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Recently, Zharkov and Blinkov introduced the notion of involutive bases of polynomial
ideals. This involutive approach has its origin in the theory of partial differential equa-
tions and is a translation of results of Janet and Pommaret. In this paper we present a
pure algebraic foundation of involutive bases of Pommaret type. In fact, they turn out
to be generalized left Grébner bases of ideals in the commutative polynomial ring with
respect to a non-commutative grading. The introduced theory will allow not only the
verification of the results of Zharkov and Blinkov but it will also provide some new facts.

1. Introduction

Nowadays, the search for improvements of Buchberger’s Algorithm for the computation
of Grébner bases (see Buchberger, 1965, 1985) is one of the main research directions
in Computer Algebra. Recently, Zharkov and Blinkov reported about a completely new
approach to the problem {Zharkov and Blinkov, 1993). They translated involutive meth-
ods originating from the theory of partial differential equations (see Janet, 1929; and
Pommaret, 1978) in the language of polynomial ideals. This provides the class of so-
called involutive bases (see Zharkov and Blinkov, 1993; and Zharkov, 19944,b) and a
constructive method for their computation. The involutive bases turned out to be special
redundant Grobuer bases and, hence, they lead to a second method for the computation
of Grébner bases which at first sight is completely different from Buchberger's Algorithm
(cf. Figures 1 and 2).

Comparing Grébner bases and involutive bases of Pommaret type, also called Pom-
maret bases, Zharkov and Blinkov stated the latter to be superior for two reasons. They
claimed that involutive bases contain more information about the structure of the ideal
due to the redundancy. Furthermare, they reported a series of examples tested using both
methods showed a much better time behaviour of the new method. It is a fact, however,
that the method of Zharkov and Blinkov cannot have lower than a double exponential
worst case complexity because this bound for Grobner bases results from an input—
output consideration. Even in the zero-dimensional case there are obvious examples for
which Buchberger’s Algorithm is faster than the method of Zharkov and Blinkov: e.g.
F={ab+y2+2-3+22+e -3, +22+y - 3}. F is (reduced) Grébner basis
with respect to any degree compatible order and Buchberger’s Algorithm will realize this
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fact without performing any reduction since all critical pairs can be skipped according to
the product criterion (see Buchberger, 1985). But 10 new polynomials have to be added
to F in order to complete it to a Pommaret basis (see Zharkov and Blinkov, 1993). Taking
into account all these facts, it is worth investigating the relationship between Grobner
bases and involutive bases. Sorme important questions are:

Which method has the better average behaviour?

Does the Zharkov-Blinkov method reflect particular strategies (e.g. pair selection,
post reduction, etc.) that can be used to improve Buchberger’s Algorithm at least
for some width class of input ideal bases?

Assuming the previous question has a positive answer, how large is the class and
can we guess whether a basis belongs to the class?

As a preparatory step towards answering these questions, in this paper we will give a
completely algebraic description of Pommaret bases. Our algebraic foundation of Pom-
maret bases i1s based on two major ideas. First, we have a certain similarity of the
Zharkov-Blinkov method to the Kandri-Rody—Weispfenning closure technique for two
sided ideals in algebras of solvable type (see Kandri-Rody and Weispfenning, 1990).
This motivates to watch the theory in a “non-commutative light”. Second, the theory of
graded structures introduced by Robbiano (1986) and generalized to non-commutative
situations by Mora (1988) proved to be a powerful frame for generalizations of Grébner
bases. The fundamental idea in the theory of graded structures is to calculate in the
assoclated graded ring and to lift back the results to the original ring. So, it is natural
to look for gradings providing an associated graded ring having “better” {or at least not
“worse” ) algebraic properties than the original ring (cf. Mora, 1988; and Apel, 1992).
We cannot follow this line here any longer. Starting from a commutative, Noetherian
integral domain, we will construct an associated graded ring that is non-commutative,
non-Noetherian and contains zero-divisors. The price we pay is the loss of the termina-
tion property. Without knowing the work of Zharkov and Blinkov, in particular their
statement about the comparison to Buchberger's Algorithm, this author would certainly
have never investigated such an approach.

In addition to a better insight and the confirmation of all results reported by Zharkov
and Blinkov {1993), our algebraic approach provides the following additional facts about
Pommaret bases:

Pommaret bases are investigated with respect to arbitrary admissible term orders
without requiring degree compatibility;

The method for the computation of Pommaret bases is a semi-decision procedure
for the problem “Has I a finite Pommaret basis?”; i.e. it will terminate after finitely
many steps if and only if the ideal 7 has a finite Pommaret basis;

The algorithm for the computation of Pommaret bases can be improved by criteria
and selection strategies similar to those known from Buchberger’s Algorithm;
There are given conditions when an ideal has a finite Pommaret basis, and answers
the question concerning the linear variable changes transforming the ideal in a
position ensuring a finite Pommaret basis;

The notion of the Pommaret basis of an ideal is completely decoupled from the
method for its computation;
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The theory of Pommaret bases can be straightforwardly generalized to algebras of
solvable type.

This paper is organized as follows. In order to keep the paper self-contained we present
an introduction to the theories of {ordinary) Grobner bases, Pommaret bases and (gen-
eralized) Grébner bases in graded structures in Sections 2 and 3. In Section 4 it is shown
that the notion of Pommaret basis is an instantiation of the generalized Grobner basis
concept in graded structures. We will formulate and prove some important properties of
Pommaret bases by means of algebra. Finally, in Section 5, we discuss some possible and
impossible generalizations of the theory.

2. Ordinary Grébner and Pommaret bases

Let R = K[X,...,X,] = K[X] be the commutative polynomial ring in the variables
X = {Xi1,...,Xa)} over the field K. The set T = {X*--- X |v; = 0,1,2,...} of power
products forms a K-vector space basis of R. An irreflexive well-order < of T which is
compatible with the multiplication of power products, i.e. u < v implies tu < tv for
all power products u,v and t, is called an admissible term order. For a description and
complete classification of admissible term orders we refer to Robbiano {1985). Let <
be a fixed admissible term order. Then each non-zero polynomial f € R has a unique
representation f = Y .- cit; satisfying 0 # ¢; € K,t; € T (1 £ i < m) and &y, <
tm—1 < -+ =< t1. We define the leading power product and the leading coefficient of f by
Ip(f) := t; and le(f) := ey, respectively.

2.1. GROBNER BASES

A brief introduction to the well-known theory of Grobner bases follows. We will not
present the improvements achieved by many different researchers during the last three
decades; an overview can be found, for instance, in Buchberger (1985) or Becker et al.
{1993).

A polynomial g € R is called reducible modulo F C R iff there exists f € F such
that Ip(f) divides lp(g). Otherwise, g is called irreducible modulo F. Let g be reducible

modulo F and f € F such that lp(g) = ¢ - Ip(f) for some ¢ € T. Then we say: g reduces

toh=g— ll?c(g%tf modulo F. A sequence g = hi, kg,... such that k; reduces to hiyy

modulo F foralli = 1,2, ... is called a reduction sequence of g modulo F. Note, that any
reduction sequence of ¢ modulo F is finite since < is well-order. If g = hy,h2,..., hr is a
reduction sequence modulo F and hj is irreducible modulo F, then we call hy a normal
form of g modulo F. Given two non-zero polynomials g, A € R we define the S-polynomial
corresponding to the pair (g, h) by

Spol{g,h) == lc(h)

le{g)——h, where t = lem(lp(g), Ip(R)}) .

( )? ! (h)
A set F C R is called a Grébner basis of the ideal I = F - R with respect to < iff zero
is a normal form of each element ¢ € I modulo F (or equivalently, for g ranging only
over all S-polynomials corresponding to pairs of elements of F).
Figure 1 presents a rough version of Buchberger’s Algorithm. Nf(Spol(cp), G) denotes
a normal form of Spol{cp) modulo G.
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Input: finite basis F of the ideal I, term order ~<
Qutput: Grébner basis G of I with respect to <

P := set of pairs of elements of F

Gi=F
while P # 8 do
choose ¢cp € P
P = P\{cp}
h = Nf(Spol(cp), G)
if h #0 then
P:=PuU{(g,h)lg € G}
G :=GuU{h}

Figure 1. Buchberger’s Algorithm (method 1)

2.2. POMMARET BASES

The main difference between the theories of Grébner and involutive hases consists in
the notion of division of power products and, consequently, in the notion of reduction.
A variable X, is called Pommaret-multiplicative for the power product w € T iff u €
K[X:...,Xn].- We say u € T is a Pommaret divisor of t € T iff u divides ¢t and all
variables occurring in & are Pommaret-multiplicative for u. A finite set F C R of non-
zero polynomials whose leading power products are pairwise but not a Pommaret divisor
of each other is called P-autoreduced. A polynomial ¢ € R is called P-reducible with
respect to F' C R iff there exists f € F such that Ip{f) is a Pommaret divisor of lp{g).
letge R, FCR, fe€F and t € T such that Ip(f) is a Pommaret divisor of lp(g) and
Ip(g) = ¢ - Ip(f). Then, by definition, g P-reduces to h = g — ll:tf tf modulo F. Based
on the notions P-reducible and P-reduces modulo F, we can introduce the appropriate
notions P-irreducible, P-reduction sequence and P-normal form modulo F in the same
way as we did for Grobner bases. Finally, a set F C R is called a Pommaret basis of
I = F - R with respect to < iff F' is P-autoreduced and each element g € I has zero as a
P-normal form modulo F.

Figure 2 shows a constructive method (method 2} for the computation of a Pommaret
basis of the polynomial ideal generated by a given finite basis with respect to a given
admissible term order <. The sub-algorithms P_Autoreduce and Nfp can be constructed
in the same way as is known from the Grobner basis theory, only with the usual reductions
being substituted by P-reductions. Each instruction step of method 2 is computable and
in case of termination the method is correct. But the method is not algorithmic since, in
general, termination is not ensured.

The correctness and termination proofs for zero-dimensional ideals I given by Zharkov
and Blinkov make essential use of the degree compatibility of < and of the fact that
the bases involved are P-autoreduced. The termination of method 2 and the existence of
finite Pommaret bases in the positive dimensional case remained open in the papers by
Zharkov and Blinkov. They cited from the theory of partial differential equations only
that any ideal will have a finite Pommaret basis after most linear variable changes. Gur
theory developed in Section 4 will overcome the above restrictions and we will be able
to prove that the method is semi-algorithmic, i.e. it terminates if and only if the ideal
has a finite Pommaret basis. Furthermore, we will give an explanation of “most” variable
changes.

Comparing Figures 1 and 2 the first impression is that both methods are rather differ-
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Input: finite basis F of the ideal I, term order <
QOutput in case of termination: Pommaret basis G of I with respect to <

G=0
while F # 8 do
G = P_Autoreduce(G U F)
F:=0
for each g € G do
for each X; which is not Pommaret-multiplicative for Ip(g) do
f :=Nip(gX, G)
if f #0 then F := FU {f}

Figure 2. Method of Zharkov and Blinkev (method 2)

ent. In contrast to Buchberger's Algorithm, we do not need S-polynomials in method 2,
though in some sense their reduction is replaced by P-autoreductions and P-reductions
of so-called prolongations gX; of basis polynomials by variables,

If we replace the subroutine P_Autoreduce by a left Grobner basis algorithm and
consider the right prolongations of basis elements not only by variables that are not
Pommaret-multiplicative but by all variables, we obtain exactly the shape of the right
closure technique for two-sided ideals in algebras of solvable type developed by Kandri-
Rody and Weispfenning (1990). So, dividing such variables that are Pommaret-multipli-
cative and such that are not Pommaret-multiplicative effects a certain non-commutative
behaviour. Though we are in a completely commutative situation, this behaviour moti-
vates us to watch Pommaret bases in a non-commutative light.

3. Graded structures

An introduction to the complete theory of Gribner bases in graded structure can be
found in Mora (1988). We will restrict ourselves here to some major ideas that turn out
to be useful for the characterization of generalized Pommaret bases.

DEFINITION 3.1. Let A be an assoctative Ting with unit element end " be a monoid.
Furthermore, let < be an irreflezive well-order of I' such that

1<« forall 14 €l and {3.1)
a < 3 implies aoy<Boy and yoa<X~vof forall a,8,v€T,
where o is the operation and 1 is the unit element of I'. Finally, let ¢ : AN{0} =T be a
Junction salisfying:
ﬂo(l) = ’10(_1) =1,
a+b=0 or ¢la+b) = max(p(a), (b)), and (3.2)
a-b=0 or ple b) < ela)op),

for all non-zero elements a,b € A, where = denotes the reflezive closure of <. Then we
call the quadruple A= (A,T", <, ) a graded structure.

3.1. RELATED ALGEBRAIC OBIJECTS

Let A = (A,T',<,p) be a fixed graded structure. In this section we will construct
algebraic objects related to A which justify the above definition. To each element v € T
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we associate the set Fl, = {alp(2) < v} U {0}. Cleatly, § < v implies F; C F.,. For each
non-zero element a € A there exists a unique 4 € T, namely v = ¢(a), such that a € F,
and e € Fj for all § < 4. It is an easy observation that the F, are additive subgroups of
A and that F,Fs C F,o for all 4,6 € T'. Hence, the family (F,),er is a filtration of A.

For each v € I let I?}. be the additive subgroup of 7, defined by F., := {0}UlUs<, Fs and

let G be the factor group F,/ 14:‘,,. The elements g € G, are called homogeneous of degree
7 {notation: deg(g) = ). Let Gr = {J,¢p G be the set of all homogenzous elements. ¢
induces a function in : A — Gr by defining

in(0) := 0 and in(a) := [a]ﬁ'p(n) for 0#ac A.
Since in is surjective, we can fix a function in* : Gr — A such that
in(in*(¢)) = ¢
for all g € Gr. The mapping e _: Gr x Gr — G'r given by
in{e) o in(b) = [ub]ﬁw(c)wm

is well defined and can be uniquely extended to multiplication, making the direct sum
G = ®1EI‘ G, an associative ring. This I'-graded ring G is called the associated graded
ring of A with respect to the graded structure A= (A, T, <, ¢).

3.2. LEFT A-GROBNER BASES

Let A = (A, T, <,¢) be a graded structure and G be the associated graded ring of
A with respect to A. The function “in” is extended to subsets F C A in the usual way
by setting in(F) := {in{f)|f € F} and the left ideal generated by in{F'} in G is called
the A-initial left ideal of F {notation: LIn(F)). A basis F of the left ideal I C A which
satisfies

LIn{F) = LIn{7)

is called a left A-Gridbner basis of I.

This is an elegant and frequently used definition of Grébner bases. However, it is neither
similar to the definition in Section 2 nor does it show an algorithmic way for Grébner
basis construction. In order to bridge this gap we need some further preparation. A non-
zero element i € A is called A-reducible modulo F if in(h) € LIn(F) and A-irreducible
module F, otherwise. By definition ¢ is .A-irreducible modulo F. Let be h € A and
F C A. Then a representation

m
h = Zgifi,
i=1

where g; € A, fi € F and o(gi) e o(fi) X w(h) for i = 1,...,m, is called a left A-
representetion of k in terms of F. Furthermore, an element b’ € A which is A-irreducible
module F' and for which b — h' has a left A-representation in terms of F is called a left
A-normel form of h module F. By definition 0 is left .A-normal form of 0 modulo F.

The natural generalization of Buchberger's critical pairs to graded structures are ho-
mogeneous syzygies. Let = {h1,...,hm} € Gr\{0} and G™ be the left G-module
freely generated by {e1,...,en} and graded by assigning

deg(e;) := deg{h;) forall 1 <i < m.
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The kernel of the homogeneous homomeorphism §: G™ — G defined by

m m
S (Z kie,‘) = Zk{h,‘
i=1 i=]

is a homogeneous left submodule of G™, the so-called left syzygy module LSyz(H) of H.
Its elements are called left syzygies of H. Let F = {f1,..., fm} be a finite set of non-zero
elements of A and let s = 3 i, hie; be a left syzygy of in{F). Then we define the critical
element of F corresponding to s by:

m

cs) = in*(hs)fi € A. (3.3)

i=1
We close this section with a theorem summarizing some important equivalent properties
for left A-Grobner bases.

THEOREM 3.1. Let I C A be aleft ideal, F = {f1,..., fm} C I be a finite set of non-zero
elements of I, and B be a homogeneous basis of the left syzygy module LSyz(in(F)). Then
the following conditions are equivalent:

(i) F is a left A-Grébner basis of I;
{ii) Bach h €I has 0 as (only) left A-normal form modulo F;
(i) F generates I and for each s € B the critical element ¢(s) of F corresponding to s
has 0 as (only) left A-normal form modulo F.

Proor. We refer to Mora (1988).
3.3. EFFECTIVENESS CONDITIONS

The third condition of Theorem 3.1 shows a way of generalizing Buchberger's Algo-
rithm to left ideals in graded structures. In order to get a constructive method, the graded
structure has to satisfy some effectiveness conditions.

DEFINITION 3.2, A graded structure A= (A, T, <, @) having the following three proper-
ties is called a left effective graded structure:

(i) A, G and T are effective and y, in end in® are computable functions,

(ii) For any given non-zero homogeneous elements hy, ... Ay, k € G the left ideal mem-
bership problem h € G - (hy,..., k) is decidable and in case of membership it
is possible to compute a homogenecous representation h = 2:‘;1 gihi, i.e. for all
I1<i:<m we have g; € Gp and g; = 0 or deg g; o deg h; = deg k.

{iti] For each finite subset H af non-zero homogeneous elements of G the left syaygy
module LSyz(H) is finitely generated and it is possible to compute e finite homoge-
neous basis of LSyz(H ).

All ground instructions appearing in the methods presented in Figures 3 and 4 are
computable for left effective graded structures ,A. Correctness in case of termination of
method 3 is obvious; method 4 follows condition {iii) of Theorem 3.1. It remains for us
to check the termination. Method 3 is algorithmic since termination is ensured by the
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Input: graded structure A, h € A, F ={f1,..., fm} C A\{0}
Output: left G-normal form k' of k in terms of F

hi=h
while A’ # 0 and in{h’) € LIn(F) do
compute a homogeneous representation in(h'} = :;1 giin(f;)

A =h— E:ﬂ in*(g)fi

Figure 3. Computation of left G-normal forms (method 3)

Input: graded structure A, Basis F = {f1,..., fm} € A\{0} of the left ideal [
Qutput: left A-Grobner basis H of [

H:=0

while F # ¢ do
H=HUF
B := finite homogeneous basis of LSyz(in(H})
F:=0

while B # 0 do
choose s € B
B = B\{s}
f = left A-normal form of ¢(s) in terms of H
if f #0 then F:= FU{f}

Figure 4. Computation of left A-Grobner bases (method 4)

well-order property of <. The computation of left A-Grobner bases is semi-algorithmic
in the following sense:

THEOREM 3.2. Let A = (A, T, <,¢) be a greded structure, I a left ideal of A and F o
finite basis of I which does not contain zero. Then method 4 terminales for input A and
F if and only if LIn{(I) is finitely generated.

Proor. The non-termination of method 4 in the case of a not-finitely generated A-
initial left ideal LIn(T) is a trivial consequence of the correctness. So, let us assume that
LIn(7)} is finitely generated by non-zero homogeneous elements uj,...,ur € G. First we
introduce the notations H (u) and B{g) for the values assigned to H and B, respectively,
at the beginning of the u-th run of the outer loop of method 4. We fix 1 < ¢ < &k and look
for an index pg; such that u; € LIn(H (o). There exists g € I such that in(g) = u,.
Let

!
g= ijhj
i=1

be a representation of ¢ in terms of H(1) such that hy,...,hy € H(1) and f,..., fi # 0.
Let v be the maximum of the ¢(f;) o @(h;), where 1 < j <. If v = degu, then pg; =1
has the desired property. It remains the case that degu; <. Then

5= > in(f;)e; € LSyz(in(H (1))).

{ile(f;)ow(hs}=7}
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Hence, s = Z_?:l ajs;, where s; € B(1). Each element ¢(s;) has a left A-representation
p; in terms of H(2). Hence, performing some obvious manipulations on

! ¢
9= fihi+ Y in*(a;) (ps — o(s;)),
i=1

i=1

where ¢(s;) stands for its defining representation {3.3), leads to a new representation

[r
9= 2 It}
i=1

of g in terms of H(2) such that b}, € H(2), f{ # 0, p(fj)op(h}) <y forall1 <j <V,
Repeating these arguments and taking into account that < is well-order, we finally deduce
the existence of pg; such that g has a left A-representation in terms of H(pg ;).

Let ug be the maximum of pg 1,...,po k. Then uy,. .., ux € LIn(H (p}) for all p > po.
Hence, H(ug) is a left A-Grdbner basis of . By Theorem 3.1 we deduce that all left
critical elements of left syzygies of B(up) will only have 0 as a left A-normal form.
Therefore, the outer loop of method 4 will terminate after ug runs at most. Each inner
loop terminates since each B(p) is finite by construction. [J

The semi-algerithm presented in Figure 4 has one serious restriction: it requires to
consider all left syzygies associated to an intermediate basis H (z) before any left syzygy
involving basis elements computed afterwards. Recalling the sensitivity of Buchberger’s
Algorithm against the pair selection strategy, it is natural to ask for possible strategy
improvements in the sitnation of graded structures. While the correctness of method 4 is
independent of the syzygy selection strategy, it can lead to non-termination even in the
case of finitely generated A-initial left ideals. Checking the proof of Theorem 3.2 it turns
out that we used only the fact that the syzygy selection strategy is fair, i.e. any created
left syzygy has to be considered after finitely many steps. Hence, we can alter method 4 by
allowing an arbitrary fair left syzygy selection strategy. The importance of fair selection
strategies is well-known from the non-Noetherian situations of free non-commutative
rings (Mora, 1986) and differential algebras {Ollivier, 1990). If the associaied graded
ring G is Noetherian, the situation is even better: we could use a completely different
termination proof which is independent on the syzygy selection strategy.

3.4. QUOTIENTS OF GRADED STRUCTURES

Let A= (A,T, <,y) be a graded structure and I C A be a two-sided ideal of A. Then
we can construct a graded structure A; = (A/I,[', <, ¢} for the quotient ring A/7,
where the function 7 is defined by

gi(a) = min{p(f)|f € a}.

wr is well-defined since < is well-order. It 1s an easy exercise to verify the validity of
conditions (3.2).
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4. Pommaret bases in graded structures

The theory of graded structures provides an excellent framework for generalizations of
the theory of Grébner bases. What remains for us is to introduce a suitable grading and
to check the effectiveness conditions in particular cases.

4.1, THE GROBNER GRADING OF POLYNOMIAL RINGS

Before we consider Pommaret bases we will show how the classical theory of Grébner
bases due to Buchberger (1965, 1985) can be formulated in terms of graded structures. Let
T be the free commutative monoid generated by X, i.e. the monoid of commutative power
products, and <7 be an admissible term order of T. We easily observe that < satisfies
conditions (3.1) and that the function lp, assigning it to each nen-zero polynomial its
leading power product, satisfies conditions (3.2). Hence, Ry = (R, T, <1, lp) is a graded
structure. We hold that # C I is (ordinary) Griobner basis with respect to <7 of the ideal
I C R if and only if it is left Rp-Grobner basis of I considered as left ideal. Therefore, we
call Ry the Grébner grading of R defined by <7. Furthermore, the algorithm presented
in Figure 1 turns out to be an instantiation of the semi-algorithm given in Figure 4, Of
course, in the particular situation A = Ry the latter is algorithmic, too.

4,2, A GRADING OF FREE NON-COMMUTATIVE ALGEBRAS

Starting from results of Bergmann (1978}, Mora developed a theory of Grobner bases of
one- and two-sided ideals of free non-commutative algebras (Mora, 1986). This theory can
also be interpreted as an instantiation of the theory of graded structures (see Mora, 1988).
Let § be the free non-commutative monoid generated by X and <s be an irreflexive well-
order of S satisfying conditions (3.1). The free non-commutative K-algebra P = K (8} in
the variables X is the algebra obtained by moneid adjunction of § to the field K. Since 8§
is tsomorphic to a free word semi-group, we will call an element of § a werd. $ is K-vector
space basis of P. Hence, the function lw:P\{0} — 8 assigning to each non-zero element
f € P the largest word (with respect to <g) which appears in f with non-zero coefficient
is well-defined and satisfies conditions (3.2). Consequently, P = (P, 8, <g,lw) is a graded
structure. The notions of left-, right- and two-sided P-Grébner basis of F C P as well as
the algorithms for their computation correspond to those introduced in Mora (1986).

4.3. THE POMMARET GRADING OF POLYNOMIAL RINGS

In the terminology of graded structures, algebras of solvable type are non-commutative
rings graded by a commutative monoid (cf. Kandri-Rody and Weispfenning, 1990; and
Apel, 1992). Now we show how Pommaret bases can be described by an opposite ap-
proach. Let R, P, T, S, <7, <g,Ip and lw be as above and let o denote the concatenation
of words, i.e. the monoid operation in §. Identifying the commutative power products
with the ordered words, words such as X; --+X;, € § for which i) < iy < -+ < iy,
the set T can be embedded into S. Note, however, that this is not a monoid embedding.
Furthermore, we assume that <g satisfies the following two conditions:

(I} s<gt<e=s~<rtforalsteT,
(ii) For each X;, --- X;, € T and each permutation n of the numbers 1,. ..,k it holds
that X, - X, =g X, - X

m(1) Amk)”
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That means <g coincides with <+ on T and among all words which differ only in the
sequence of variables for which the ordered is minimal with respect to <g. It is easy to
observe that such an admissible order <z exists for any given admissible term order <.
Let J be the two-sided ideal of P generated by {X,-ij-XjX,-|1 < § < i < n} and consider
the graded structure Py = (P/J, §, <g,lw )} as introduced in Section 3. Identifying F/J
and R via the canonical isomorphism, we see that Py is equal to Rg = (R, S, <s,1p).
So, we obtain a second class of gradings of the commutative polynomial ring B which
appears as its natural non-commutative gradings. A simple example shall illustrate the
connection between Py and Rgs.

ExAMPLE 4.1. Let R = Q[X,Y, Z] be the polynomial ring in the indeterminates X,Y
and Z over the rationals and <7 be the lexicographical order <x y z extending X <x y z
Y <xyvz Z. Further, consider the free non-commutative algebra P = Q (X.Y, Z}. The
words generated by X,Y and Z are ordered by <g in such a way that first the number
of occurrences of Z are compared; in case of equality the number of occurrences of ¥
are compared. If we have equality again then we compare the number of occurrences
of X. So we have, for instance, XY <g Y Z and ZXZ <g YZZ. No decision, though,
can be made if both words contain the same number of Z, ¥ and X, i.e. they are
equal in any permutation of letters, e.g. XZZ, ZXZ and ZZX. We will break these
ties by the lexicographical order <x y z for words. For the above example this yields
XZZ <5 ZXZ <5 ZZX. Clearly this is a suitable order <g since it is admissible and
satisfies the above conditions (i) and (ii). But we could break the ties also in another
way, e.g. XZZ ~<:9 ZZX «(i.;- Z X Z. Consider the two-sided ideal J C P generated by
XY —-YX,ZX — XZ and ZY — Y Z. Let f € P. The residue class f + J contains a
unique element f which is linear combination of ordered words. By definition lw ;{f + J)
is the minimum (with respect to <5) among all leading words of representants of f + .J.
In particular,

wy(f+J) 2 Iw(f).

But, obviously, the support of any representant of f +.J contains at least one word which

is equal to lw(f) up to permutation. Hence, by condition (ii) on <g, we deduce the
equation

lwy(f + J) = Ww(f).

According to the identification of ordered words and commutative power products we can
interpret f as an element of the polynomial ring R. The canonical isomorphism defined
by P/J 3 f+J +— f € R provides an identification of P/J and R which justifies the
equation

lwy(f +J) = 1p(f). (4.1)

Before we prove that the grading Rg is good for the computation of Pommaret bases,
we will have to look at the associated graded ring Gg of R with respect to Rg. Let Gg
denote the additive group of all elements of G5 of degree t € 5. Clearly, G5, = {0} for
allt ¢ T and Gg,; is a one-dimensional K-vector space for each ¢ € T. Consequently, Gg
is isomorphic to R as K-vector space and we can represent G as the polynomial ring
R with a new multiplication ». Unless we want to stress the residue class property of
the elements of G'g, we will abbreviate the residue class {u]z € Gs by u for elements
u € T. In particular, we write in{u) = u for all w € T'. Given two words »,v € T we have
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in(u) ® in(v) = in(uv) if v ov € T and in(u) » in(v) = 0, otherwise. Recall Example 4.1.
We have

in(XY)ein(YZ) = [XY]p e[Y2Z)y, =1XY2Z] =in(xv22).
But since XYY Z <g XZYY, it holds that
in(X2)ein(Y?) = [XZ)5,, ¢ [¥?a, = X¥Y2Z]p =0

In conclusion we can deduce some properties of (75. In the univariate case we have the
trivial relationship Gg = G = R. If X contains at least two variables then G'g is non-
commutative (e.g. XY = X oY # Y o X = (), contains zero-divisors (e.g. ¥ # X = ()
and is not left Noetherian (e.g. the left ideal generated by XY #, where p = 1,2,.. ., is
not finitely generated). Furthermore, we observe that in{u} € LIn{t) if and only if u is
right subword of ¢, i.e. there exists » € § such that v e u = ¢, Summarizing this, we can
state the main theorem of this paper:

THEOREM 4.1. Let < be an admissible term order and Rs = (R, S, <g,1p) be a graded
structure, where <g satisfies conditions (i} end (i1). Furthermore, let I C R be a poly-
nomial ideal. Then each Pommaret basis F of I with respect to <7 15 a left Rg-Gribner
basis of I. Moreover, F is Pommaret basis of I with respect to <1 if and only if it is
minimal left Rg-Gribner basis of I.

Proor. The statement follows on immediately from the trivial observation that u € T
is Pommaret divisor of ¢ € T if and only if in(u) € LIn(t). The fact that the Pommaret
bases defined by Zharkov and Blinkov correspond only to the minimal left R g-Grobner
bases is due to their assumption that a Pommaret basis has to be P-autoreduced. [

The theorem justifies calling Rg a Pommaret grading of R which extends <. Note
that the order <g is not necessarily uniquely determined by <7 . For instance, both
orders <g and -<:9 would be snitable in Example 4.1. However, the freedom in the choice
of <g has no influence on the leading power product of a polynomial. Therefore, initial
ideals and the property of being a Grébner basis are not influenced. In the sequel we will
show that not only the notions of Pomimaret and left R g-Grébner bases coincide but that
also the semi-algorithms for their computation are the same. First, we have to verify the
left effectiveness of the Pommaret grading Rg. Clearly, condition (i) of Definition 3.2 is
satisfied. Let hq,..., hm, h € Gg be non-zero homogeneous elements. Then A is member
of the left ideal I = Gg e H if and only if there exist 1 < i < m and » € T such that
deg h = v o deg h;. This question is decidable and if h € I then

_le(h)
T le(ve hi)v *

is a homogeneous representation of A in terms of H. Hence, Ry also satisfies condition
(ii) of Definition 3.2. The following lemma proves condition (iii).

by

LEMMA 4.1, Let H = {hy,...,hp} C G5 be a finite set of homogenecus non-zero ele-
ments. Then B = By U By is ¢ finite basis of LSyz(H ), where

By={Xieen|l<j<m,1<i<n X;odegh; ¢ T},

By ={ueen, +en |l <j,k<m,deguodegh; = deghy,lc{ueh;) = —lc(hi)}.
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PrROOF. Let s = 2;11:1 fj ® en; be a non-zero homogeneous left syzygy of H of degree
u € 5. We distinguish two cases.

(i) Let u ¢ T. Then each non-zero element f; has a decomposition f; = t;e X, , where
t; is a non-zero homogeneous element and 1 < i; < n. Clearly, X;, odegh; ¢ T.
zlfe;(f, 8;=Xi;®ep, € By and s = Efﬁéo t; » 55 is a representation of s in terms

(ii) Let w € T. Then f; @ h; = 0 implies f; = 0. Therefore, there exist 1 < j# k< m
such that f;, fr # 0. The equality deg f; o degh; = deg f o deghp == u implies
that, without loss of generality, degh; is right subword of degf. Hence, there
exists a homogeneous non-zero element v € Gg such that v e A; + by = 0. Set
s'i=s5— fre(veen +en). s is homogeneous left syzygy of H of degree u having
less non-zero summands than s. Repeating these arguments, finally, we obtain a
representation of s in terms of By,

a

In summary, Rg is a left effective graded structure and the method presented in Figure
4 is semi-algorithmic. It follow three properties which prove that the Zharkov/Blinkov
method present~d in Figure 2 is an instantiation of the semi-algorithm 4.

(i) Any P-normal form of a polynomial f modulo # C R is also left R g-normal form
of f modulo H.
(i1) The prolongations occurring in Figure 2 are critical elements of left syzygies con-
tained in B;.
(iii) The result of a P-autoreduction is a left Rg-normal form of the critical element of
some left syzygy contained in Bsj.

The most important consequence of these observations is that we can apply all resulis
obtained by many researchers in the theory of Grobner bases within the last 30 years
in order to improve the method for the computation of Pommaret bases. As usual we
can look for criteria for detecting unnecessary reductions; in particular, we can minimize
the basis B of left syzygies. A second, important way for obtaining speed is the choice
of a “good” syzygy selection strategy. Recall that we can use any fair selection strategy
for choosing the next left syzygy to be considered. Examples of fair selection strategies
are those that choose a left syzygy of minimal weight with respect to some fixed weight
vector assigning each variable a positive weight. If <g is a refinement of the partial
order defined by such a positive weight vector, then we can apply the standard selection
strategy, i.e. we always choose a left syzygy which has minimal degree with respect to
< g. Note, however, that the standard selection strategy is not fair, for example, for the
lexicographical order. Sugar-like selection strategies (see Giovini et al, 1991) are fair.

Now let us consider the termination problem of method 4 for our particular graded
structure Rg. According to Theorem 3.2, it is sufficient to investigate under which condi-
tions the R g-initial left ideal of a given polynomial ideal is finitely generated. Assume / is
a zero-dimensional polynomial ideal. Then there exist positive natural numbers &1, ..., vy
such that X% € in{I). For each 1 < i < n we define the set #; consisting of all power
products X{* .- X5~ such that pj = 0 for 1 < j < 4, pi = v; and 0 < py < v; for
i < j < n. All sets H; are finite subsets of in{J). The left ideal of Gg generated by
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H= U:;l H; contains all but finitely many power products of T. Hence, a homogeneous
basis of the R s-initial left ideal LIng(I) can be obtained by adding at most finitely many
power products to H. This proves the well-known fact, that LIng([) is finitely generated
with respeet to any Pommaret grading of R in case dim7 = 0.

There are positive dimensional ideals I for which LIng(f) is not finitely generated, for
example, each principal ideal generated by a monomial not having the form X5 (such as
Y under the setting of Example 4.1) has this property. Though we will be unable to give
a complete description of the termination behaviour in the positive dimensional case,
we can characterize the situation up to a large extend. Let us consider the relationship
between the initial ideals of T with respect to the graded structures Ky and Rg. For
the moment we forget about multiplication and consider only the X-vector spaces R =
(G g = Gp. Then the function in : B — R is the same for both graded structures R and
Rs. However, in general, the left ideals Ing(F) and LIng(F) generated by in(F) in Gt
and G g, respectively, will be different because of the different multiplications. Note the
K-vector space equality of Ing{I) and LIng{I) for ideals I. Nevertheless, an ideal basis of
Iny(I) need not to generate LIng(I). Recall that the associated graded ring with respect
to a Grdbner grading is the polynomial ring R itself. We can thus consider R g-initial left
ideals of R-initial ideals. For a given admissible term order <7, the initial ideals of 1
corresponding to the Grébner grading defined by <7 and a Pommaret grading extending
<7 are connected by the equation

Llns(I) = Ling(Inp(1)). (4.2)

It follows a necessary condition for finitely generated Rg-initial left ideals:

LEMMA 4.2, Let <1 be an admissible term order, Ry be the Gribner grading of R
defined by <7, and Rg be a Pommaret grading of R extending <. Also, let I C R
be a d-dimensional ideal such that LIng(I} is generated by the finite homogencous basts
B C T. Then I satisfies the following equivalent conditions:

(i) for each d < i < n there exists v; > 0 such that X* € Ling([);
(i) {X1,...,Xq} is the only mazimal independent set of variables for I; end

(iii} {X1,..., X4} is a system of parameters for the Ry-initial ideal Inp(I), i.c. for cach
1<i<d we have

dim (Inp (1) + (X1,..., X;)R)=d —i.

Proor. For d = n the statement is trivial. So let us assume d < n. dim (f) = d implies
INK[Xy, - v Xap1] # {0} Let f € INK[{X1,...,Xg41]- Foreach d < 7 < n and each
natural number g there exist »; , € T and u;, € B such that v; , cu;, = lp(XJ",ff) =
Ip(f) o X% € in(I). B is finite; hence, for each d < j < n there exists an element u; € B
which is right subword of almost all powers X;‘ (1t =1,2,...). This proves condition (i).
It is an easy exercise to prove the equivalence of all three conditions. O

The converse of Lemma 4.2 does not hold: consider the ideal I C R generated by
{XY Z,Z%} under the settings of Example 4.1. Obviously, I is two-dimensional and
satisfies conditions (i)—(iii) of Lemma 4.2. However, the Rg-initial left ideal

LiIng(l) = Gge (Z%) + Gs e {XYZ,XY?Z,... ,XY"2Z,..))
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is not finitely generated. There is a straightforward generalization of the zero-dimensional
case to higher dimensions that will provide a first sufficient condition.

LEMMA 4.3. Let <1 be an admissible term order, Ry be the Grébner grading of R defined
by <7, and Rg be a Pommaret grading of R extending <p. Furthermore, let I C R be a
d-dimensional polynomial ideal. If the Rop-initial ideal Inp(I) satisfies

(IHT(I)ﬂ’C[Xd+1,...,Xn])R= IHT(I) (4.3)
then Ling(I) is finitely generated.

Proor. Let §' be the free non-commutative monoid generated by {Xg41,..., X}
Since I is d-dimensional and satisfies equation (4.3), the elimination ideal Inp(f) N
K{Xd41,--., Xn) is zero-dimensional. Hence, Llng (Ing(I) N K[Xgy1,..., Xp]) is finitely
generated. Using equations (4.2) and {4.3), we deduce LIng(I) = Gg e LIng:{Ing(I) N
K[Xg+1,...,Xy]) and the assertion will follow. U

We say that I € R is in generic pasition with respect to the admissible term order < iff
t=X{"... Xt € in(I) implies u € in(J) for all monomials « = X{*--- X2~ satisfying

T n
2imy Mi = D g vi and
Eﬂxﬁ,,xi i < Eilx,--wx,- vi forall 1 <j <mn.

For any admissible term order <7 and any ideal I there exists a Zariski open subset [J
of the group GI(n) of all non-degenerated linear variable changes such that any element
of U transforms I in generic position with respect to <7. If, in addition, X1 <7 X3 <1

- < X, then the Borel group (i.e. the group of linear variable changes defined by
upper triangular regular matrices) already contains a Zariski open subset U/ with the
above property. For details we refer to Bayer and Stillman (1987).

THEOREM 4.2. Let <7 be an admissible term order such that X{ <7 Xg <7 - <7 X,
and lef Rg be ¢ Pommaret grading of R extending <7. If the ideal I C R is in generic
position with respect to <7 then the Rg-initial left ideal LIng([) is finitely generated.

Proor. Let H C T be a minimal basis of LIng(I). Fix 1 € j < n. Each element
t € HNK[X;,...,Xz] can be represented in the forn ¢t = X;" o u(t), where u(f) €
TNK[Xj+1,...,Xn] and »; > 0. Since I is in generic position with respect to <
we have X;il o u{t) € in(f). Since H is minimal basis of LIng() there exist uniquely
determined elements v(t) € T and w(t) € H N K[X,11,...,X5] such that X;il ouf(t) =
v(t) o w(t). Hence, the relation ~C (H NK[X;,..., X,]) x (H NK[X;,...,Xz]) defined
by t ~ 5 < w(t) = w(s) is an equivalence relation and

HOK[X;,. .., Xq] = U [t]~ -
tEHNK[X 41,0, Xl

Consider ¢ = X;.‘_""_*l'l XK e HNK[X 4q,..., X,]. Since H is minimal basis the class
[t]~ contains pjyy + 1 elements at most. Hence, finiteness of H N K[X;41,..., Xy] will
imply finiteness of # N K[X;,...,Xy] for all 1 < j < n. The trivial observation that
H NK[X,] is finite completes the proof. O
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Theorem 4.2 provides a second sufficient condition on positive dimensional ideals en-
suring a finitely generated Rg-initial left ideal. Any polynomial ideal will satisfy this
condition after a suitable linear change of variables and the set of suitable transforma-
tions is Zariski open,

5. Possible and impossible generalizations

An obvious and easy to perform generalization of Pornmaret bases in graded structures
is to consider two-sided Rg-Grobner bases.

For the sake of generalization we strictly avoid making use of the relation le(f)lc(g) =
lc(fg} for non-zero polynomials f and g and the fact that a polynomial ring is commu-
tative. So, the theory can be extended to algebras of solvable type in a straightforward
manner. Only the statements involving ideal dimensions have to be reformulated in a
convenient way; we can consider the dimension of the ideal generated by in{I} in the
polynomial ring over X in the same indeterminates.

Note that the calculations g — ¢tf and g — ¢f;, where f; = tf, have almost the same
cost in polyncomial rings. But in algebras of solvable type the first calculation is often
much more expensive than the second. Hence, the Pommaret basis approach for algebras
of solvable type seems to be even more promising than for polynomial rings.

We will close this paper with a remark concerning other types of involutive bases.
Recall that the basic idea of involutive bases is the restriction of the divisibility of power
products. In the theory of Janet bases, introduced in Zharkov {19944), the set of divisors
of a power product depends not only on the power product itself but zalso it is defined
relative to a set of non-zero polynomials. While the notions of divisibility used in the
theories of Gribner and Pommaret bases can be described in suitable associated graded
rings, a similar approach will not work for Janet bases.
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