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Abstract. The reduced Pommaret basis and the reduced Gröbner basis of an
ideal I with respect to a fixed admissible term order≺ differ in general. A
necessary and sufficient criterion for the coincidence of these bases is given.
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1 Introduction

A Pommaret basis is a special kind of a, in general, non-reduced Gröbner basis.
The recent interest in this subject comes from the fact that there is an algorithm
- the Zharkov-Blinkov (ZB) algorithm - which computes Pommaret bases, i.e.,
Gröbner bases, and which sometimes performs better than Buchberger’s algo-
rithm. From a theoretical viewpoint Pommaret bases establish links to classical
subjects, e.g., differential equations (cf. [9]). Recently, Apel (cf. [1]) found
interesting connections to the theory ofnon-commutativeGröbner bases, and
Gerdt and Blinkov (cf. [7]) and Apel (cf. [2]) introduced and treated generali-
sations of Pommaret bases.

The purpose of this note is to give an intrinsic description of the ideals
and admissible term orders for which reduced Pommaret bases and reduced
Gröbner bases coincide.

More precisely, we will prove that, given an idealI and an admissible term
order≺, the reduced Pommaret basisP≺(I ) and the reduced Gröbner basis
R≺(I ) coincide if and only if the initial idealin≺(I ) is stable.

It turns out that the initial ideal with respect to an arbitrary admissible term
order is stable for anyhomogeneousideal in genericposition. However, the
reader should observe that the ideals met in practice are, in general, generated
by sparse polynomials, and are not in generic position.

We gather the notation and some definitions (cf. [12] and [9]).
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Notation:We denote the integers{0, 1, . . .} with N.
Let k be a field andS := k[x0, . . . , x`]. The vector space of the homoge-

neous polynomials of degreed in S is denoted bySd . If I ⊂ S is a homogeneous
ideal we denoteI ∩ Sd by Id and for a setF of homogeneous polynomialsFd

denotes the setF ∩ Sd .
The set of terms{xn0

0 · . . . · x
n`

` | ni ∈ N, i = 0, . . . , `} is denoted byT `+1

(or simply byT ) and the set of admissible term orders byT O`+1 or T O (see
for example Robbiano (cf. [10]) and Weispfenning (cf. [11])).

If f ∈ S thensupp(f ) denotes the set oftermsoccurring with non-zero
constant coefficient in the distributive normal form off ; for ≺∈ T O`+1, in≺f

denotes the greatestterm in supp(f ) with respect to≺ andcf (f, t) denotes
the coefficient of the termt in f . For a set of polynomialsG, in≺G is the set
{in≺f | f ∈ G}, and the ideal generated byG is denoted〈G〉.

R≺(I ) denotes the reduced Gröbner basis ofI with respect to the admissible
term order≺.

We denote byNF(f, G) the set of the usual normal forms off moduloG

(cf. [3]).
We assume a fixed ordering on the set of variables, e.g.,x0 > · · · > x`. A

variablexi is calledmultiplicative, xi ∈ Mult>(u), for the termu ∈ T with
respect to the ordering> if xi is smaller than or equal to the smallest variable
occurring inu. Otherwise,xi is non-multiplicativefor u with respect to>,
xi ∈ Nonmult>(u). An admissible term order≺ ∈ T O is always assumed to
induce the ordering> on the set of variables.

Let t, u, v ∈ T `+1. We write t ∼ u × v if t = uv and if all variables in
v are multiplicative foru or if v = 1. If g ∈ S, we write alsogv ∼ g × v if
in≺(g)v ∼ in≺(g) × v.

A termu is called aPommaret divisorfor the termt if there exists a termv
such thatt ∼ u × v.

We say that a polynomialf is reducibleto h moduloG in the sense of
Pommaretif there exists an elementg ∈ G and a termv such thatin≺(g) ·v ∼
in≺(g) × v and h = f − a/b · gv with a := cf (f, in≺(g)v) 6= 0 and
b := cf (g, in≺(g)). The step fromf to h is called a Pommaret reduction
(P-reduction).

A polynomialf is in Pommaret normal formmoduloG if for each term
in f there are no Pommaret divisors in{in≺(g) | g ∈ G} . A polynomialh is
a Pommaret normal formof f moduloG if there exists a chain of Pommaret
reductions fromf to h andh is in Pommaret normal form. We denote the set
of all Pommaret normal forms off moduloG by NFP (f, G).

A set of polynomialsG is reduced(in the sense of Pommaret) if for all
g ∈ G we have{g} = NFP (g, G\{g}).

Theprolongationof a polynomialg ∈ k[x0, . . . , x`] by the variablexi is
the productxig. If xi ∈ Nonmult (in≺(g)) then the prolongation is called
non-multiplicative, otherwise multiplicative.
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2 Pommaret bases

In the following we assume that every admissible term order≺ ∈ T O induces
the orderingx` ≺ · · · ≺ x0 on the set of variables.

Definition 2.1. A set of polynomialsG is called a (reduced)Pommaret basis
(of 〈G〉) with respect to≺ ∈ T O (cf. [12] and [9]) if it is reduced in the sense
of Pommaret and

∀g ∈ G ∀x ∈ Nonmult (in≺(g)) NFP (g · x, G) = {0}. (1)

There are examples of ideals and admissible term orders with no finite
reduced Pommaret basis.

Definition 2.2. Let≺ ∈ T O and letI ⊂ k[x0, . . . , x`] be a monomial ideal. A
generating setM := {m1, m2, . . .} ⊂ T of I is called P-generating forI with
respect to≺ if for all termst ∈ I there is am ∈ M and a termv ∈ T such that
t ∼ m × v with respect to≺.

The reader should observe that only the ordering of the variables induced
by ≺ is relevant.

Example 2.3.Let I ⊂ k[x, y] be the monomial ideal generated by the set
M := {x4, x2y} and let≺∈ T O be an admissible term order withy ≺ x. Then
M is not a P-generating set forI with respect to≺, since there are nom ∈ M

andv ∈ T such thatx3y ∼ m × v with respect to≺. On the other hand, the
setM̃ := M ∪ {x3y} is P-generating forI with respect to≺.

Lemma 2.4. Let I ∈ k[x0, . . . , x`] be a monomial ideal and≺ ∈ T O an
admissible term order. Then there is a unique minimal P-generating set forI

with respect to≺.

Proof. Let L be the minimal generating set consisting of monomials ofI and
d1 the smallest degree of an element inL. For anyd ≥ d1, we construct a
setMd of terms of degreed such thatM := ∪d≥d1Md is the wanted minimal
P-generating set forI with respect to≺. We putMd1 := Ld1. Assume we have
already constructedMd for d < d0 with d1 < d0. Let Md0 be the set consisting
of the elementst of Id0 ∩ T for which there are nom ∈ ∪d1≤d<d0Md and no
v ∈ T such thatt ∼ m × v with respect of≺. The setM is P-generating and it
is minimal with respect to this property. QED

Remark 2.5.There are monomial ideals and admissible term orders such that
their minimal P-generating sets are infinite. An example of a monomial ideal
with an infinite minimal P-generating set is〈x2y〉 ⊂ k[x, y] if ≺ ∈ T O is
chosen such thaty ≺ x.
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Lemma 2.6.Let there be given an arbitrary idealI ∈ k[x0, . . . , x`] and an
admissible term order≺ ∈ T O. Then the initial terms of the elements of a
reduced Pommaret basis ofI with respect to≺ form the minimal P-generating
set with respect to≺ for the initial idealin≺(I ).

Proof. Let G be a reduced Pommaret basis ofI with respect to≺. The lemma
is proven, if we can show that for anyin≺(f ) with f ∈ I there is an element
g ∈ G such thatin≺(f ) ∼ in≺(g)× v with v ∈ T . SinceG is a Gr̈obner basis,
there is at ∈ T and an elementg ∈ G such thatin≺(f ) = t in≺(g). There are
t01, t02 ∈ T such thatt = t01t02 with t01 a product of non-multiplicative variables
for in≺(g) with respect to≺ and t02 a product of multiplicative variables for
in≺(g) with respect to≺. Hence, we havein≺(f ) ∼ (t01 in≺(g))×t02. Letxi be
the smallest variable int01. SinceG is a Pommaret basis, there is ag1 ∈ G such
thatxi in≺(g) ∼ in≺(g1)× t12. The variables occurring int02 are multiplicative
for in≺(g1). This implies that we obtainin≺(f ) ∼ (t01/xi in≺(g1)) × (t12t02).
Hence, by induction over the number of variables int01, we eventually find a
gr ∈ G with in≺(f ) ∼ in≺(gr)) × (tr2 · · · t12t02). QED

Proposition 2.7.Let I ∈ k[x0, . . . , x`] be an arbitrary ideal and≺ ∈ T O an
admissible term order. Then there is at most one reduced Pommaret basis ofI

with respect to≺ denoted byP≺(I ).

Proof. LetP1(I ) andP2(I ) be two different reduced Pommaret bases ofI with
respect to≺. By Lemma 2.6 and Lemma 2.4 the sets of the initial terms of the
elements of the reduced Pommaret basesP1(I ) andP2(I ) coincide. Since, by
assumption,P1(I ) andP2(I ) are different, there areg1 ∈ P1(I ) andg2 ∈ P2(I )

with in≺(g1) = in≺(g2) andg1 6= g2. This implies thatg1 −g2 ∈ I and cannot
be reduced (in the sense of Pommaret) neither byP1(I ) nor byP2(I ). This is
a contradiction, since any Pommaret basis can reduce any element ofI to zero
in the sense of Pommaret (cf. Theorem 6 in [12]). QED

Definition 2.8. Let ≺ ∈ T O. A monomial ideal is calledP-generatedwith
respect to≺ if its minimal generating set is P-generating forI with respect to≺.

Definition 2.9. A set of termsM ⊂ T is calledstablewith respect to≺ if for
all termst ∈ M the following holds: ifxj is the smallest variable occuring in
t then we havexit/xj ∈ M for all xi ∈ Nonmult (t).

A monomial idealI is calledstablewith respect to≺ if I ∩ T is stable with
respect to≺.

Remark 2.10.Let I be a monomial ideal andM be its minimal generating
system. The idealI is stable with respect to≺ if and only if for all t ∈ M
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it follows thatxit/xj ∈ I for xj the smallest variable occuring int and all
xi ∈ Nonmult (t).

Example 2.11.The monomial ideal〈x3, x2y, xy2, y3, y2z〉 ⊂ k[x, y, z] is sta-
ble with respect to every admissible term order≺ with z ≺ y ≺ x.

Remark 2.12.The above definition is a slight generalisation of the stable ideals
introduced by Eliahou and Kervaire (cf.[5]). Borel ideals(cf. Definition 2.17)
build a strictly smaller class of monomial ideals than the stable ideals, if the
characteristic of the fieldk is zero.

Lemma 2.13.Let I ∈ k[x0, . . . , x`] be a monomial ideal and≺ ∈ T O an
admissible term order. ThenI is stable with respect to≺ if and only if I is
P-generated with respect to≺.

Proof. Let M be a minimal generating set ofI .
a) Assume thatI is stable. We show thatM is a P-generating set. Lett ∈ I a
term. This implies that there is am ∈ M and a termv ∈ T such thatt = mv.
Let xj be the smallest variable with respect to≺ which occurs inm. If there is
axi ∈ Nonmult (m) which occurs inv then we write

t = (xim/xj )(xjv/xi). (2)

SinceI is stablet̃ := xim/xj ∈ I . Hence there is ãm ∈ M and aṽ ∈ T

such that̃t = m̃ṽ and t = m̃ṽ(xjv/xi). We can repeat this process and after
finitely many steps we obtain̂m ∈ M andv̂ ∈ T such thatt ∼ m̂ × v̂.

b) Assume thatI is P-generated. Lett = x
a0
0 · · · xaj

j ∈ I with x0 � · · · � xj

andaj > 0. There is am ∈ M and a termv ∈ T such thatt ∼ m × v. This
implies thatxj |v unlessv = 1. We have to show that ifi < j thenxit/xj ∈ I .
This follows immediately ifv 6= 1. Assumet = m. Thenxi ∈ Nonmult (m)

and by hypothesis there is ãm ∈ M and aṽ ∈ T such thatxit ∼ m̃ × ṽ. Since
M is a minimal generating set it follows thatṽ 6= 1 and the claim follows. QED

LetF := {f1, . . . , fs} be a set of arbitrary polynomials ink[x0, . . . , x`] and
≺ an admissible term order. If there is a Pommaret reduction of a polynomial
g ∈ k[x0, . . . , x`] with respect toF and≺, then there is a Buchberger reduction
of g with respect toF and≺. The converse is not true in general.

Lemma 2.14. Let F := {f1, . . . , fs} be a set of arbitrary polynomials in
k[x0, . . . , x`] and ≺ an admissible term order such that〈in≺(F )〉 is stable.
Then for any Buchberger reduction at a term of a polynomialg ∈ k[x0, . . . , x`]
with respect toF there is a Pommaret reduction with respect toF at the same
term ofg.
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Proof. Let g −→ g − αtfi be a Buchberger reduction withα ∈ k, t ∈ T . We
have to show that there arev ∈ T , fj ∈ F such thatt in≺(fi) ∼ in≺(fj ) × v.
By Lemma 2.13,〈in≺(F )〉 is P-generated and the claim follows. QED

Theorem 2.15.Let I ∈ k[x0, . . . , x`] be an arbitrary ideal and≺ ∈ T O an
admissible term order. Then the reduced Gr¨obner basisR≺(I ) is a Pommaret
basis if and only ifin≺(I ) is stable with respect to≺.

Proof. The only if part follows from Lemma 2.13 and Lemma 2.6. With-
out loss of generality, we may assume thatx` ≺ · · · ≺ x0. We have to
show that for allg ∈ R≺(I ) and allxi ∈ Nonmult (in≺(g)) it follows that
NFP (xig, R≺(I )) = {0}. We puth := xig. SinceR≺(I ) is a Gr̈obner basis we
haveNF(h, R≺(I )) = {0}. We show thatNFP (h, R≺(I )) = {0}. Assume that
there isf ∈ NFP (h, R≺(I )) with f 6= 0. SinceNF(f, R≺(I )) = {0} there
areg ∈ R≺(I ), t ∈ T `+1 andα ∈ k such thatf̃ := f − αtg is a reduction in
the usual sense. By Lemma 2.14, there must be ag̃ ∈ R≺(I ) and a term̃t such
thatt in≺(g) ∼ in≺(g̃) × t̃ . Hence there is a Pommaret reduction off andf is
not a Pommaret normal form moduloR≺(I ), a contradiction. QED

Remark 2.16.Given an idealI ∈ k[x0, . . . , x`] and an admissible term order
≺ ∈ T O. As V. Gerdt pointed out to the author, Proposition 3.11 in[7] implies
thatR≺(I ) is a Janet basis ifin≺(I ) is stable with respect to≺ (cf. Definition
5 of Section 3 in[7]). Moreover, in this situation any two reduced (in the sense
of Pommaret) Janet bases ofI with respect to≺ coincide.

Notation.We denote the set of all reduced Gröbner bases of an idealI byR(I )

and the set of all finite reduced Pommaret bases byP(I ).
We let the general linear groupGL(` + 1, k) operate onS in the following

canonical way. Ifg = (glk) ∈ GL(` + 1, k) then

xi 7−→ gxi :=
∑̀

j=0

gjixj . (3)

If I ⊂ k[x0, . . . , x`] is an ideal andg ∈ GL(` + 1), we denote the ideal
〈{gf |f ∈ I }〉 by gI .

The Borel subgroup of the upper triangular matrices is denoted byB(`+1).

Definition 2.17. An idealJ ⊂ k[x0, . . . , x`] is called a Borel ideal, if it is
invariant under the action of the Borel subgroupB(` + 1) ⊂ GL(` + 1, k),
i.e., for all g ∈ B(` + 1) we havegI ⊆ I .

Remark 2.18. The importance of the notion of Borel ideal comes from the
following well-known result by Galligo and Grauert (cf. e.g.,[6],[8]): for any
homogeneous idealI there is a Zariski-open set inGL(k, ` + 1), denoted by
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GT (I), such that for any linear transformationg ∈ GT (I) the finitely many
initial ideals ofI are Borel ideals which are independent from the chosen linear
transformationg ∈ GT (I). Roughly speaking, the finitely many initial ideals
of a homogeneous ideal in “generic coordinates" are well defined Borel ideals
(cf. e.g.,[4] p.348).

From Remark 2.18, Remark 2.12 and Theorem 2.15, the following statement
follows.

Corollary 2.19. Let k be a field of characteristic zero. IfI ∈ k[x0, . . . , x`] is
a homogeneous ideal in generic position, thenR(I ) = P(I ). In particular, for
all ≺ ∈ T O there exists a finite Pommaret basis ofI and the set of all finite
reduced Pommaret bases is finite.

Remark 2.20.If k is a field of characteristicp > 0, then there are Borel ideals
which are not stable, e.g.,I = 〈xp, yp〉 ⊂ k[x, y, z].
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