 [6.7], [6.8]. For arbitrary F, f,, f,:
If LP(f,) - LP(f,) = LCM(LP(f,), LP(f,)), then SPolynomial (fir )

can always be reduced to zero modulo F.
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THEOREM 6.5 (Buchberger 1979 [6.19]; detection of unnecessary reduc-
tions of S-polynomials). Let S be an arbitrary normal form algorithm.
The following properties are equivalent:

(GB1) Fis a Grobner basis.

(GB5) For all f, geF there exist h, h,, . . ., h,eF'such that
f - h17 8 = hk?
LCM(LP(h)), . . ., LP(h) <, LCM(LP(f), LP(g)),
S(F, SPolynomial(k,, h,, ,)) = 0(for1 <i < k). °

Lemma 6.4 guarantees that we need not consider the S-polynomial of
two polynomials f, and f,, whose leading power products satisty the
condition stated in the lemma (Criterion2). The iteration of Criterion1 in
Algorithm 6.3 guarantees that, upon termination of the algorithm, con-
dition (GB5) is satisfied for G and, hence, G is a Grobner basis.

EXAMPLE 6.6. Let F: = {f,, f,, f,}, where
fio=Xyz —x2?,  fy=xy - xyz,  fyi = a0yt - 2

The total degree ordering of power products is used in this example: first
order by total degree and, within a given degree, order lexicographically.
We took an example with a particularly simple structure of the poly-
nomials in order to make the reduction process simple and to emphasize
the crucial point: the difference of the crude version of the algorithm and
the improved version, which is reflected in the pairs of polynomials
{f,, f.}, for which the S-polynomials have to be considered.

A trace of the crude form of the algorithm could be as follows (if the
selection strategy 1. for pairs of polynomials is used: in the trace, we write

1

leads to the polynomial f,):
fos fs = fio = XPyz = 2%,
foo fa= [0 = x2* — x2%,
fos fs = fot = y2° = 2,
fs i =0,
fs fo = fo2 = xyz* — x2%,
fofi—=fi =28 — xX*2%,-

fi» f; — fi for indicating that the reduction of the S-polynomial of f; and f;
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fos f: =0,
fs =0,
fes =0,
fos fo = for = X2 — x2%,
for fs = 0.

The S-polynomials of all the other pairs are reduced to zero. All
together one has to reduce (9.8)/2 = 36 S-polynomials.

In the improved algorithm, first, by ReduceAll, f,, f,, f, are reduced
with respect to each other. In this example, this reduction process leaves
the original basis unchanged. Then, by NewBasis, f,, f,, f, are putinto G.
Simultaneously the set of pairs B for which the S-polynomial have to be
considered is generated. The first pair, again, is

fZ’ ﬁi - f4’
In this phase, again a call to ReduceAll is made. It is detected that,
modulo {f,, f;, f,}, f, can be reduced to f;, hence, f, can be deleted from G
and, correspondingly, the pairs {f,, f,} and {f,, f,} can be deleted from B.
By NewBasis, f, and f, are adjoined to G and B is updated. The consider-
ation of the next pair in B yields

for fi = fe

ReduceAll has no effect in this case. Thus, f; is adjoined to the basis
immediately and B is updated. The consideration of the next pair {f,, f,}
in B can be skipped by application of Criterionl: LP(f,) = xy*z divides
LCM(LP(f,), LP(f,) = x*y*z and {f;, f,} and {f,, f,} are not in B any
more, because they already were considered. The consideration of the
next pairs in B yields

f;")’ f6—>f77
fo fr = fo

with the corresponding updating of G and B (no reductions and cancel-
lations of polynomials in G are possible!). The S-polynomials of the next
pairs reduce to zero

fo f: 70,
fss f: = 0.
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The criterion does not detect this lact a priori! However, the consider-
ation of the next pair {f,. f.} can, again, be skipped by application of
Criterionl: { is a suitable p in the criterion, Then, the following pairs arc
considered:

Tondie = Tia
foo fo— 0.
f. f,—0.

The next pair 4. [} may, again, be skipped hy application of Criterion .
Fimally .

£ =it

From now on. the application ol Crterionl detects @ priort, without
actually carrying out the reductions, that all the remaining pairs may be
skipped. Hence, instead of 36 reductions, only 11 have 1o be carried out
with the improved algonithm. The pair {f,, f,71s an example of a pair, for
which Criterion2 is successtul, The gain by using the eriternia, in particular
Criterion |, becomes more drastic as the complexity of the examples, n
terms of the number of variables, the degrees ol polynomials and the
number ol polynomuals. nereases.

G5 APTFLICATION: CANONICAL SIMPLIFICATION, DECISION OF
IDEAL CONGRUENCE AND MEMBERSHIP. COMPUTATION IN
RESIDUF 1 ASS BINGS

In this scction. it is shown how our algorithm for constructing Grébner
bascs may be applied for algorithmic solutions to the canomical simpli-
fication problem modulo polynomial ideals, the decision problems f = rg‘
and ‘feldeal(F)’, and the problem of effectively computing in the associ-
ative algebra K[x,. . . .. x J/ldcal(F). Actually. the three problems are
intimately connecied wﬂh cach other. This connection is summarized n
the following definitions and lemmas whose proof may be found in [6.3].
The concepts involved in these lemmas have been developed and relined
in various papers by B. Caviness, ], Moses, . Musser, H. Lausch and W.
Nobauer. R, Loos. M, Laucr, and the author: see [6.3] for a detailed
reference to the lhiterature,

Let The an arbitrary (decidable) set (for example, 7: = K[x.. . .. x,])
and ~ an equivalence relation on 7 (for example, ~ = = ;).
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DEFINITION 6.7. An algorithm C with inputs and outputs in T is called &
‘canonical simplifier” (or ‘umple function’) for ~ (on 7)
iff for all objects f, gin T

(SI7) () - fand
(SC) iff~ g then ()= C(g).

(i,e. € singles oul a unique representative 1 each cquivalence cliss. C(f)
is called a canaonical form of f).

LEMMA 6.5, - iy decidable if there exists a canonical simplifier C for -

Proof. By (SE) and (SC): f — gt C(f) = C(g). I'he converse ol the
lemma is true, also. However. the simphfication algorithm constructed in
the proof of the converse is of no practical value, see |6.3], [6.d].

LEMMA 6.6, Let B be a computable (binary) operation on I, such that
is a congruence relation with respect 1o R, Assume we have canonical
simplifier € lor —. Dehine:
Rep(T): = {Je1C()) — [fiset of ‘canonical representatives,
ample set}).
R'(f, g): = C(R({, g)) (forall f, geRep(T)).

Then, (Rep(T). R’) is isomorphic to (1/-. K/~ ), Rep(T) 1s decidable,
and R’ is computable. (Here, R/~([/]. [g]): = |R(f. g)], where [f]1s the
congrucnce class of fwith respect to —J. ®

Lemma 6.6 shows that, having a canonical simplifier tor an cquivalence
relation that is a congruence with respect to a computable operation, one
can algorithmically master the factor structure. The theorem is proven by
realizing that i(f): = [f] (feRep(1)) defines an isomorphism between the
two structures and by checking the computability properties. Applying
these general concepts and facts to the case ol polvnomial ideals we first
note:

COROLLARY 6.1 (to Theorem 6.1). let § be an arbitrary normal form
algorithm in the sense of Definition 6.2 and F a Grdbner basis. Then
C: = M. S(F, f), i.e. the algorithm, that takes the fived ' and a variable f
ay input and computes S(F, ). i5 a canonical simplifier for =,

Proo/. (SE) is fulfilled because. clearly. f=,g if f —».g (see Definition
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6.1). By wteranon. f =,5(F, f). (SC), in case of =, is just the content of
Theorem 6.1, .
In addition, one can prove the following lemma,

LEMMA 6.7 |6.7]. [6.8]. Let F be a Grobner basis. Then B: = {[u]lu ts u
power product that ts not a mulnuple of the leading power product of any of
the polvnomials in € (s a linearly independent vecior space basis for the
vector space Klxy,. .. . x |[ldeal(F) (the residue class ring modulp
Ldeal( 1)),

Proof. Assume that there 1s a linear dependence

LT |“Lt R lH-.| i 0y fiil,l §]
e -
{o :ﬂ}rm:]j::ljm H. Then

foo= vy sy bogprily ¥ o oo Y wpsatpeldeal{B):

Henee., by Theorem 6.1, f must be reducible to O modulo £, However, fis
already m normal form because, by delimtion of B, non of the «, can be
reduced module £ Thus, f— Qi 6, = & v = ¢, =4, °

Bascd on the above lemmata. the following problems can be solved by
the following methods (for 5 use the normal form algorithm Normadl‘'orm
described in Alporithm 6.1);

PROBILEM 6.3,
Civen £
Find i canonical simphifier ¢ tor the congruence =, modulo Ideal(F).

METIIOD 6.1]6.12]. [6.9].
Computc & — GE(F).
Then the normal form algorithm S, £) is a canonical simplifier lor

=i

PRORBIEM 6.4,
Given I, f, g.
Decide, whether { —,¢.

METHOD 6.2 [6.9].
Compule (r; = (R,
Then: f = g1t S(GL f) = S0 g).




An Algorithmic Method in Polynomal Ideal Theory 203

PROBLEM 6.5,
Given £, a finite set of equations between generators of a commutative
semigroup and two words [, g,

Decide whether the equality f — gis denvable Trom £.

MLETHOD 6.3]6.19][6.23].
Letx,. ..., x, be the limtely many generators of the commutative semi-
group. Coneeive every equation p — g i E as a polynomial p — ¢
P S i
Compute (r: = (30

Then: { = g denvable from 2l S(G, ) — S(G, g)

PROBLIEM 0.0,
Given F, f.
Decide whether feldeal( £,

METHOD 6.4 [6.9],
Compute & — GIB(F).
Then: feldeal(F) it S{(Cr, 1) = (.

PROBLEM 6.7,
Given F |, F,:
Decide whether ldeal (/7))  ldeal(}.).

METHOD 6.5 [6.9]. [6.10].
Compute G, — GB(F,).
Then: Ideal(F,) C Ideal(F,) ift forall feF: S(G,. ) = 0,

PROBLEM 6.8,
Given F.

Find a linearly independent basis B for the vectorspace K[x, . . ., x,J/
Fdeal( ) (Lthe residue class ring modulo Ideal( F)) and,
for any two basis elements [u] and [v] m B find a lincar representation of
[2] - [v] in terms of the basis elements in B (i.c. find the "multiplication
tuble” for K{x,. . . .. x, J/Ideal{ F}).
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METHOD 6.6 [6.7].[6.8]
Compute G: = GB(F).

Take B: = {[u]|uis a power product that is not a multiple of the leading
power product of any of the polvnomials in G,

S(G, w - v)yields a linear representation of [¢] - [v].

PROBLEM 6.9,
Given F. f. h (where K[v,. .. .. x J/Idcal(F) is assumed o be hnite-
dimensional as a vector space ).

Find g, such that f - g = (il suchayg CXISIS).

MLTHOD 6.7,
Compute G~ GEF).

Represent fand A oas a linear combimnation of the elements m 8 (scc
Mcthod 6.0) and represent g as @ lincar combination with unknown
cocfficients. Thus. one gets a hnear system of equations tor the unknown
coefficients, which 1s solvable iff a solution g exists, e

Note, that all the above methods are "uniform’ in the sense that Fis 4
[ree parameter in the respective algorithms. Thus, for example, Method
6.3 18 1 solution to the uniform word problem for finitely generited
commutative semigroups (which is equivalent. for example, to the reach-
ability problem for reversible Petri nets). 1t has been proven [6.5], [6.6]
that the uniform word problem for finitely generated commutalive semi-
groups and, also. the uniform congruence problem for polvnomial idcals
in Olx,. .. ., x]isexponentially space complete. i.e. is an mtrinsically
hard problem. Method 6.2 shows that this problem cun be ‘casily’
reduced to the problem of constructing Grobner bases. Hence, the
problem of constructing Grobner bases must be an intrinsically hard
problem. For practice, this means that the worst case behavior ol the
Algorithm 6.2 and 6.3 may be extremely bad. However, this does not
mean that it is uscless to construct Grobner bascs, because in the par-
ticular cascs at hand, the algorithm may perform well (for example, it Lthe
input F is ‘nearly’ a Grobner basis). Also, 1f for a given F the Grébner
basis (& has been constructed. an infinite number of particulﬂralgmiihmic
problems of the kind *feldeal(£)?". ‘compute a representation of ] - [v]
etc. can be solved extremely easily.
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EXAMPLE 6.7, For Fasin Example 6.1, f: = xvisnotin ldeal(F}, because

S(GB(F). xy) = —x* + 1/2v = 0,

}"-—.lg'r = ¥y + __%_-""_-_1-_-..- - ]..':}- + 3¢* + 32x 3/2
because S(GB(F). g)isalso x* ¢+ 1/2x,
EXAMPLE 6.8, The following reversible Petri net

=
o .

i .| |

15 4 Petrt net with places a, b, ¢ f, s and three transinons thal may be
described by the rules
Q8% C5F,
by — ¢y
§— I,
where it is implicitly assumed that the “reverse rules
=
(5N — ay
etc. are also available. Let
F—las — &5, bs 5.5 — f}
Then: g configuration v is reachable from configuration witl v = For
example, @*bc'fs* 1s reachable [rom o®b*cs® iff @°bc'f's® =, @b s In
order to answer such questions. we first compute (w.r.t the total degree
ordering)
G: = GB(F) = {s — f. ¢ — bf. b*f — af}.

bt Pyt s reachable from @’b*es”. because the normal forms ol both
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markings are a’f* {with respect to ). whereas cs* 15 not reachable from
c*s. hecause their respective normal forms are distinet, nam ely hf*andaf.
EXAMPLE 6.9, For Fof Example 6.1,

B ={[1]. lx|. [¥*}

ix # lincarly independent vector basis for Klx. v]/1deal(F), see the corres-
ponding reduced Grobner basis G in Fxample 6.5,

Ix] - [¥2] = 3/20x] + 5/21xl.

recause

g
[
)

S(GBUF). x7') — R

LXAMPLE 6,10, As an application ol the construction ol mverses in
polynomial residuc class nngs, we luke the simplification of radical
cxpressions. For the lormulation ol the problem sce | 6.45] Consider, 1o
example, the problem of rationalizing the denominator ol

1

PR E

This problem may be solved by considering the given cxpression as an
element in O(0)[24%. 3], which 18 somorphic to Oy, vl
Ideal(y* — 2, v} — 3).1.c. the polynomial ring in the two indeterminates
¥,, ¥, over the rational function field Q(x) modulo the ideal gencrated by
the polynomiuls v¥ — 2 and yy -~ 3. The application of the algorithm
vields the equivalent Groebner-basis

. h L i gt

(_:-—'{__‘_L-l :.}:—.?f.
1.c. it is shown by the application ol the algorithm that the given hasis 1s
alrcady a Grocbner-basis. (In fact. in this simple case. this can be shown

by Criterion2 in Algorithm 6.3.) The residue classes of

i

2 'I.y

[IEReiE
15

LoV Vso ViVe ¥a,

form a vector space basis for Q(x)[y,. v, |/Ideal(y? - 2, y§ — 3). Inorder
to obtain the iverse of x + 2% + 3*% we merely have to solve the
cquation

(x + ¥, + ¥:)"

i L : P o e T
cay Foagy, @y, toagy,y, o), a.v.ys) = 1.
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By using the reductions vi — 2,y — . 3 this yields i finear system of

cquations n the unknowns . . . .. a, (by comparison ol coefficients at
the power products 1, v,. . . .. v, v ), whaose solution 15

a, = (x4 4 9+ e+ 18)/d.

a, = (—x' + 4x" + |8y — 4)/d,

a, — (3x' + 18x + 27)/d.
a, — (9% 0)/d,

a. = (—a' = Yx + d)/d.
G, — (2 =gy =Y.

whore o =6t 4+ 1B 4+ 12t 4 108y + T3,

0.0, APPLICATION. SOLVABILITY AND EXACT SOLUTION OF
SYSTLEMS OF ALGEBRALC EOUATIINS

I this section, it is shown how the algorithm for constructing Girgbner
Bases miy be used for the exact solution of svstems of algebraic equations
and questions about the solvability of such systems. The significance of
Grrabner bases lor prohlems in this category stems from the fact that, for
Grobner bases, the expheit construction of all the eliminanon wdeals 1s
extremely sumple. This s particalarly true for Grobner bases with respect
to the purcly lexicographical ordering ol power products. 1L s nol so casy
for Grobner basces with respect to other orderings, or example, the total
degree ordering. Sull. it is also reasonable o construct Grobner bascs
with respect to the total degree ordering tor solving algebraic systems
because, in extensive computational cxperiments, it turned out recently
[6.46] that the complexity of the algorithm for constructing Grobner
bases is extremely sensitive to a permutation of variables when the purely
lexicographical ordering is used, whereas 1t 1s nearly stable, when the
total degree ordering is used. Furthermore, the complexity with respect
to the total degree ordering is approximately in the same range as the
complexity with respect to the purely lexicographical ordering, when the
most favorable permutation of variables is used. Since, for a given
example, there 1s no a priori method to predict which permutation of the
variables will give the best computation times, i, therefore. is also a good
method to compute the Grobner basis with respect to the total degree
ordermg and then accept the disadvantage that the computation of the
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climination ideals is not so casy as in the casc of the purely lexicographical
ordering. In the sequel, we present the method with respect to both
orderings of power products,

LEMMA 6.8 [6.15]. Let F be a Grobner basis with respect 1o the purely
lexicographical ordering of power products. Without loss of generality fet
ws assume x| < x, <, . < pa, Then

Ideal(F) 0y Kx,. . . .. x| = Ideal(F M Klx,. .. . 1)

(for i — 1., ... n). where the ideal on the right hand side is formed in
f\|3{ - 1'.1. @

This lemma shows that the ‘i-th elimirtation ideal’ of Fis penerated by
just those polynomials in J* that depend only on the variables x, .. . x.

Proof. 11 feldeal(F) m Klx,. .. . x|, then [ can be ru!uu d oo 1)
modulo £ (use Theorem 6.1). "'r’\flT.h uﬂpvu 1o the purely lexicographical
ordering determined by x, <, x, <5, 0 S A this means that / can be
reduced to zero by subtraction of appropriate multiples b - w, - f, (fel l
such that LP(f) contams only indeterminates from the ‘\LL -{t : songohl
and, hence. all power products occurring in f contain only indeterminates
in this set. Also u can contain only indeterminates in this set. Adding all
thesc b, - u, - f,, ane gels a representalion of fof the lorm

=Z“-'“.

which shows that fis in Ideal(# M Klx,, . . .. x]). .

PROBLEM 6.10.
Given F.

Decide. whether I has a solution (i.e. whether thereexista,, . . ., ,in
an algebraic extension of K such that for all fin F: f(a,. . . ., a) =0}

METIIOD 6.8 [6.7], [6.8].
Compute G: — GB(F),
Thern: Fis unsolvable iff 1eG.

Proof. It is well known that F has 4 solution iff leldeal(F), see, lor
example. [6.47]. Now. Ideal(F) = Ideal(G) and leldeal( Gy iff 1 s
reducible w.r.t. ¢ (bv Theorem6.1). The latter is true iff leG.
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PROBLEM 6.1 1.
Given F.
Decide, whether F has finitely ader infinitely many solulions.

METHOD 6.9[6.7]. [6.8].

Compute G: — GEL(F).

Then: I' has finitely many solutions iff for all i (1 = [ = n}: a power product
of the form xh occurs among the leading power producty of the polvnomials

in (.
Proof. It is well known that /7 has finitely many solutions iff the vector
space Klx,, . . ., x, [/Tdeal(#) has finte vector space dimension, see, for

example, [6.47]. Because of Lemma 6.7 this s true iff the set # considered
i Lemma 6.7 18 hinite. 1 s easy o see from the definition of 73 that 13
Ite tl the condition stated in Mcethod 6.9 15 sansfied.

About the exact dimension of polvnomial ideals, one can say more than
is cxpressed above by using Grobner bases for computing the Halbent
function of polynomial idcals. Many details are given in [6.33 ], [6.34].

PROBLEM 6.12.
Given F (solvable, with finitely many solutions),
I'ind all the solutions of the system [

METHOD 6,10 [6.15].
Compute ¢: = GB(F) with respect to the purely lexicographical order-
ing of power products.

'The polynomials in (7, then. have there variables “separated™ in the
precise sense of Lemma 6.8 (G s ‘triangularized’). G contains exactly one
polynomial of K|x ] (actually. it is the polynomial in Ideal((7) M K[x ]
with smallest degrece).

The successive eliminarion can. then, be carried out by the following
process:

g : = the polynomialin G 7 Klx,
X = Ha)lpla) = O
fori: = lwon — ldo

-'Y_._J:=m
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forail(a,. ... a)eX do
I =gl = o, 5u )
geG M Kl . oox, | Klx, ... x]

p: = greatest common divisor ol the polynomials in #
{Actuallv, {p} = (7B(H): in the case of univanate
polynomials the algonthm 8 specializes to Euchd's
algorithm!)

X qn =X, A ey s wpapaipla) = O
Upon termination, X, will contain all the solutions, (Note that some of
the p may be |, i.e. the corresponding partial solution (a,, . . .. @) can
not be continued. ) °

O course. for the univariate polvnomials p occurring in the algonthm,
the ‘exact” determination of all their zeros may not be possible ellectvely.
However, ol course, this 1s not a deficiency of the particular method but
an intrinsic limitation of algorithmic solvahility of polynomial cquations,
Still, Mcthod 6.10 is an algorithmic method (using only arithmetic in K)
for completely reducing the multivariate problem to the univanate one.

Before we can give a method for Problem 6.11 that is based on Grobner
bases with respect to arbitrary ardenngs of power products we must solve
the tollowing problem,

PROBLEM 6,13,
Given a Grobner basis (7, such that (7, as a system of equations, has only
finitely many solutions,

Find the peldeal(¢;) M K[x,] with munimal degree.

METIIOD 6.11 0.8,

(In case the purely lexicographical ordering with x, <, &, <7, . <, x, 18
uscd, the solution of the problem is easy, see Method 6.10. In the other
cases proceed by the following method. )

Determine d,. . . .. d, by the following process, which involves the
solution of systems of linear equations i1 every step:
i =1

repeat p;; — S(G, x))

= ¢
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untif there exists (¢, . . ..d _ ) = (0. .. ., )suchthatd, - p, + ...+
d. ,-p, =10
g == ]

Then,p =d,+ 1 +d, " x, | o R

METHOD 6.12 [6.8] for solving Problem 6,12,
Compule (7; = GB(F).
The successive elimination can, then, be carried out by the following
[ITOCESS:
p: — the polynomual in Ideal(¢) 11 K[x | of mumimal degree
{see Method 6.11)

X,: = {(a)lpla) - 0O}

foric = lwn — 1do
X, =0
forafl(a,, . .., a)eX, do
M = delng cvvay Y06 1w gean

H: = GB(H)
p: — the polynomial in  Ideal(H) 1 Klx, ] of
minimal degree

X3 =X M - geadipla) =0}

I

Upon termination, X, will contain all the solutions. (Note, again, that
some of the p may be one. i.e. the corresponding partial solution (a,, . . ..
a,) can not be continued, Also, of course. one will store the Grobner basis
H corresponding to a particular partial solution (@, . . ., @) 4nd usc it
instead of G for construction of H corresponding to (a,, - . ., 4. ¢).)

EXAMPLE 6.11. The system F of Example 6.1 is solvable, because
(i = (FB(F) does not contain the polvnomial 1 (see Example 6.5).
The system
Fr =4y — 30 =%+ oy - vy + 2
is unsolvable. Let us use the total degree ordering in this example.

SPolynomial(x®y — &*.4% — ¥ + y) = 2y — &7 — ¥y >

e o Ll g B e N L
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Thus. we have to adjoin v* = ¥ to the basis.

SPolynopual(xy® — xy + 2,3 —y) = 2.

which can not be reduced further. Hence, we have to adjoin 1 to the basis.
T'his 1s the signal that Fis unsolvable.

EXAMPLE 6,12, F of Example 6.1 has only fimtely many solubions,
because x7 and y appear as leading power products m GE(F).

Fi=dxty— y* - ¥ + x5 - 3}

has infinitely many solutions. Actually, Fis already a Grobner basis (with
respeet to the total degree ordering of power products): cheek by apply-
ing Algorithm 6.3 which, m this casce, does notadjoin any new polynomial
to £. No power products of the form y' occurs among the leading power
products, Hence, / has infinitely many solutions.

EXAMPLE 6,13, For £ of Example 6.1,
GB(F) = {x' = 522 — 5/2x, ¥y + ¥ — 3{Zx — 3},
The solutions ¢ of the first (univariate!) polynomial are (. (5 + V65)/4.

(5 — V/65)/4. Each of these solutions can be continued Lo asolution (g, H)
of F by solving the second polynomial in the form y + «* — 3/2a 3 for

y. This yields (0, 3), ((5+ V63)4, —(3 + V65)/4), ((5 - V65)/4,
(—3 + \/65)/4) as the three solutions of the system.

EXAMPLE 6.14. The same example can also be treated by Method 6.12.
With respect to the total degree ordering. G: = GB(F) = {£,, £, &
where

gt =¥ +y— 3/2x =3,
go=xy —yt+tx+ 3
garo= ¥ = Sfdy— 4 —3f2
We now compute the normal forms of 1, x, x%, . .
S(G, 1) = 1,
- ) I
S(G. x) = x,
d, 1 + d, - x = 0has no non-tnvial solution.

has no non-trivial solution.

i |
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NG, %) = — y +32x + 3,

d, -1 +d - x+d, x*= 0hasnonon-trivial solution.
S(G, x%) = — 5/2y + 25/4x + 15/2,

d,- 1 +d, - x+d, - x*+d, x— 0lcads to the following
linear system of cquations:

— 5/2d, d, =@,
25/4d., + 3/2d, , ~ 1],
15/2d. + 34, + o, =1k
which has (after normalization d, — 1) the unique solution &, — 1,
d, = —5/2.d, = —5/2,d, = 0. This means thut
pr= % - 5fdx" 5(2x

is the polynomial in Ideal(() 11 K] v| with minimal degree (in accordance
to what we already have seen in Fxample 6.13), p has the three solutions
a, — U, a, = (5 4+ VoS4 a, — (58 — v/ 65)/4, Substitution of «, viekds

gla,) -y - 3,

gala) = —y A 3,

gilg) = ¥ — 52y =3
‘The Grobner basis corresponding to these three polynomials is

G =4y — 3}
By computing the normal lorms 1. v, v*, . . . and looking at the corres-
ponding systems of linear equations as above one deteets that

gt =3
is the polynomial in ldeal(G') M K[v] of minimal degree. O course, in
this particularly simple cxample, this can be scen immediately from the
Grobner hasis. Hence. (a,. b,) with b;: = 3 is the first solution of the
systemn. Sumilarly, substitution of a, vields

g(a) = v + (3 + V63)/4.

g (a,) = (1 + V635)/dy ~ (17 + V/63)/4,

g.(a,) = ¥ — 572y — (13 + /63)/2.
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The Grabner basis corresponding to these three polynomials is
G'—y + (34 VE3)4) and pti =y 4+ (3 + V65)/4
is the polynomial in tdeal{¢;"") M K[v]of minimal degree. Hence, (a,, b,)
with b,: — —(3 + V/63)/4 15 the second solution of the system.
Finally, substitution ol a, yields, again, three polynomials in K[y]
whose Grobner basis consists of the polynomial v + (3 — V63)/4.
Hence, the third selution s (a,, by with b0 = (-3 + V654

EXAMPLE 6,15 Chven Feonsisting of
4 4 xv' - 7+ 1/4,
2x =+ yrzot 12,
xg - 1i2Zx — ¥
the corresponding Grobner basis G (with respect o the purcly lexico-
graphical ordering. where 2 <, v <, x) consists ol
gh— 1425% + 116z + 1374z + 75/162% + 17182 +
b 133/2z 1574,
v — 19188/4972% + 318/4972°  4197/1988° —
251555/ 19882 — 481K37/198K +
+ 1407741/1988z — 297833/994,
x + 4638/497z% - T75/4972° + 211139767 +
+ 61031/19887" + 232833/3976z° — B5042/497z +
+ 144407/1988.
Applying Method 6.1 for solving G, one first had to find all the solutions
of the first polynomial, which is univanate. Each of these solution 4, can
be continued o lwo solutions (¢,. «,) of the second polynomial and cach
of these (a,, @,) can be continued 1o a solution (a,, a,, a,) ot the third
polynomial, The solutions of the first polynomial can be determined
systematically with any guaranteed precision, see [6.48]. It has not yet
heen studied systematically how, numerically, the precision of the
solutions of the first equation must be fixed in order W guarantee a given

precision for all the solutions of the last equation. This is a ncar-at-hand
impaortant problem for future study.
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OXAMPLE 6,16, Sometimes, it is necessary to solve systems of algebraic
equations with ‘symbolic” coefficients, For example consider F consisting,
of

fix =%, + (b = d}:

L —x,+a, tox, X, + (—a—g¢- d),
Fir = xgm, + x4 xay + (- ad — ac —ad);
i = xxx; 4 {—acd).

where x, <, x, =, x, <, x,are the polynomial indeterminates and a, b,oe o d
arc ‘symbolic’ cocfficients. One might like to solve thissystem for x,, v,
x,. x,. This is nothing else then saying that one concerves the polynomials
as clementsin Q(a, b, o, difx,, . . .. x,|. where Qla, b, ¢, d)is the field ol
rational functions over (. Qur algorithm works over arbitrary fields and,
hence, i particular also over Qa, b, ¢ d). Some steps of Algorithm 6.3
are:

Reduction ol {, modulo /, (by subtraction of £, from f, and normalizing
the coethicient ol the lcading power product to 1) vields

flr-dptx, +x+ [—a—b €1, maybe canceled).

Reduction of f, modulo £ yields

fir = x, + (b — d) (f. may be canceled).

Reduction of {, madula the other polynomials (starting with the sublrac-
tion of x, - {1 and. then executing several other reduction steps) yields
=% ¥, —fe+2h 4+ & =)
—{a+b+e)x, + (ub + ac v b+ bo— bd)
(f, may be canceled).
Reduction of [, vields
flo=xx, +x2—H{a+b+e)x, — acdf(b d)(cancelf,).
(Note here that division in (He, b, ¢, d) has to be performed. [ can now
be further reduced (usimng () vielding )
fily =32 - (a +2b Fo=djayg— a5+ (@+b +0)x; +

+ (ah* + abe — abd + acd + bB* + bc —
— 28Pd — bod + BdEM(b — d).
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Cancel f'. No further reduction is possible. Therefore, we consider
SPolynomial(f". ) = x, - fi" — x, 1

Reduction of this polvnomial vields
fir = x, + (B* = 2bd + &)/(acd) 7 +

+ (abe + abd — ad® + bed — ed®)/{acd) x, + (=b 1 d).
Now. again, a number ol reductions are possible yiclding. finally,
o= &, 4 (b1 2bd = ) acd) x4
f (— abe — abd +-£m‘:r' boadt — bed + cd®) (acd) v,
+ 1 “u e ) | .I
g =X, + (b — d),
g — b faetad = cdyidh——d) X7+
b {aed——etd—ed b — 2bd v dF) x|
T £97) 4 (@BE(BY — 3btd + 3bd ),

g0 = x, + (b = 2bd + &)acd) x| +
+ (abe + abd —lad* + bed — cd*)acd) x, + (— b+ d).
g i e , . ,
By Criterionl. the reduction ol the S-polynomials ol these polynomial
may be skipped. Hence, (51 = {g,. . . .. g,;is the reduced Grobner basis.

By Mcthods 6.8 and 6.9 1t can be scen that the system has finitely many
solutions. The system must contain a univariate polynomial in Q(a, b, ¢,
d)lx,|: g,. A particular solution of g, 18

a.: = (—ad)/(b  d),

[
which can be extended to a solution (a,. a,. u,. a,) of the enlirc system,
where
@. ={ub ¥ b*~ bd)fibh - ed).
i = C,

@ = —b -+

Dividing g, by (x, — a,) one gels a guadratic polynomial whose solulions
can be exlended to solutions ol the cntire system in the same wdy as

betore.




An Algorithmic Method in Polvnomial Ideal Theory 217

6.7, APPLICATION: SOLUTION OF LINEAR HOMOGENFEQUS
EOUATIONS WITH POLYNOMIAL COLFVICIENTS

In this scction, it is shown how the algorithm for constructing Grobner
bases may be used for determining & finite set of generators for all the
polynomial solutions ol a linear homogeneous equation with polynomial
cocfficients. Before the method can be deseribed, it must be shown how
one can find a linear representation of the palynomials i a basis Fin
terms of the polvnomals in il corresponding Grohner basts ¢ and vice
VEISA,

PROBLIM . 14,
Citven a Grobner basis ¢/ — (g, - . .. g randsome [

Findh,; . : . h suchthatf = o, « g, + o o+ by, g tand L0k, - 7))
<. LP{f)fori — 1.....m),

METHODY 613,

Roughly. reduce f 1o zero modulo G and collect the multiples ol the g,
necessary in the reduction. In more detail: take Algonthm 6.1 (the
normal form algorithm) and insert instructions that collect the multiples
ol the g used i the reduction,

hy — . o=h,:—10

while f =+ O do
choose i, b, wsuch thatf—:rE oande LP(g)
is maximal w.r.t. <, o '

[

F—

g =mdie= baagpe g

h:=h + b u

PFROBLEM 6. 13,

Given F = {f,.. . . fhand & = lg.. . .. g.tsuchthat G — GB(F).
Find ¥ such thal ¥ is a matrix of polvnomials with s rows and |

columns and

f - Z T (forj = 1,.. ...

METHOL 6. 14,
The j-th column of Y consists of £, . . .. A that are obtained by the
Method 613 for the representation of f (f = 1. . .. ]).
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PRORBIEM 6. 16,
Criven: & —fix sy fik

Find & - {g,. . . .. g, and X such that (; = (7B(F), X 15 a matrix of
polynomials with { rows and m columns and

g = )_ Lo & (lori = 1. .. .o,
Gn

METHOD 6. 15,

Augment Algorithm 6.2 or Algorithm 6.3 by instructions that keep track
of the multiples of f, that are used m the reduction of those polynomials
whose normal form is adjomed to the basis & (compare Method 6,13)

PROBLEM 6,17,
Ciiven a reduced Grobner basis G = {g,, . . 2.0

Find a matrix £ with m columns such that the fimtely many rows ol £
constitute a sct of gencrators for the linear homogencous cquation

By @t wn w bl g =00 wa G e By s ]

H

1:¢; R shouldconsist.of m-tupels (&, ., o0 o k& 3 s ke o5« K 5)
ot polynomials such that

koy<g, t ootk g=00ri=1,.,.7)
and lorall (.. . . .. A ) torwhich '
hyvg t ooz ot hyog, =0
there exist polynomials p . . . .. p_such that
(s =2 acll)i=
= PR e el BT e S S pe e M

METHOR 6. 16[6.14).[6.18]. [6.21]. [6.28]. [6.33]. [6.34].
R: = empty matrix

Jorallpairs (i, il =i <) 1)

Consider #1: = SPolynomial(g, ) = «, - g — (cfc) - u, * g, where ¢
is the leading coetficients ol g . issuch that s, - ¢, isthe LOM(s , 5,), 5,18
the leadimg power product ol g (i = 1, 2).

Reduce 4 to zero modulo (7 and store the multiples of theg,, . . .. &
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necessary for this reduction. This gives a representation ol /2 ot the form
h =k +g +...+k g (compare Method 6.131).
Add (.. n. o —=(efe) . .. ) - koo k) as last Tow n K
[ -
position | position |

PROBLEM 618,
Given IF = {f,. . . ., fif arbitrary.

Find a matrix O with { columns such that the finitely many rows of {J
constitute 2 set of generators for the linear hamogencous equation

'I:; .-.l||r‘ } e + Iil]' '.|||I = '::I{;II. P i hll- E. h|-{|l J L Tr.'.i:l'
METHOD 617 [0, 15],

By Mcthod 6.15, compute (¢ = GB(F) ~ {g,. . . g, and a matrix X
with / rows and m columns such that

g— Y foX., (fori— li:sspm).

A
| & %4

By Method 6. 14, compute a matrix ¥ with m rows and f columns such that

Ji= Z, I (forj = L sud)

{=2 1 BT M

By Method 6. 16 compute a matrix & with s calumns such that the r rows
of R constitute a set of generators tor the linear homogencous equations

B v +h, g, =1
Then,
{f— Y- X7
EX = . s (a block matrix)
R-X

(/ is the unit matrix with / rows und columns, X" is the transposed of X).

EXAMPIE 6.17.
Let F: = {f,, f.. [.}- where

foo=xy — xv, foi= =%
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We use the total degree ordening. First. (71 = (7B(F) has to be computed
with simultaneous determination of the matrix AL We start with a redue-
tion of

The representation
fF =({=x)f &0 .+ 1-F
must be stored. Then we reduce the S-polyvnomal ol f, and /.
h: = SPolynonual(f.. f.) — v - f, - L.

h+f, f,=0=:f.

If {, was not zero, the following representation of f in terms ol f f, and f,
could be obtained trom this reduction:

fo=xaf, ks fordy =+ X5 F

= [y + .1']-,r'| + = ek V) ik (=1 L

This example ol @ reduction should sutlice to demonstrate how the linear
representations of the new polynomials in G in terms of the polynomiils
in £ can be obtained in genceral. Since, however, f is zero, nothing his 1
be adjoined to G in this stage of the algorithm. The S -polynomuil ol £ and
1 and also the S-polvnomial of f, and {7 reduce 1o zero. Hence,

(f: = 18, 8 8-
where

gi=f.gi=fei=2 —x

1s the reduccd Grabner basis corresponding to £ and

| { x
K=l '8 1 () )

{ [ |

15 Lhe lransformation matrnx,

The malrix Y for the reverse lranstormation (i.e. the linear repre-
sentation of the elements ol Fin lerms of the clements in ) is obtained
by Method 6.14:

[, reduces o zero modulo G by subtraction of g,.

£, reduces to zero modulo & by subtraction of g..

[ reduces to zero modulo & by subtractionof x - g and g
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1 (1 A
Yi=(1 ] {1).
() () I

For getting R, we have ta reduce the S-polynomials ol the pairs(g,.g)

Hence,

h, .: = SPolynomial(g,. 8,) = v & X7 &
Bio. 1 oge—=gy=

hy 0= SPolynomial(g,. g,) — ¥ - g — ¥ &,
fiy.e — A

M. o — SPolynomial(g,. g) s — W B
T K L R [ G R . ot ¥

From the first reduction:
MiE g - FnBet B =T
Oy, + o v Leg+ (=1)eg =0
Hence, the first row in K s the solution (the syzypy’)
{v. —x + 1. 1}

The other rows of K are obtained analogously:

(V) (—x + 1) ( L)
R =| (x) (L1} ¢ 53 .
{—v) [ = 1) [—vF + 2+ 1)

Finally, the computation of @ requires only some matrix multiplications:
First. we note that Y- X' — [in this particular example. Henee,

(i) 141 ()
(i (1)) ((h
() (00} (1))
{v + x) (—x + 1) (—1)
(x + xyv) {0) (—v)

[_U.;'. - ¥ — Y “,_..' B ﬂ—'_‘r': + 1 1}



222 Chapter &

OM coursc. the first three rows can be canceled in this particuliar example.
the last three rows constitute a complete set of generators for the
solutions (h,. k. b)) to the equation by < f + k- f, 8 By - fy = O .

For Klx,. ..., x, Frmodules. as for example the module of all the
solutions to the above linear equation. u notion of "Grabner bases” and
‘reduced Grobner bases’ can be introduced. sce [6.28], [6.33], [6.34].
Then the matrices  can be reduced 1o @ minimal set of generators and
the construction can be carmed over w abtain the whole “cham ol
syzygics' or the ‘free resolution” ol a polynomial ideal

AH GROENER BASES FPOR POTYNOMIAT TDEALS OVLER TIHI
INTLGLRS

The concept of Grobner bases, the essential properties of Grabner bascs
and the algorithm for constructing Grobner buases as reflected by
Delinitions 6.2, 6.3, 6.5, 6.6, Lemmata 6.1, 6.2, 6.3, Theorems 6.1, 6.2,
6.3, 6.4, Algorithms 6.1, 6.2, 6.3 and most ol the applications in Sections
6.5 and 6.7 can be carried over to polynomuuldeals in Zlx,, o -, x, Jand,
in lact, to ideals in certain other rings. sce [6.30]. However, a subtle
analysis of the notion of reduction and. more essentially, of the notion ol
‘S-polynomial” must be carried out for this purpose. We can not go nto
the details of the theoretical loundations of the algorithm lor integer
polynomials. Rather, we explan the steps of the generalized algorithm m
the style of the preceding sections.

The prohlem of deciding ideal membership foridealsin Z[x,, . . ., x, [,
the simplitication prohlem for these ideals and related problems have a
long and interesting lustory, For some of the details of the history, see
[6.49]. The lirst general solution of both the simplilication and (hence,)
the membership problem, was given by Lauer [6,11] based on the
Grabner bases approach but needing two dillerent types of “S-poly-
nomials’. Other solutions based on the Grobner bases approach, but
destroying the simple structure of the algorithm, were given in [6.15],
[6.18],[6.21]. The first general solution based on a different approach was
given only in [6.49], Our own solution [6.30]. which will be presented
here, scems to be much more concise than the solutions given so far and
leaves the simple structure of the algorithm untouched.

In addition to some ordering of the power products, in the case of
Zlx,. . . ..x,], one also must fix some ordering of the integers, for
example, 0= -1 <1< 20202 =3 305 00 {An axiomatic
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characterization of the admissible orderings is possible bul will not be
usedd in this paper). The crucial dilference, then, to the case of paly-
nomials with field coefficients is that. i the definition of “reduction’
(Defintion 6.1) itis not possible to totally cancel Coethicient(g, (), where
t = u - LeadingPowerProduct(f). because the element Coellicient(g, £)/
|eadingCoefhicient(f). in general. will not be i Z. In the lollowing, the
typed variables a, b, ¢, d will be used for integers instend ol held clements,

f, g Bk, p,ogowill be used for polvnomals in Zlx, .oooox Joand KOG tor

nite sets i Zlx .. .ooox, ],

DEFINITION 6.8 [6.30],
g —, h (read: g reduces o b modulo F7)ff there exists fek, b and u such
thit

g and A g — b [
g —,,, ,(read: *g s reducible using f, b, w')
a+ 0 and a— b ¢+ a,
where,
a — Cocfficient(g, « - LeadingPowerProduct(f)), and

¢ — LeadingCoellicient())

EXAMPLL 6.18. The b in Definition 6.8 can be determined by the tollow-
g algorithm Mia, ), for example:

Mla, ¢); = if wand ¢ have the same sign
then if a — ¢ <-athen M(a ¢ ¢) + 1
elve U
else ifu + ¢ << athen M{a + ¢ ¢) = 1
elye U
In practice, M may be realized by a modified integer division. ®

The definitions, theorems, algorithms and lemmata of Section 2 can
now be carried over without anv change: In particular, we have again the
algorithm NormalForm that produces a normal form for every poly-
nomial. we have the notwon of a Grobner basis, the characterizations
(GB2) and (GB3) of Grobner bases and the connection between reduc-

tion and ideal congruence stated in Lemma 6.3, For the formulation ol
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the algorithm that constructs Grabner bases. however, we need some
additional preparation.

DEFINITION 6.9 [0.30].

I'he feast commaon reducible of ¢ o is delimed as tollows

LCR(c,. ¢,); = max(l.(c,). L(c,)) (max taken w.r.t. <),

where
LAc) = dfle 2. if e iveven
(abs(c) + 1)/2, ileasodd.
DEFINITION 610 [6.30].
i and p, constitute the critical pair con csponding to f and /il
po—a U Mla, ) u - fowhere
U = LM 8,0,
e LCRE, &)

s, — LeadingPowerProduct(f ),
¢ = LeadingCoeffictentif,),
w issuch thatu, - & =t/ (i = L, 2). @

The dilference of the two components ol 4 critical pair 1s the analogue
(o the S-polynomial in the case of field coetheients, We formulate the
algorithm for eritical pairs instead of S-polynomials, because, at present,
we do not have a formal proof that, in tact, the algorithm below is correct
with S-polvnomials instead of critical pairs, although it s very hkely.
Also. we would like to introduce the concept of a critical pair to the
reader. because this concept may be applied to domains without any
operation of subtraction also. Sec [6.3] for an introduction to ‘eritical-
pair/completion” ilgornithms,

EXAMPLE 6.19.

0, —1,1. 2.2, -3.3, —4, 4 are the values of L for the arguments 0, 1, 2,

3,4.5, 6,78 respectively, and LCR(3. 1) = -2, LCR(7, 8) — 4. Note

that L{c) = L(—c). ®
The main theorem of Section 3, which gives an algorithmic chariacter-

ization of Grobner bases, and the muin algorithm for the main problem

can now be carried over in the following lorm:
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THEOREM 6.6 (Buchberger [6.30]).
Let § be an arbitrary normal lorm aleonthm, The tollowing properties

are equivalent:
(GB1) F is a Grobner basis,
(GB3) Forallf,. fLel.p,. p.:

il prand g, constitute the critical pair corresponding Lo /. £
then SUF f) = SCE L)

PROBLEM 1Y,
Chiven I
Iand €&, such that ldeal(#) — Ideal(() and €7 is a Grobner basis.
ALGORITIHM 6.4 {Buchberger [ 6.30]) for solving Problem 6. 1Y
{5 M
B: = {f., fllf,. f.G)

while B + O do

U, it - —apairin 8

(p,, p.): — theeritical pair corresponding to f,. f.
(pl piYi— (S0G. B SUE 7))

A e ([

tf ' F Othen
f: = B U e i'lgel)
G: =G U kYL -
Also the varous improvements of the algorithm, the notion ol reduced
Grobner bases and the theorem on the uniqueness ol the reduced
Girdibner bases (Section 3) can be carricd over. We do not expheitly state

the details.

EXAMPLE 6.20. Take F as in Example 6.1. Note that the leading cocffi-
cients of the polynomials in F can not be simply set to | by dividing the whole
polvnomial: the ideal would change! We fix the “purely lexicographical’
ordering for the bivariate power products with the ordering x <2 v of the
(wo indelerminates. In order to ‘complete” Fby Algornithm 6.4, one has to
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consider the “critical pawrs™ of polynomials in F. We start with f,, fi:
LC(f) =2, LO(f,) = 1. LCR(2. 1) = L. LOM(LP(L), LP(f)) = Xy,
Thus. x*y is the monomial that has to be reduced i one step modulo f,
and [, in order to get the eritical pair carresponding 1o /.. f,. The poly-
nomial ¥*y mav be reduced by f, in the following way:

y—, -~y tay+y =6+ 207 | =3 =p.

p mav be lurther reduced modulo

r

2 Xy +tay+y— 3+ 4= 1 3x T =:p.

p'is irreducible with respeet to £ The polynomial oy may also be
reduced by £

Xy =, Fy— Jiet — ¢ — .

A
Also g s irreducible with respect 1o /7 p' + ¢ and, hence,
fo=p' —g—2F t xy +ty+ 60+ 3¢ -3
must be adjoined to the biass,

Similarly. one now has 1o consider the next eritical patr, or example,
the one corresponding to f,, f,: — 2%y s the least common reducible” of

f, and f,. which has to be reduced in one step modulo f, and f,. yiclding

pr=x'y + 2xy + v+ 9 + 5¢ — 3 and

gr=—xy+ p 4+ 6t + Ix— 3,
respectively. Reduction o normal forms vields

plo= xv + xy + 32 + 2x(using f,) and

Gglr=xy+ 3+ 6+ 3w =3

Thus. the difference of these two polvnomials must be adjoined to the
basis:

fi= xiy—v—x—x+3
Similarly, the consideration of the critical pair of f, and f; leads 10
s S e i i R

The consideration of the critical pair of £, and f, leads to
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Finally. the consideration of the eritical pair of £, and f. leads 1o

£z = Byt = Gy

The consideration of all the other critical parrs leads Lo dentical normal
forms. Henee. G: — {f,. . . .. f.}is a Grobner basis corresponding to £
Actually. the consideration of most of these critical pinrs can be avoided a
prior by the improved version of the algarithm, Furthermore, some of the
polynomials in the basis can alsa be canceled in the course of the
algorithm. Reduction of all the £ modulo (7 — {f leaves us with the
reduced Grobner basis G — {f. f., f.r. where

fir= —xy = y— Z* + 20 + 3

Note that the reduced Grobner bases corresponding to Foare different
depending on whetherwe wark in Qfx, oo ox Jorm Zx o x, L

OH.Y OTHER APPLICATIONS

A number ol other appheations of Grabner bases have been reported
the literature: decision. whether a given polynomial ideal s principal
[6.8], Hilbert functions of polynomial ideals [6.7], [6.28]. [6.33]. [6.34].
Lasker-Nocther decomposition of polynomial ideals [6.13]. frec resolu-
tions of polynomial ideals and svzyvgies (o generalization of the above
linear equation problem with polvnomial coellicients) [6.28], |6. 34],
multidimensional integration [6.30] and bijective cnumcration of poly-
nomial ideals, The latter problem asks for an algorithm that enumerates
bases for ideals in Rlx,, . . ., x,] (R & ring) such that every ideal is
represented exactly once mn the enumeration. By Theorem 6.4, 1t is clear
that a bijective enumeration of all ideals in Kjx .. . ., x,Jand Z[x, . . .
x, | can be achieved by bijectively enumerating all Grobner bases in these
polynomial rings. which is casily possible (see [6,37]). The applicability of
Grobner bases to other problems is investigated. for example, to the
construction of Hensel codes for rational functions [6.51].

6.10. SPECIALIZATIONS, GENERALIZATIONS. IMPI EMENTATIONS,
COMPLEXTTY

The algorithm for constructing Grihner bases speciafizes 10 Gauly’
algorithm in case /7 consists only of linear polynomials. it specializes to
Euclid’s algorithm in case F consists only ol univariate polynomials, it
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specializes to an algorithm for the word problem for linitcly generated
commutative semigroups in case F consists only of polynomials of the
form u — v (differences of power products) [6.19], [6.23]. The algorithm
for Zlx,.. . ..x ]specalizes to Euchd's algonthm in Zincase n — 0, [6.30],

The algorithm has been generalized lor polynomials over various rngs,
in particular, over Z [6.11], [6.15]. [6.18]. [6.21]. [6.30], and for associ-
ative algebras [A.17]. The Knuth-Bendix generalization [6.38] was
already discussed in the intreduction. Recently, an interesting acneraliz-
ation was also undertaken by G, Bauer [6.24]. who gives an axiomatic
definition of the coneept of ‘substitution” and is able to deline the notion
of ‘critical pair” i this general contexi

The algonthm has been implemented various hmes, [6.7], [6.13],
[6.16], [6.21]. [6.16]is an implementauon in SAC 1. R. Gebauer and 1.
Kredel [6.46], Univ. of Heidelberg, F.R.G ., work on the implementation
of the algorithm in SAC 2, which will be included i the next release ol
SAC-2 {announced for December [083), SAC-2 15 a large soltwarc
system for symbalic computation in algebraie domains, in particular
polynomial domamns, [t s wrntten in the ALDES lanpuage, whose com-
piler is written in FORTRAN, Thus, SAC-21s installed easily whenever
FORTRAN is available, G, E. Collins (University ol Wisconsin-
Madison, Departments of Computer Science) and R. Loos (Universitat
Karlsruhe. Institut fir Informatik 1) are the authors ol the SAC-2 system,
The implementation of aur algorithm i SAC-2 by R, Gebauver and 1L
Kredel sives the user the choice to use various orderings of power
products, to work over various coctlicient domaims (including the hicld ol
rational functions over () and Lo communicate in convenient input and
output format with the computer.

Various analyses ol the complexiy of the algorithm have been carried
out: [6.7]. [6.19]. [6.29]. [6.6]. [6.31]. Summarizing, these analyses show
that the degrees ol the polynomials in the reduced Grobner bases, with
probability 1. stay below o, + ...+ d, —n + 1. where the d are the
degrees ol the input polvnomials. In exceptional cases. this bound does
not hold. Many theoretical questions remain open, Tyvpical running times
in SAC 2 onan IBM 370/168: several seconds for I'with 3 polynomials of
degree 31in 3variables, 20 sec for the example in [6.15] with 6 polynomuals
of degree 3 in 6 variables. However. this computing Lime may drastically
change if a different permutation of the variables and purely lexico-
eraphical ordering is used, For the worst permutation, the compitation
was ay high as 10 000 sec. whereas in the total degree ordering the
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computation time lor the same example was always in the range 20-30sec
independent of the permutation of variables. See Section 6 for the con-
sequences of these obsevations,
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