AAECC9, 117-123 (1998) AAECC

Applicable Algebra in
Engineering, Communication
and Computing

© Springer-Verlag 1998

On the Relation Between Gpbner
and Pommaret Bases

Daniel Mall
Department of Mathematics, ETHiFich, CH-8092 Zirich, Switzerland

Received: October 29, 1997; revised version: April 15, 1998
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1 Introduction

A Pommaret basis is a special kind of a, in general, non-reduc&oi@r basis.

The recent interest in this subject comes from the fact that there is an algorithm
- the Zharkov-Blinkov (ZB) algorithm - which computes Pommaret bases, i.e.,
Grobner bases, and which sometimes performs better than Buchberger’s algo-
rithm. From a theoretical viewpoint Pommaret bases establish links to classical
subjects, e.g., differential equations (cf. [9]). Recently, Apel (cf. [1]) found
interesting connections to the theoryradin-commutativé&robner bases, and
Gerdt and Blinkov (cf. [7]) and Apel (cf. [2]) introduced and treated generali-
sations of Pommaret bases.

The purpose of this note is to give an intrinsic description of the ideals
and admissible term orders for which reduced Pommaret bases and reduced
Grobner bases coincide.

More precisely, we will prove that, given an iddahnd an admissible term
order <, the reduced Pommaret badis(7) and the reduced @bner basis
R_(I) coincide if and only if the initial idealn . (1) is stable

It turns out that the initial ideal with respect to an arbitrary admissible term
order is stable for anhomogeneousgleal in genericposition. However, the
reader should observe that the ideals met in practice are, in general, generated
by sparse polynomials, and are not in generic position.

We gather the notation and some definitions (cf. [12] and [9]).
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Notation: We denote the integef§, 1, ...} with N.

Let k be a field andS := k[xo, ..., x¢]. The vector space of the homoge-
neous polynomials of degréen S is denoted bys,. If I c Sisahomogeneous
ideal we denotd N S, by I, and for a sef of homogeneous polynomials,
denotes the st N S;.

The setof termgxy® - ... - x}* | n; € N,i =0, ..., ¢} is denoted byr ‘!
(or simply by T) and the set of admissible term orders@,., or T O (see
for example Robbiano (cf. [10]) and Weispfenning (cf. [11])).

If f e Sthensupp(f) denotes the set dérmsoccurring with non-zero
constant coefficient in the distributive normal formfffor <€ T Oy, in- f
denotes the greatesdrmin supp(f) with respect to< andcf (f, r) denotes
the coefficient of the termin f. For a set of polynomial&, in. G is the set
{in.f | f € G}, and the ideal generated lo¥is denoted G).

R (I) denotes the reduced @mer basis of with respect to the admissible
term order<.

We denote by F (f, G) the set of the usual normal forms gfmoduloG
(cf. [3]).

We assume a fixed ordering on the set of variables, &g, - - - > x¢. A
variablex; is calledmultiplicative x; € Mult. (u), for the termu € T with
respect to the ordering if x; is smaller than or equal to the smallest variable
occurring inu. Otherwise,x; is non-multiplicativefor « with respect to>,

x; € Nonmult. (u). An admissible term ordek € T O is always assumed to
induce the ordering- on the set of variables.

Lett,u,v € T We writer ~ u x v if + = uv and if all variables in
v are multiplicative foru orif v = 1. If g € S, we write alsogv ~ g x v if
in.(g)v~in.(g) xv.

Atermu is called aPommaret divisofor the termr if there exists a term
such that ~ u x v.

We say that a polynomiaf is reducibleto 2 modulo G in the sense of
Pommaretf there exists an element € G and atermv such thatin.(g)-v ~
in(g)y xvand h = f —a/b-gv with a = c¢f(f,ins(g)v) # 0 and
b = cf(g,in~(g)). The step fromf to i is called a Pommaret reduction
(P-reduction).

A polynomial f is in Pommaret normal fornrmodulo G if for each term
in f there are no Pommaret divisors {in.(g) | g € G}. A polynomialh is
a Pommaret normal fornof £ moduloG if there exists a chain of Pommaret
reductions fromf to 2 andh is in Pommaret normal form. We denote the set
of all Pommaret normal forms of moduloG by N Fp(f, G).

A set of polynomialsG is reduced(in the sense of Pommaret) if for all
g € G we have(g} = NFp(g, G\(g)).

The prolongationof a polynomialg € k[xo, ..., x;] by the variablex; is
the producty;g. If x; € Nonmult(in.(g)) then the prolongation is called
non-multiplicative, otherwise multiplicative.
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2 Pommaret bases

In the following we assume that every admissible term oxder 7T O induces
the orderingy, < - - - < xg on the set of variables.

Definition 2.1. A set of polynomial& is called a (reducedPommaret basis
(of (G)) with respect to< € T O (cf.[12] and[9]) if it is reduced in the sense
of Pommaret and

Vg € GVx € Nonmult(in.(g)) NFp(g-x,G) = {0}. QD

There are examples of ideals and admissible term orders with no finite
reduced Pommaret basis.

Definition 2.2. Let< € T O and let] C k[xo, ..., x,] be a monomial ideal. A
generating seM := {m1, my, ...} C T of I is called P-generating fof with
respect to< if for all termsz € I there is an € M and atermw € T such that
t ~ m x v with respect to<.

The reader should observe that only the ordering of the variables induced
by < is relevant.

Example 2.3.Let I C k[x, y] be the monomial ideal generated by the set
M = {x* x?y} and let< e T O be an admissible term order with< x. Then

M is not a P-generating set far with respect to<, since there are ne: € M
andv e T such thate®y ~ m x v with respect to<. On the other hand, the
setM := M U {x3y} is P-generating fod with respect to<.

Lemma2.4.Let] € k[xo,...,x,] be a monomial ideal an&k € TO an
admissible term order. Then there is a unique minimal P-generating sét for
with respect to<.

Proof. Let L be the minimal generating set consisting of monomialg ahd
di the smallest degree of an elementZinFor anyd > d;, we construct a
setM, of terms of degre€ such thatM := U,-,4, M, is the wanted minimal
P-generating set far with respect to<. We putM,, := L, . Assume we have
already constructeftl, for d < do with d1 < dp. Let M, be the set consisting
of the elements of 1,, N T for which there are nen € Uy, <44,M,; and no

v € T such that ~ m x v with respect of<. The setM is P-generating and it
is minimal with respect to this property. QED

Remark 2.5.There are monomial ideals and admissible term orders such that
their minimal P-generating sets are infinite. An example of a monomial ideal
with an infinite minimal P-generating set {s%y) C k[x,y] if <€ TO is
chosen such that < x.
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Lemma 2.6.Let there be given an arbitrary idedl € k[xo, ..., x¢,] and an
admissible term ordex € T O. Then the initial terms of the elements of a
reduced Pommaret basis bfwith respect to< form the minimal P-generating
set with respect tex for the initial idealin_ (I).

Proof. Let G be a reduced Pommaret basid afith respect to<. The lemma
is proven, if we can show that for any . (f) with f € I there is an element
g € Gsuchthain_(f) ~in.(g) x vwithv € T. SinceG is a GBbner basis,
thereisa € T and an elemerg € G such thain_.(f) =t in.(g). There are
to1, to2 € T suchthat = g1t With 7p; @ product of non-multiplicative variables
for in.(g) with respect to< andzy, a product of multiplicative variables for
in.(g) with respectto<. Hence, we havai . (f) ~ (tp1 in(g)) x too. Letx; be
the smallest variable 1. SinceG is a Pommaret basis, there ig:ac G such
thatx; in-(g) ~ in-(g1) x t12. The variables occurring i3, are multiplicative
forin_(g1). This implies that we obtaifm_ (f) ~ (to1/x; in~(g1)) x (t12t02).
Hence, by induction over the number of variablesgin we eventually find a
g € Gwithin_(f) ~in.(g,)) X (t2- - - t12t02). QED

Proposition 2.7.Let I € k[xo, ..., x;] be an arbitrary ideal and< € T O an
admissible term order. Then there is at most one reduced Pommaret bdsis of
with respect to< denoted byP_ (1).

Proof. Let P,(I) andP,(I) be two different reduced Pommaret bases with
respect to<. By Lemma 2.6 and Lemma 2.4 the sets of the initial terms of the
elements of the reduced Pommaret baRg$) and P,(7) coincide. Since, by
assumptionpPyi(7) andP,(1) are different, there argy € P1(I) andg, € P>(1)

with in_(g1) = in.(g2) andgi # g». This implies thag; — g» € I and cannot

be reduced (in the sense of Pommaret) neitheP{gy) nor by P,(I). This is

a contradiction, since any Pommaret basis can reduce any eleniettt béro

in the sense of Pommaret (cf. Theorem 6 in [12]). QED

Definition 2.8. Let < € T 0. A monomial ideal is calledP-generatedvith
respect tox if its minimal generating set is P-generating fowith respect to<.

Definition 2.9. A set of termgyf C T is calledstablewith respect to< if for
all termst € M the following holds: ifx; is the smallest variable occuring in
t then we have;t/x; € M for all x; € Nonmult(t).

A monomial ideal is calledstablewith respect to< if I N T is stable with
respect to<.

Remark 2.10.Let I be a monomial ideal and/ be its minimal generating
system. The idedl is stable with respect tex if and only if for all € M
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it follows thatx;z/x; € I for x; the smallest variable occuring inand all
Xx; € Nonmult(t).

Example 2.11.The monomial idealx3, x2y, xy?, y3, y?z) C k[x, y, z] is sta-
ble with respect to every admissible term ordewithz < y < x.

Remark 2.12.The above definitionis a slight generalisation of the stable ideals
introduced by Eliahou and Kervaire (d6]). Borel ideals(cf. Definition 2.17)
build a strictly smaller class of monomial ideals than the stable ideals, if the
characteristic of the field is zero.

Lemma 2.13.Let I € k[xo,...,x,] be a monomial ideal anék € TO an
admissible term order. Theh is stable with respect te if and only if I is
P-generated with respect te.

Proof. Let M be a minimal generating set 6f

a) Assume that is stable. We show thal is a P-generating set. Lete I a
term. This implies that there isra € M and a termv € T such that = mv.
Letx; be the smallest variable with respecttavhich occurs inn. If there is
ax; € Nonmult(m) which occurs irv then we write

t=(xim/x;)(x;v/x;). 2)

Since! is stabler := x;m/x; € I. Hence thereis& € M andav € T
such that = mv andr = md(x;v/x;). We can repeat this process and after
finitely many steps we obtaift € M andv € T such that ~ m x 0.

b) Assume that is P-generated. Let= xg° - - - x;’ € I withxg > - -+ > x;
anda; > 0. Thereisan € M and atermv € T such that ~ m x v. This
implies thatx;|v unlessv = 1. We have to show thatif < j thenx;t/x; € 1.
This follows immediately ifv # 1. Assume = m. Thenx; € Nonmult(m)
and by hypothesis there isiae M and av € T such thatx;t ~ m x v. Since
M is a minimal generating set it follows that# 1 and the claim follows. QED

LetF :={f1,..., f;} beasetofarbitrary polynomials kfixo, . .., x,] and
< an admissible term order. If there is a Pommaret reduction of a polynomial
g € k[xo, ..., x¢] with respect taF and<, then there is a Buchberger reduction
of g with respect taF and<. The converse is not true in general.

Lemma2.14.Let F = {f1,..., f;} be a set of arbitrary polynomials in
k[xo, ..., x,] and < an admissible term order such that:.(F)) is stable.
Then for any Buchberger reduction at a term of a polynomial k[xo, . . . , x¢]
with respect taF there is a Pommaret reduction with respectRat the same
term ofg.
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Proof. Letg —> g — atf; be a Buchberger reduction withe k,r € T. We
have to show that there avec T, f; € F suchthat in_(f;) ~ in.(f;) x v.
By Lemma 2.13{in_(F)) is P-generated and the claim follows. QED

Theorem 2.15.Let I € k[xo, ..., x,] be an arbitrary ideal and< € TO an
admissible term order. Then the reduced@mnér basisk. (1) is a Pommaret
basis if and only ifn_ (1) is stable with respect te.

Proof. The only if part follows from Lemma 2.13 and Lemma 2.6. With-
out loss of generality, we may assume that < --- < xo. We have to
show that for allg € R.(I) and allx; € Nonmult(in.(g)) it follows that
NFp(x;g, R.(I)) = {0}. We puth := x;g. SinceR_(I) is a GBbner basis we
haveN F (h, R.(I)) = {0}. We show thalV Fp(h, R.(I)) = {0}. Assume that
thereisf € NFp(h, R.(I)) with f # 0. SinceNF (f, R.(I)) = {0} there
areg € R_(I),t € T""Y and« € k such thatf := f — atg is a reduction in
the usual sense. By Lemma 2.14, there must peak_ (1) and a ternt such
thatrin_(g) ~ in<(g) x . Hence there is a Pommaret reductionfadnd 1 is
not a Pommaret normal form moduky, (1), a contradiction. QED

Remark 2.16.Given an ideall € k[x, ..., x,] and an admissible term order

< € T 0. As V. Gerdt pointed out to the author, Proposition 3.1{7inimplies
that RL (1) is a Janet basis ifn_ (1) is stable with respect te (cf. Definition

5 of Section 3 i7]). Moreover, in this situation any two reduced (in the sense
of Pommaret) Janet bases bfvith respect to< coincide.

Notation.We denote the set of all reduceddBner bases of an ideaby %(1)
and the set of all finite reduced Pommaret basegty.

We let the general linear groupL (¢ + 1, k) operate orf§ in the following
canonical way. Ifg = (gix) € GL(¢ + 1, k) then

¢
Xi —> gx; = Zgjixj. 3
j=0

If I C k[xo,...,x¢]is anideal andg € GL(¢ + 1), we denote the ideal

({gfIf €1}) bygl.
The Borel subgroup of the upper triangular matrices is denoté{ by 1).

Definition 2.17. An ideal J C k[xo, ..., x/] is called a Borel ideal, if it is
invariant under the action of the Borel subgro®gt¢ + 1) C GL(£ + 1, k),
i.e., forallg € B({ +1) we haveg! C I.

Remark 2.18. The importance of the notion of Borel ideal comes from the
following well-known result by Galligo and Grauert (cf. e.[§],[8]): for any
homogeneous idedlthere is a Zariski-open set i@ L(k, ¢ + 1), denoted by
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GT (1), such that for any linear transformation € GT (I) the finitely many
initial ideals of I are Borel ideals which are independent from the chosen linear
transformationg € GT(I). Roughly speaking, the finitely many initial ideals
of a homogeneous ideal in “generic coordinates” are well defined Borel ideals
(cf. e.q.,[4] p.348).

From Remark 2.18, Remark 2.12 and Theorem 2.15, the following statement
follows.

Corollary 2.19. Let k be a field of characteristic zero. K € k[xo, ..., x¢] iS
a homogeneous ideal in generic position, tbeid) = 2(1I). In particular, for
all < € T O there exists a finite Pommaret basis/ond the set of all finite
reduced Pommaret bases is finite.

Remark 2.20.If k is a field of characteristip > 0, then there are Borel ideals
which are not stable, e.gl,= (x”, y?) C k[x, y, z].

References

1. Apel, J.: A Gbbner approach to involutive bases. J. Symb. Catfp441-458 (1995)

2. Apel, J.: The theory of involutive divisions and an application to Hilbert function computa-
tions. J. Symb. Comp., (for appear)

3. Buchberger, B.: Gibner bases: An algorithmic method in polynomial ideal theory. In:
Bose, N. K.(ed.) Recent Trends in Multidimensional System Theory. Dordrecht: Reidel
Publ. Comp. 1985

4. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. (Graduate
Texts in Mathematics, vol. 150) Berlin Heidelberg New York: Springer 1995

5. Eliahou, S., Kervaire, M.: Minimal resolutions of some monomial ideals. Journal of Algebra
129, 1-25 (1990)

6. Galligo, A.: Treoreme de division et stabiiten gonetrie analytique locale. Ann. Inst.
Fourier29, 107-184 (1979)

7. Gerdt, V., Blinkov, Z.: Involutive Bases of Polynomial Ideals. Preprint-Nr. 01/96, Uniétrsit
Leipzig, Naturwissenschaftlich-Technisches Zentrum Leipzig, Germany (1995)

8. Grauert, H.:Uber die Deformation isolierter Singulgiten analytischer Mengen. In-
vent. Math.15, 171-198 (1972)

9. Pommaret, J. F.: Systems of partial differential equations and Lie pseudogroups. Gordon
and Breach 1978

10. Robbiano, L.: Term orderings on the polynomial ring. In: Caviness, B. F. (ed.) Proc. EURO-
CAL 85 (Lecture Notes in Computer Scienc204) pp 513-517, Berlin Heidelberg New
York: Springer 1985

11. Weispfenning, V.: Admissible orders and linear forms. ACM SIGSAM Bull2fin16—-18
(1987)

12. Zharkov, A. Yu., Blinkov, Yu. A.: Involution approach to investigating polynomial systems.
Math. Comp. Simul42, 323-332 (1996)



