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We present an algorithm to decide whether a homogeneous linear partial difference
equation with constant coefficients provides an unfalsified model for a finite set of ob-
servations, which consist in multiindexed signals, known on a finite subset of Nn

. To
this aim we introduce the concept of “generalized term order” and extend the theory of
Gröbner bases accordingly.
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1. Introduction and Motivation

The modelling problem is a very important issue in system and control theory. It con-
sists in finding a mathematical description (the model) of a phenomenon starting from
measured data, making the best possible use of the information contained in the data.
A modelling procedure can be simply considered as an algorithm that, within a certain
model class, selects the model which provides the best fitting to the observed data. A
large number of modelling procedures have been proposed in the literature. They usually
differ in the nature of the data which are considered and in the model class in which
the model is chosen. An important distinction that can be done is between procedures
which work with perfectly known data and procedures which deal with noisy and impre-
cise data. The first class of procedures is interesting mainly from the theoretical point of
view. However, the development of such procedures is an important preliminary step in
order to deal with more realistic situations.

In this paper we make the following assumptions. The data consist in multiindexed
signals (for instance space-time trajectories) that can be modelled by functions from Nn

to Kq (where K is a field) and they are known only on a subset ∆ of Nn. We want
to model these data by homogeneous linear partial difference equations with constant
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coefficients, i.e. equations like∑
(i1,...,in)∈S

Ri1,...,inw(t1 + i1, . . . , tn + in) = 0,

where the unknown w ∈ (Kq)N
n

is a function from Nn to Kq, S is a finite subset of Nn,
and, for each (i1, . . . , in) ∈ S, Ri1,...,in ∈ Kl×q is an l× q−matrix with entries in the field
K.

The set of solutions of this difference equation is the kernel ker(R) of the K-linear map
R from (Kq)N

n

to (Kl)N
n

defined as follows: R is the l × q−matrix∑
(i1,...,in)∈S

Ri1,...,inx
i1
1 · · ·xinn ∈ K[x1, . . . , xn]l×q

and it specifies a K-linear map by defining

(Rw)(t1, . . . , tn) : =
∑

(i1,...,in)∈S
Ri1,...,inw(t1 + i1, . . . , tn + in) ,

for all w ∈ (Kq)N
n

and (t1, . . . , tn) ∈ Nn.
In this setup, given the observations v1, . . . , vm ∈ (Kq)∆, a homogeneous linear partial

difference equation Rw = 0, R ∈ K[x1, . . . , xn]l×q, is said to be an unfalsified model of
v1, . . . , vm, if there exist w1, . . . , wm ∈ ker(R) such that w1|∆ = v1, . . . , wm|∆ = vm. In
this case the model fits exactly the observations v1, . . . , vm and therefore the problem of
finding an unfalsified model is called exact modelling problem. Such a problem, that is a
very classical one in the 1D case, i.e. when n = 1 (Willems, 1986; Heij, 1992; Antoulas and
Willems, 1991), has been treated in the multidimensional case in Oberst (1993), Zampieri
(1994) and Sakata (1988), where Gröbner bases have been heavily used to obtain efficient
modelling procedures. Gröbner bases were first introduced by Buchberger in 1965. We
refer the reader to Buchberger (1985); Becker and Weispfenning (1993) for a detailed
exposition of Gröbner basis theory.

Given a difference equation Rw = 0, R ∈ K[x1, . . . , xn]l×q, and a set of observations
v1, . . . , vm ∈ (Kq)∆, ∆ ⊆ Nn, it is important to have a procedure to decide whether the
given difference equation provides an unfalsified model for the data v1, . . . , vm. Such a
procedure can be easily obtained appealing to the theory of Gröbner bases (Zampieri,
1994). However, the applicability of this procedure is restricted to situations in which
observations have a support ∆ ⊂ Nn with special structure.

Gröbner bases are defined with respect to a given term order <, i.e. a total order on the
monoid of power-products inK[x1, . . . , xn] which fulfills the following two requirements: 1
is the smallest element and r < s implies rt < st, for all power-products r, s, t. The
above mentioned procedure can be applied when ∆ has the following property: a ∈ ∆
and xb < xa implies b ∈ ∆.

It is clear that the class of subsets ∆ satisfying the previous requirements is very
small: for instance for n = 2 the subsets like rectangles, that are very commonly used
in the applications, are not included in this class. This motivates the need to extend
Gröbner basis theory to a class of more general total orders. In the next two sections we
will propose an extension of this theory that seems to cover many cases of the common
interest. In the last section we will present the procedure for checking whether a model
is unfalsified and we will show explicitly how Gröbner bases can be used in this setup.

For other generalizations of Gröbner bases and other approaches to partial difference
equations see Buchberger (1984), Petkovsek (1990) and Stifter (1988).
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2. Generalized Term Orders

Let K be a field, K[x]:= K[x1, . . . , xn] the commutative polynomial ring over K and
T : = {xi := xi11 x

i2
2 . . . xinn | i ∈ Nn } the monoid of power-products (or terms) in K[x].

The monoid T is isomorphic to Nn (with componentwise addition). Let Mon(T,Q) be

the set of monoid-homomorphisms from T to (Q,+). Mon(T,Q) is in a natural way a
n-dimensional vector space over Q.

For subsets M ⊆Mon(T,Q), N ⊆ T we define

M∗ := { t ∈ T | for all ϕ ∈M, ϕ(t) ≥ 0 } ,

N∗ := {ϕ ∈Mon(T,Q) | for all t ∈ N, ϕ(t) ≥ 0 }.

Clearly, M∗ is a saturated submonoid of T (i.e.: 1 ∈ M∗; s ∈ M and t ∈ M∗ imply
st ∈M∗; n ∈ N>0 and tn ∈M∗ imply t ∈M∗), and N∗ is a convex cone in Mon(T,Q).
If M is finite, then M∗ is a finitely generated monoid (Gordan’s Lemma).

Conversely, if N is a finitely generated saturated submonoid of T , then there exists a
finite subset M of Mon(T,Q) such that N = M∗. Then we say “N is defined by M”. We
denote by N◦ the set { t ∈ N | for all ϕ ∈ N∗ \ {0}, ϕ(t) > 0 } (the “interior of N”), by
N⊥ the rational vector space {ϕ ∈Mon(T,Q) | for all t ∈ N, ϕ(t) = 0 }, and by rk(N)
(“rank of N”) the codimension of N⊥ in Mon(T,Q) (i.e.: rk(N) = n− dimQ(N⊥) ). It
is easy to verify that rk(N) = n if and only if the interior of N is not empty.

Example 2.1. Let n = 2 . Denote by yi the monoid-homomorphism from T to Q
defined by yi(xj) = δij , 1 ≤ i, j ≤ 2. Then { y1, y2 } is a Q-basis of Mon(T,Q).
Let N be the monoid generated by x2

1x2 and x1x
2
2. Then N is not saturated, since

x3
1x

3
2 = (x2

1x2)(x1x
2
2) ∈ N , but x1x2 6∈ N .

The convex cone M : = N∗ is generated by 2y1 − y2 and 2y2 − y1. Its rank is 2. M∗ is
the saturated monoid {xi1x

j
2 | 2i− j ≥ 0, 2j− i ≥ 0 } and its minimal set of generators is

{x1x2, x
2
1x2, x1x

2
2 } .

Definition 2.1. A “conic decomposition” of T is a finite family (Ti)i∈I of finitely
generated saturated submonoids of T of rank n, such that⋃

i∈I
Ti = T

and

rk(Ti ∩ Tj) < n, for all i, j ∈ I with i 6= j.

Example 2.2. Let n = 2 , consider N2 as subset of Q2, and choose

z1 := (1, 0), z2 = (z′2, z
′′
2 ), . . . , zk = (z′k, z

′′
k ), zk+1 := (0, 1) ∈ N2

such that z′i/z
′′
i > z′i+1/z

′′
i+1, 1 < i ≤ k. Let Ti := {xj11 x

j2
2 |(j1, j2) is an element of the con-

vex cone generated by zi and zi+1}, 1 ≤ i ≤ k. Then (Ti)1≤i≤k is a conic decomposition
of T .

Definition 2.2. Let (Ti)i∈I be a conic decomposition of T . A “generalized term order”
for (Ti)i∈I is a total order on T such that

(i) 1 is the smallest element in T ,
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(ii) r < s implies rt < st, for all i ∈ I , s, t ∈ Ti, and r ∈ T .

Remark 2.1. If |I| = 1, then T is a (trivial) conic decomposition of T . In this case a
generalized term order is a term order.

Example 2.3. Let u ∈ (N>0)n and consider the map

φ : Nn −→ Q , a 7−→ max
1≤i≤n

(
ai
ui

) .

Define
Tj := {xa | max

1≤i≤n
(
ai
ui

) =
aj
uj
}, 1 ≤ j ≤ n .

Obviously , (T1, . . . , Tn) is a conic decomposition of T . (For n = 2 , we have T1 =
{xi11 xi22 | i1u2 ≥ i2u1 } and T2 = {xi11 xi22 | i1u2 ≤ i2u1 }). Let <T be a term order on T .
For a, b ∈ Nn we define

xa < xb if and only if φ(a) < φ(b) or (φ(a) = φ(b) and xa <T xb).

It is easy to verify that < is a generalized term order for (T1, . . . , Tn).
Note that xa < xu if and only if a1 ≤ u1, . . . , an ≤ un and a 6= u. (If a1 ≤

u1, . . . , an ≤ un and a 6= u, then φ(a) ≤ φ(u) = 1 and xa <T xu, hence xa < xu.
If xa < xu, then φ(a) ≤ φ(u) = 1, hence a1 ≤ u1, . . . , an ≤ un). In other words,
{ a ∈ Nn |xa ≤ xu } is the set of integer points in the parallelotope generated by
(u1, 0, . . . , 0), (0, u2, 0, . . . , 0), . . . , (0, . . . , 0, un).

If n ≥ 2, then the generalized term order defined above is not a term order. Actually,
suppose that < is a term order. Then consider a := (u1 − 1, u2, u3, . . . , un) and b :=
(u1, u2 − 1, u3, . . . , un). If x1 < x2, then x1x

b < x2x
b = xu. If x1 > x2, then x2x

a <
x1x

a = xu. Hence either x1x
b < xu or x2x

a < xu, but

φ((u1 − 1, u2 + 1, u3, . . . , un)) =
u2 + 1
u2

> 1 = φ(u)

and

φ((u1 + 1, u2 − 1, u3, . . . , un)) =
u1 + 1
u1

> 1 = φ(u)

which leads to a contradiction.

Definition 2.3. Let (Ti)i∈I be a conic decomposition of T and let < be a generalized
term order for (Ti)i∈I . Let f =

∑
t∈T ctt be a non-zero polynomial in K[x], ct ∈ K .

Then we define

supp(f) : = { t ∈ T | ct 6= 0 } (the “support of f”),
lt(f) : = max supp(f) (the “leading term of f”),
lc(f) : = the coefficient of f at lt(f) ,
Ti(f) : = { t ∈ T | lt(tf) ∈ Ti }, 1 ≤ i ≤ n.

From now on we fix a conic decomposition (Ti)i∈I of T and a generalized term order <
for it.

Remark 2.2. Let i ∈ I and 0 6= f ∈ K[x]. Then Ti(f) is stable under the action of Ti
on T (i.e.: s ∈ Ti , t ∈ Ti(f) imply st ∈ Ti(f) ), and Ti ⊆ Ti(f) if and only if lt(f) ∈ Ti.



           

Generalized Gröbner Bases and the Modelling Problem 159

Lemma 2.1. Let N be a finite subset of T and let i ∈ I . Then there exists a p ∈ Ti
such that pN ⊆ T ◦i .

Proof. Let M ⊆Mon(T,Q) be a finite subset of T ∗i such that Ti is defined by M . Since
T ◦i is not empty, there exists a t ∈ Ti such that ϕ(t) > 0, for all ϕ ∈M .

For s ∈ N choose es ∈ N>0 such that esϕ(t) + ϕ(s) > 0, for all ϕ ∈ M . Then
ϕ(tess) > 0, for all ϕ ∈M , hence tess ∈ T ◦i . Now set p := te, where e := maxs∈N es.

Lemma 2.2. Let 0 6= f ∈ K[x] and s, t ∈ Ti(f). Then

lt(tf)
t

=
lt(sf)
s

(∈ supp(f)) .

Proof. Let u, v ∈ supp(f) such that lt(tf) = tu ∈ Ti, lt(sf) = sv ∈ Ti. We have to
show: u = v .

Since u, v ∈ supp(f) , tv ≤ tu and su ≤ sv. Choose p ∈ Ti such that pu, pv, ps, pt ∈
Ti (Lemma 2.1). Then

tu ∈ Ti, tv ≤ tu, p2 ∈ Ti imply p2tv ≤ p2tu

and
sv ∈ Ti, su ≤ sv, p2 ∈ Ti imply p2su ≤ p2sv .

Hence
(pt)(pv) ≤ (pt)(pu) and (ps)(pu) ≤ (ps)(pv) .

This implies

(ps)(pt)(pv) ≤ (ps)(pt)(pu) and (pt)(ps)(pu) ≤ (pt)(ps)(pv)

Therefore (ps)(pt)(pv) = (pt)(ps)(pu) and u = v .

Definition 2.4. Let 0 6= f ∈ K[x], i ∈ I and t ∈ Ti(f) . Then define

lti(f) : =
lt(tf)
t

and lci(f) : = lc(tf) .

Remark 2.3. By Lemma 2.2, lti(f) is well-defined (i.e. it does not depend on the
choice of t ∈ Ti(f) ). Furthermore, lci(f) is the coefficient of f at lti(f). We can compute
lti(f) in the following way: choose p ∈ Ti such that p.supp(f) ⊆ Ti (cf. Lemma 2.1).
Then lt(pf) ∈ Ti and lti(f) = lt(pf)

p .

Example 2.4. Let n = 2 and consider the generalized term order defined in Example
2.3, where u : = (1, 1) and <T is the lexicographic order with x1 > x2. Then T1 =
{xi1x

j
2 | i ≥ j } and T2 = {xi1x

j
2 | i ≤ j }. Let f : = x2

1+2x1x2. Then lt(f) = x2
1, T1(f) =

T1 ·1∪T1 ·x2, T2(f) = T2 ·x2
2, lt1(f) = lt(f), lt2(f) = x1x2, lc1(f) = 1, and lc2(f) =

2.

Definition 2.5. For i ∈ I let k[Ti] be the subalgebra of all polynomials in K[x] ,
whose support is contained in Ti.

Remark 2.4. Since Ti is finitely generated as a monoid, k[Ti] is a finitely generated
algebra. By Hilbert’s Basissatz every ideal of k[Ti] is finitely generated and every strictly
increasing sequence of ideals of k[Ti] is finite.
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Lemma 2.3. Every strictly descending sequence in T is finite. In particular, any subset
of T contains a smallest element.

Proof. Let s1 > s2 > s3 > . . .be a strictly descending sequence in T . Since I is finite,
it is sufficient to prove the assertion under the assumption that all sj are elements of
Ti. But then for all j there exists no t ∈ Ti such that sj = tsk, for some k < j. In
particular, the sequence

〈s1〉 ⊂ 〈s1, s2〉 ⊂ 〈s1, s2, s3〉 ⊂ . . .
of ideals in k[Ti] is strictly increasing. Now Remark 2.4 yields the assertion.

Lemma 2.4. Let J / K[x] and let lt(J) : = { lt(f) | f 6= 0, f ∈ J }. There are finite
subsets Ei ⊆ lt(J) ∩ Ti, such that lt(J) ∩ Ti = Ti · Ei, i ∈ I.

Proof. By Remark 2.4 we can choose a finite subset Ei of lt(J) ∩ Ti which generates
the ideal 〈lt(J) ∩ Ti〉 in k[Ti]. Now

lt(J) ∩ Ti = T ∩ K[Ti] 〈lt(J) ∩ Ti〉 = T ∩ K[Ti] 〈Ei〉 = Ti · Ei .

Lemma 2.5. Let f ∈ K[x], f 6= 0. There are finite subsets Fi ⊆ Ti(f), such that Ti(f) =
Ti · Fi, i ∈ I.

Proof. Let J be the ideal in K[x] generated by f . By Lemma 2.4 there are finite
subsets Ei ⊆ lt(J) ∩ Ti = Ti(f)lti(f), such that Ti(f)lti(f) = Ti · Ei, i ∈ I. Set
Fi : = { t

lti(f) | t ∈ Ei }.

Lemma 2.6. Let f, g ∈ K[x], f 6= 0 and i ∈ I . There exists a finite subset R(i, f, g) ⊆
Ti, such that Ti(f)lti(f) ∩ Ti(g)lti(g) = Ti ·R(i, f, g).

Proof. By Lemma 2.5 there are finite subsets E(f) ⊆ Ti(f) , E(g) ⊆ Ti(g) such that
Ti(f)lti(f) = Ti · E(f) and Ti(g)lti(g) = Ti · E(g) .

Let u ∈ E(f) , v ∈ E(g) . The set A : = { a ∈ K[Ti] | av ∈ K[Ti] .u } (here K[Ti] .u
is the K[Ti] - submodule ofK[x] generated by u ) is an ideal in K[Ti] , which is generated
by A ∩ Ti. By Remark 2.4 there exists a finite subset B ⊆ A ∩ Ti which generates the
ideal A, in particular we have A∩ Ti = Ti ·B . Since (A∩ Ti).v = Ti · u∩ Ti · v , we get
Ti · u ∩ Ti · v = Ti · E(u, v) , where E(u, v) is the finite set { bv | b ∈ B }. Hence

Ti(f)lti(f) ∩ Ti(g)lti(g) = Ti · E(f) ∩ Ti · E(g) =
⋃

u∈E(f), v∈E(g)

Ti · u ∩ Ti · v =

=
⋃

u∈E(f), v∈E(g)

Ti · E(u, v) = Ti ·
⋃

u∈E(f), v∈E(g)

E(u, v) .

Define R(i, f, g) : =
⋃
u∈E(f), v∈E(g)E(u, v). Since the sets E(f), E(g), E(f, g) are finite,

R(i, f, g) is finite, too.

3. Gröbner Bases and Buchberger Algorithm with Respect to Generalized
Term Orders

Proposition 3.1. Let F ⊆ K[x] \ {0} be a finite subset and let g ∈ K[x] \ {0} such
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that lt(g) ∈
⋃
f∈F,i∈I Ti(f)lti(f). Then there are polynomials hf , f ∈ F , such that

maxf∈F lt(hff) = lt(g) and

g =
∑
f∈F

hff or lt(g −
∑
f∈F

hff) 6∈
⋃

f∈F,i∈I
Ti(f)lti(f) .

The polynomials hf can be computed as follows (“Division algorithm”):

First set hf := 0, f ∈ F .
As long as there are f ∈ F and t ∈ T such that lt(tf) = lt(g) , replace hf with
hf + lc(g)lc(f)−1t and g with g − lc(g)lc(f)−1tf .

Proof. We only have to show that the algorithm above terminates after a finite number
of steps. Since in each step lt(g − lc(g)lc(f)−1tf) < lt(g), this follows from Lemma 2.3.

Definition 3.1. Let F, g, hf be as in the proposition 3.1. Then rem(g, F ) : = g −∑
f∈F hff is “a remainder of g after division by F”. (It is clear that rem(g, F ) is not

uniquely determined by g and F ).

Example 3.1. Let n = 2 and consider the generalized term order defined in Example
2.3, where u : = (1, 1) and <T is the lexicographic order with x1 > x2. Let f : =
x2

1 + 2x1x2, g : = x1x
2
2 + x2 and F = { f, g } . Then

T1 = {xi1x
j
2 | i ≥ j }, T2 = {xi1x

j
2 | i ≤ j },

lt(f) = lt1(f) = x2
1, lt2(f) = x1x2, lt(g) = lt1(g) = lt2(g) = x1x

2
2,

T1(f) = T1 · 1 ∪ T1 · x2, T2(f) = T2 · x2
2, T1(g) = T1 · x1, T2(g) = T2 ∪ T2 · x1.

We compute a remainder of 2x2
1x

3
2 − x2

1x2 after division by F :

lt(2x2
1x

3
2 − x2

1x2) = x2
1x

3
2 ∈ T2(g)lt2(g),

2x2
1x

3
2 − x2

1x2 − 2x1x2g = −x2
1x2 − 2x1x

2
2,

lt(−x2
1x2 − 2x1x

2
2) = x2

1x2 ∈ T1(f)lt1(f),
−x2

1x2 − 2x1x
2
2 − x2f = 0.

Hence 2x2
1x

3
2 − x2

1x2 = 2x1x2g − x2f and rem(2x2
1x

3
2 − x2

1x2, F ) = 0.
For x2

1x
2
2 − 2x2

2 we get:

lt(x2
1x

2
2 − 2x2

2) = x2
1x

2
2 ∈ T2(g)lt2(g),

x2
1x

2
2 − 2x2

2 − x1g = −x1x2 − 2x2
2.

Then

lt(−x1x2 − 2x2
2) = x1x2 6∈ T1(f)lt1(f) ∪ T2(f)lt2(f) ∪ T1(g)lt1(g) ∪ T2(g)lt2(g),

and thus −x1x2 − 2x2
2 = rem(x2

1x
2
2 − 2x2

2, F ).

Definition 3.2. A finite subset G of an ideal J of K[x] is a “Gröbner basis of J” if
and only if 0 6∈ G and

{ lt(f) | f 6= 0, f ∈ J } =
⋃

g∈G,i∈I
Ti(g)lti(g) .
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Proposition 3.2. Let J be a non-zero ideal in K[x]. Then

1 J contains a Gröbner basis.
2 Let G be a Gröbner basis of J . Then a polynomial f is an element of J if and only

if a remainder (or all remainders) of f after division by G is zero.
3 A Gröbner basis of J generates the ideal J .

Proof. 1 By Lemma 2.4 there are finite subsets Ei ⊆ Ti such that lt(J) =
⋃
i∈I Ti ·Ei.

For all t ∈
⋃
i∈I Ei choose an element ft ∈ J such that lt(ft) = t . Then { ft | t ∈⋃

i∈I Ei } is a Gröbner basis of J .
2 follows from proposition 3.1.
3 follows from 2.

Definition 3.3. Let f, g ∈ K[x] and i ∈ I . Let R(i, f, g) be a finite subset of Ti (see
Lemma 2.6) such that

Ti(f)lti(f) ∩ Ti(g)lti(g) = Ti ·R(i, f, g) .

For every r ∈ R(i, f, g) define

S(i, f, g, r) : = lci(g)
r

lti(f)
f − lci(f)

r

lti(g)
g .

Note that lci(f) = lc( r
lti(g)

f).

Lemma 3.1. Let F ⊆ K[x] \ {0} be a finite subset and i ∈ I . Assume that there are
u ∈ Ti , a family (tf )f∈F in T such that

u = lt(tff), for all f ∈ F ,

and a family (cf )f∈F in K such that∑
f∈F

cf lci(f) = 0 .

Then there are elements drfg in K, such that∑
f∈F

cf tff =
∑

r∈R(i,f,g),f∈F,g∈F
dr,f,g

u

r
S(i, f, g, r) and

u

r
∈ Ti .

Proof. Induction on |F |:
|F | = 2 : Let F = {f, g} , f 6= g. Then cf lci(f) = −cglci(g) ,

tf lti(f) = lt(tff) = u = lt(tgg) = tglti(g) ,

and tf ∈ Ti(f) , tg ∈ Ti(g) . Hence u ∈ Ti(f)lti(f) ∩ Ti(g)lti(g) and there are r ∈
R(i, f, g) and p ∈ Ti such that u = p.r . Since r is a multiple of lti(f) and of lti(g), the
power products tf and tg are multiples of p. Hence

cf tff + cgtgg =
cf

lci(g)
p(lci(g)

tf
p
f − lci(f)

tg
p
g) =

cf
lci(g)

pS(i, f, g, r) .

|F | > 2 : Let {g, h} ⊆ F , g 6= h, and F 1 : = F \ {g, h}. Then∑
f∈F

cf tff = chthh+ (−chlci(h)
lci(g)

tgg) + ((cg +
chlci(h)
lci(g)

)tgg +
∑
f∈F 1

cf tff) .



           

Generalized Gröbner Bases and the Modelling Problem 163

Applying the induction hypothesis to

chthh+ (−chlci(h)
lci(g)

tgg)

and to

(cg +
chlci(h)
lci(g)

)tgg +
∑
f∈F 1

cf tff

yields the assertion.

Proposition 3.3. Let F ⊆ K[x] \ {0} be a finite set of polynomials and let J be the
ideal generated by F . Then the following assertions are equivalent:

1 F is a Gröbner basis of J .
2 For all f, g ∈ F , for all i ∈ I , for all r ∈ R(i, f, g) , a remainder of S(i, f, g, r) is

zero.

Proof. (1 ⇒ 2) Since S(i, f, g, r) is an element of J , the assertion follows from propo-
sition 3.2.
(2 ⇒ 1) Let h ∈ J , h 6= 0. We have to show

lt(h) ∈
⋃

g∈G,i∈I
Ti(g)lti(g) .

Since J is generated by F , we have

h =
∑

f∈F,t∈T
ct,f tf ,

for some ct,f ∈ K . Let u : = max{ lt(tf) | t ∈ T, f ∈ F, ct,f 6= 0 }. We choose the
elements ct,f such that u is minimal, i.e. if h =

∑
f∈F,t∈T dt,f tf , then

u ≤ max{ lt(tf) | t ∈ T, f ∈ F, dt,f 6= 0 }.

Let i ∈ I be such that u ∈ Ti . If lt(h) = u , then lt(h) = lt(tf) = tlti(f), for some
f ∈ F , t ∈ Ti(f) . Hence it remains to show that lt(h) cannot be smaller than u.
Suppose lt(h) < u. Let Z : = { (t, f) ∈ T × F | lt(tf) = u, ct,f 6= 0 }. Then∑

(t,f)∈Z
ct,f lci(f) = 0 .

By Lemma 3.1 there are dr,f,g ∈ K such that∑
(f,t)∈Z

ctff =
∑

r∈R,f∈F,g∈F
dr,f,g

u

r
S(i, f, g, r) and

u

r
∈ Ti .

By (2), for every S(i, f, g, r) there are ds,e ∈ K (depending on r, f, g) such that

S(i, f, g, r) =
∑

s∈T,e∈F
ds,ese

and

lt(S(i, f, g, r)) = max{ lt(se) | e ∈ F, s ∈ T, ds,e 6= 0 } .
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Every element of supp(S(i, f, g, r)) is smaller than r, hence the same holds for supp(se),
where ds,e 6= 0.
Now r ∈ Ti and u

r ∈ Ti imply lt(ur se) < u. Hence
∑

(f,t)∈F cf tff can be written as
a linear combination of polynomials se, where s ∈ T , e ∈ F , and lt(se) < u. This
contradicts the minimality of u.

Proposition 3.4. Let F ⊆ K[x] \ {0} be a finite set of polynomials and let J be the
ideal generated by F . By the following algorithm a Gröbner basis of J can be computed:

F0 : = F

Fj+1 : = Fj ∪ ({ rem(S(i, f, g, r) | f, g ∈ Fj , i ∈ I, r ∈ R(i, f, g) } \ {0}).
If Fj = Fj+1, then Fj is a Gröbner basis of J .

Proof. By proposition 3.3 we only have to show that there exists a k ∈ N such that
Fk = Fk+1 . Suppose there exists no such k. Then there exists an index i ∈ I such that
for all j ∈ N there exists a m ∈ N such that the ideal 〈

⋃
f∈Fj Ti(f)lti(f)〉 in k[Ti] is

strictly contained in 〈
⋃
f∈Fj+m Ti(f)lti(f)〉. By Remark 2.4 this is not possible.

Example 3.2. Let <, f, g be as in Example 3.1 and let J be the ideal generated by f
and g. Then

T1(f)lt1(f) ∩ T1(g)lt1(g) = T1 · x3
1x

2
2,

T2(f)lt2(f) ∩ T2(g)lt2(g) = T2 · x1x
3
2,

S(1, f, g, x3
1x

2
2) = x1x

2
2f − x2

1g = 2x2
1x

3
2 − x2

1x2,

S(2, f, g, x1x
3
2) = x2

2f − 2x2g = x2
1x

2
2 − 2x2

2.

Using Example 3.1 we get

rem(S(1, f, g, x3
1x

2
2), { f, g }) = 0,

rem(S(2, f, g, x1x
3
2), { f, g }) = −x1x2 − 2x2

2.

Hence { f, g } is not a Gröbner basis of J . Let h : = x1x2 + 2x2
2. Then lt(h) = lt2(h) =

x2
2, lt1(h) = x1x2, T1(h) = T1 · x1 , and T2(h) = T2 . Now

T1(f)lt1(f) ∩ T1(h)lt1(h) = T1 · x2
1x2,

T2(f)lt2(f) ∩ T2(h)lt2(h) = T2 · x1x
3
2,

T1(g)lt1(g) ∩ T1(h)lt1(h) = T1 · x3
1x

2
2,

T2(g)lt2(g) ∩ T2(h)lt2(h) = T2 · x1x
3
2,

and the remainders of S(1, f, h, x2
1x2), S(2, f, h, x1x

3
2), S(1, g, h, x3

1x
2
2) and S(2, g, h, x1x

3
2)

after division by { f, g, h } are zero. Hence { f, g, h } is a Gröbner basis of J .

Remark 3.1. Gröbner bases can also be defined for submodules of finite-dimensional
free K[x]-modules [see for example Becker and Weispfenning (1993) or Pauer (1991)].
Their computation can either be reduced to the computation of Gröbner bases of ideals
[(Becker and Weispfenning, 1993), chapter 10.4] or be done directly (Pauer, 1991). For
the sake of simplicity of presentation we considered here only the case of ideals. We
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indicate now how the basic definitions can be generalized to the case of submodules. The
extension to this case of the propositions and their proofs is straightforward.

Let q be a positive integer and denote by W the free K[x]-module K[x]q. Denote by
{e1, . . . , eq} the standard-basis of W and U : = { tei | t ∈ T, 1 ≤ i ≤ q }. Then U is a
K-basis of W , hence the vectors in W can uniquely be written in the form

∑
u∈U cuu,

cu ∈ K . Let (Ti)i∈I be a conic decomposition of T . Let Ui : = { tej | t ∈ Ti, 1 ≤ j ≤ q },
i ∈ I . A “generalized term order” on U for (Ti)i∈I is a total order on U such that

(i) ei is the smallest element in { tei | t ∈ T }, 1 ≤ i ≤ q,
(ii) r < s implies rt < st, for all i ∈ I , s ∈ Ui, t ∈ Ti, and r ∈ U .

Let < be a generalized term order on U for (Ti)i∈I and let f =
∑
u∈T cuu be a non-zero

polynomial in K[x], cu ∈ K . Then we define

supp(f) : = {u ∈ U | cu 6= 0 }.
lt(f) : = max supp(f).
Ti(f) : = { t ∈ T | lt(tf) ∈ Ui }, 1 ≤ i ≤ n.
If t ∈ Ti(f) , then lti(f) : = lt(tf)

t .

A finite subset G of an submodule J of W is a “Gröbner basis of J” if and only if 0 6∈ G
and

{ lt(f) | f 6= 0, f ∈ J } =
⋃

g∈G,i∈I
Ti(g)lti(g) .

4. Application of Gröbner Basis Theory to the Modelling Problem

In this section we will propose a procedure that allows to check whether a homogeneous
linear partial difference equation with constant coefficients provides an unfalsified model
for a set of observations.

Suppose that ∆ is a subset of Nn. Consider first the form

〈·, ·〉∆ : K[x1, . . . , xn]q × (Kq)∆ −→ K

that is defined in the following way:
Let v ∈ (Kq)∆ and let f ∈ K[x1, . . . , xn]q be a polynomial row. If supp(f) 6⊆ {xi|i ∈ ∆},
then we let 〈f, v〉∆ := 0. If supp(f) ⊆ {xi|i ∈ ∆} and if

f =
∑
i∈∆

fix
i,

with fi ∈ Kq, then we let

〈f, v〉∆ :=
∑
i∈∆

〈fi, v(i)〉,

where 〈−,−〉 is the standard scalar-product on Kq.
The first step for the solution of our problem is provided by the following proposition

whose proof can be found in (Oberst, 1990).

Proposition 4.1. Consider two homogeneous linear partial difference equations with
constant coefficients R1w = 0 and R2w = 0, where R1 ∈ K[x1, . . . , xn]l1×q and R2 ∈
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K[x1, . . . , xn]l2×q. Then kerR1 = kerR2 if and only if there exists polynomial matrices
X1, X2 of suitable dimensions such that R1 = X2R2 and R2 = X1R1.

In other words: the difference equations R1w = 0 and R2w = 0 have the same set
of solutions if and only if the K[x1, . . . , xn]-module generated by the rows of R1 and
the K[x1, . . . , xn]-module generated by the rows of R2 coincide. Therefore, in verifying
whether a model represented by a difference equation Rw = 0, R ∈ K[x1, . . . , xn]l×q,
is unfalsified, the polynomial matrix R can be modified in such a way that the module
generated by its rows remains unchanged. The following proposition shows that, when
the set of generators of this module is a Gröbner basis with respect to a generalized
term order <, the check can be done easily. The only restriction is that the proposition
considers only data that are supported on subsets ∆ of Nn having the following special
property:
a ∈ ∆ and xb < xa implies b ∈ ∆. We say in this case that ∆ is a < −saturated
subset of Nn. Note that ∆ is < −saturated if and only if there exists s ∈ Nn such that
∆ = {k ∈ Nn|xk < xs}.

Proposition 4.2. Let R ∈ K[x1, . . . , xn]l×q, v1, . . . , vm ∈ (Kq)∆, and let M be the
K[x1, . . . , xn]−module generated by the rows r1 . . . , rl of R. Choose a generalized term
order < on T and extend it to {tej |t ∈ T, 1 ≤ j ≤ q} by

sei < tej if and only if s < t or (s = t and i < j)

(cf. Remark 3.1). Let lt(M) := {lt(r)|r ∈ M, r 6= 0}. We assume that {r1 . . . , rl} is a
Gröbner basis of M with respect to the generalized term order < and that ∆ ⊆ Nn is
< −saturated. Then the following assertions are equivalent:

1 ker(R) is an unfalsified model of v1, . . . , vm ∈ (Kq)∆.
2 For all u ∈ ∆ and h ∈ {1, . . . , q} such that xueh ∈ lt(M), there are t ∈ T and
k ∈ {1, . . . , l} such that lt(trk) = xueh and 〈trk, vi〉∆ = 0, 1 ≤ i ≤ m.

Proof. (1 ⇒ 2) Trivial.
(2 ⇒ 1) Without loss of generality we can assume that m = 1. Let v := v1. We want to
construct recursively w ∈ ker(R) such that w|∆ = v. For u ∈ ∆ we define w(u) := v(u).
Now let u 6∈ ∆ and suppose that we have determined w(s) for all s with xs < xu.
Suppose moreover that we have already determined the first h − 1 components of the
vector w(u) = (w(u)1, w(u)2, . . . , w(u)q). We want to construct w(u)h. There are two
cases:
1. xueh 6∈ lt(M). In this case we assign w(u)h arbitrarily.
2. xueh ∈ lt(M). By definition of Gröbner bases there exist k ∈ {1, . . . l} and a term
t ∈ T such that lt(trk) = xueh. Then let w(u)h be the unique element in K such that

〈trk, w〉Nn = 0.

Note that w(u)h is well defined by the induction hypothesis.
Now we will show that w obtained in this way satisfies the requirements, i.e. w ∈ ker(R)

and w|∆ = v. First it is clear that w|∆ = v. Therefore we only have to show that
w ∈ ker(R) or, equivalently, that

〈r, w〉Nn = 0,
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for all r ∈ M . We will show this by induction. Suppose this is true for all r ∈ M such
that lt(r) < ehx

u and show that the same is true for all r ∈ M such that lt(r) = ehx
u.

If u ∈ ∆, then by (2) there are t ∈ T and k ∈ {1, . . . , l} such that lt(trk) = xueh and

〈trk, v〉Nn = 〈trk, v〉∆ = 0.

If u 6∈ ∆ then by the construction above there are t ∈ T and k ∈ {1, . . . l} such that
lt(trk) = xueh and

〈trk, v〉Nn = 0.

In both cases there exists a ∈ K such that lt(r+ atrk) < xueh and by induction we have

〈r + atrk, w〉Nn = 0.

Hence

〈r, w〉Nn = 〈r + atrk, w〉Nn − a〈trk, w〉Nn = a〈trk, w〉Nn = 0.

The procedure that allows to verify whether a difference equation is an unfalsified
model can be expressed in the following way:
Suppose we are given a homogeneous linear partial difference equation with constant co-
efficients Rw = 0, R ∈ K[x1, . . . , xn]l×q, and a finite family of observations v1, . . . , vm ∈
(Kq)∆, where ∆ is a subset of Nn that is saturated with respect to a generalized term
order <.
1. Compute a Gröbner basis g1, . . . , gh of the module generated by the rows of R and con-
sider the difference equation R̄w = 0, where R̄ is the polynomial matrix whose rows are
g1, . . . , gh. Then by Proposition 4.1, Rw = 0 provides an unfalsified model for v1, . . . , vm
if and only if R̄w = 0 provides an unfalsified model for v1, . . . , vm.
2. If ∆ is a finite subset of Nn, then the conditions in assertion (2) of 4.2 can be easily
verified in a finite number of steps.

Example 4.1. Consider the generalized term order < defined in Example 3.2. Then
the set

∆ := {(α1, α2) ∈ N2|α1 ≤ 2, α2 ≤ 2}

is < −saturated. Let

R :=

x2
1 + 2x1x2

x1x
2
2 + x2

x1x2 + 2x2
2


be a polynomial matrix in Q[x1, x2]3×1. As we have seen in Example 3.2, the rows of
R form a Gröbner basis with respect to the generalized term order <. Consider the
trajectories v1 and v2 in Q∆ defined in this way
v1(0, 0) = 0, v1(1, 0) = 1, v1(2, 0) = 4, v1(0, 1) = −2, v1(1, 1) = −2, v1(2, 1) = −4,
v1(0, 2) = 1, v1(1, 2) = 2, v1(2, 2) = 2,
v2(0, 0) = 0, v2(1, 0) = 1, v2(2, 0) = −4, v2(0, 1) = −2, v2(1, 1) = 2, v2(2, 1) = −4,
v2(0, 2) = −1, v2(1, 2) = 2, v2(2, 2) = 0.

Let M be the ideal generated by the three polynomials that form R. Then the set of
all u ∈ ∆ such that xu ∈ lt(M) is {(2, 0), (2, 1), (2, 2), (1, 2), (0, 2)}. Hence by Proposition
4.2 there are only 5 conditions to check in order to verify whether ker(R) is an unfalsified
model for v1 or v2. Hence we easily see that ker(R) is an unfalsified model for v1, but
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not for v2, since
〈x1(x1x

2
2 + x2), v2〉∆ = 2.

Notice that if

R′ :=

 x2
1 − 4x2

2

x1x2 + 2x2
2

x3
2 − 1/2x2

 ,

then R′ and R provide partial difference equations with the same set of solutions. More-
over the rows of R′ form a Gröbner basis with respect to the lexicographical term order.
It is easy to verify that assertion (2) in Proposition 4.2 is true for the rows of R′ and v2.
This shows that if we want to apply Proposition 4.2 we really need a Gröbner basis with
respect to the generalized term order <.
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