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Abstract. Mechanized reasoning systems and computer algebra systems have different objectives.
Their integration is highly desirable, since formal proofs often involve both of the two different tasks
proving and calculating. Even more important, proof and computation are often interwoven and not
easily separable.

In this article we advocate an integration of computer algebra into mechanized reasoning sys-
tems at the proof plan level. This approach allows us to view the computer algebra algorithms as
methods, that is, declarative representations of the problem-solving knowledge specific to a certain
mathematical domain. Automation can be achieved in many cases by searching for a hierarchicproof
planat the method level by using suitable domain-specific control knowledge about the mathematical
algorithms. In other words, the uniform framework of proof planning allows us to solve a large class
of problems that are not automatically solvable by separate systems.

Our approach also gives an answer to the correctness problems inherent in such an integration.
We advocate an approach where the computer algebra system produces high-level protocol informa-
tion that can be processed by an interface to derive proof plans. Such a proof plan in turn can be
expanded to proofs at different levels of abstraction, so the approach is well suited for producing a
high-level verbalized explication as well as for a low-level, machine-checkable, calculus-level proof.

We present an implementation of our ideas and exemplify them using an automatically solved
example.

Changes in the criterion of ‘rigor of the proof’
engender major revolutions in mathematics.

H. Poincaré, 1905

Key words: mechanized reasoning, computer algebra, hierarchical proof planning, proof checking.

1. Introduction

The computer and the development of high-level programming languages made
possible the mechanization of logic as well as the realization of mechanical sym-
bolic calculations we have witnessed in the past forty years. This has led to two
rather disjoint academic fields, mechanized reasoning and computer algebra, each
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328 M. KERBER, M. KOHLHASE AND V. SORGE

of which has its own methods, interests, and traditions, even though they share
common roots: neither of the two fields is imaginable without the underlying foun-
dation of mathematical logic or the mathematical study of symbolic calculations
(leading to such algorithms and methods as the determination of the GCD or the
Gaußian elimination). Only in the last decade we have seen a move toward an
integration of the fields, driven by the insight that real-world formal problems often
involve a mixture of both computation and reasoning and, hence, that an integration
of mechanized reasoning systems and computer algebra systems is highly desirable
(see [8]). This is the case in particular, since deduction systems are very weak,
when it comes to computation with mathematical objects, and computer algebra
systems manipulate highly optimized representations of these objects, but do not
yield any formally checkable proof information (if they give any explanation at
all).

In the remainder of this introduction we briefly summarize key points of mech-
anized reasoning systems as well as of computer algebra systems and then give
a short preview on the integration approach advocated in this paper. By its na-
ture, such a short description has to abstract from many details and to simplify
considerably.

1.1. MECHANIZED REASONING SYSTEMS

Mechanized reasoning systems (for short, MRS in the following) are built with
various purposes in mind. One goal is the construction of an autonomous theorem
prover, whose strength achieves or even surpasses the ability of human mathe-
maticians. Another is to build a system where the user derives the proof, with the
system guaranteeing its correctness. A third purpose consists in modeling human
problem-solving behavior on a machine; that is, cognitive aspects are the focus.

Advanced theorem-proving systems often try to combine the different goals,
since they can complement each other in an ideal way. Let us roughly divide
existing theorem-proving systems into three categories: machine-oriented theorem
provers, proof checkers, and human-oriented (plan-based) theorem provers.

Normally all these systems do not exist in a pure form anymore, and in some
systems like our own�MEGA system [5] it is explicitly tried to combine the
reasoning power of automated theorem provers as logic engines, the specialized
problem-solving knowledge of the proof planning mechanism, and the interac-
tive support of tactic-based proof development environments. We think that the
combination of these complementary approaches inherits more advantages than
drawbacks, because for most tasks domain-specific as well as domain-independent
problem-solving know-how is required and for difficult tasks, more often than not,
explicit user-interaction should be provided. While such an approach seems to be
general enough to cope with any kinds of logic-level proofs, it neglects the fact that
for many mathematical fields, the everyday work of mathematicians only partially
consists in proving or verifying theorems. Calculation plays an equally important

JADKS02.tex; 23/09/1998; 9:44; p.2



INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 329

rôle. In some cases the tasks of proving theorems and calculating simplifications of
certain terms can be separated from each other, but very often the tasks are inter-
woven and inseparable. In such cases an interactive theorem-proving environment
will provide only poor support to a user. Although theoretically any computation
can be reduced to theorem proving, this is not practical for nontrivial cases, since
the search spaces are intractable. For many of these tasks, however, no search is
necessary at all, since there are numerical or algebraic algorithms that can be used.
If we think of Kowalski’s equation “Algorithm= Logic+ Control” [31], general-
purpose procedures do not (and cannot) provide the control for doing a concrete
computation.

1.2. COMPUTER ALGEBRA SYSTEMS

Early computer algebra systems (CAS for short) developed from collections of
algorithms and data structures for the manipulation of algebraic expressions like
the multiplication of polynomials, or the derivation and integration of functions
[22]. Abstractly, the main objective of a CAS can be viewed in the simplification
of an algebraic expression or the determination of a normal form. Today there is a
broad range of such systems, from very generally applicable systems to a multitude
of systems designed for specific applications. Unlike MRS, CAS are used by many
mathematicians as a tool in their everyday work; they are even widely applied in
sciences, engineering, and economics. Their high academic and practical standard
reflects the fact that the study of symbolic calculation has long been an established
and fruitful subfield of mathematics that has developed the mathematical theory
and tools.

Most modern systems [34, 12, 28] have in common that the algebraic algorithms
are integrated in a very comfortable graphical user interface that includes formula
editing, visualization of mathematical objects, and even an interface to program-
ming languages. As in the case of MRS the representation languages of CAS differ
from system to system, thereby complicating the integration of such systems as
well as the cooperation between them. This deficiency has been attacked in the
OpenMath initiative [1], which strives for a standard CAS communication protocol.
Currently the main emphasis is on standardizing the syntax and the computational
behavior of the mathematical objects, while their properties or semantics are not
considered. That means there is no explicit representation format for theorems,
lemmata, and proofs. Some specific systems allow one to specify mathematical
domains and theories. For instance, in systems like MUPAD [18] or AXIOM [28],
computational behavior can be specified by attaching types and axiomatizations to
mathematical objects; but this also falls short of a comprehensive representation of
all relevant mathematics. Furthermore, almost all CAS fail to give an explanation
or proof of their solution to the problem at hand, even though some mathematical
theories like that of Gröbner bases can be successfully applied to theorem proving
in elementary geometry [13, 29, 14, 35].
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1.3. CONTRIBUTIONS OF THIS PAPER

Not only can a mutual simulation of the tasks of an MRS and a CAS be quite
inefficient, but more important, the daily work of mathematicians is about proving
and calculating. This points to the integration of such systems, since mathemati-
cians want to have support in both of their main activities. Indeed, two independent
systems can hardly cover their needs, since in many cases the tasks of proving and
calculating are hardly separable. As pointed out by Buchberger [7] the integration
problem is still unsolved, but it can be expected that a successful combination of
these systems will lead to “a drastic improvement of the intelligence level” of such
support systems.

Our paper addresses two immediate questions occurring in the integration of
automated reasoning and computation systems.

– How can the algorithms be integrated so that the underlying mathematical
knowledge is mutually respected and a synergy effect is achieved?

– How can the correctness problem inherent in any such combination be ad-
dressed? In particular, how can results from the CAS be integrated into a proof
without having to completely trust the CAS?

We advocate an integration of computer algebra into mechanized reasoning sys-
tems using the proof planning paradigm. This approach allows one to encapsulate
the computer algebra algorithms intomethods, that is, declarative representations
of the problem-solving knowledge specific to a certain mathematical domain. The
proof planning paradigm enables a user to guide a proof or to fully hand over the
control to a planner, which in turn can use computer algebra systems, if the specifi-
cations for the corresponding algorithms are met. The use of hierarchicproof plans
at the method-level gives a suitable granularity of integration, since it allows one to
directly use existing (human) control knowledge about the interplay of computation
and reasoning.

A proper integration into the proof planning approach answers the question
about the correctness automatically, since the corresponding questions are solved
for proof planning. In this area a proof plan can either be rejected (since the tactics
are not executable, the plan cannot be used to build a proof) or be executed. The
latter results either in a further planning phase to fill in possible gaps or in an
accepted machine-checkable proof. Hence a proper integration requires that the
computer algebra system produces high-level protocol information that can be
processed by an interface to derive proof plans that themselves can be seamlessly
integrated into the overall proof plan generated in the problem-solving attempt.
Since this can be expanded into an explicit, checkable proof in order to obtain a
correctness guarantee for the combined solution, we have also given a principled
answer to the correctness problem.

The feasibility of the approach advocated in the sequel has been verified by
integrating a simple CAS into the�MEGA proof planning system. Therefore, we
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organize the paper around this experiment and describe the relevant features with
a system perspective. Our approach requires a mode of the CAS that generates
information from which it is possible to generate a proof plan. For that reason the
integration of a standard CAS makes major adaptations unavoidable (in particular
it is necessary to change the source code of these systems). Our approach is not
committed to the particular systems involved; in particular, the work reported here
should be understood as a proof of principle rather than as the development of a
state-of-the-art integrated system.

Moreover, we will make the details of the approach more concrete by explaining
them by means of an example that cannot easily be solved by either a mechanized
reasoning system or a computer algebra system alone, but that needs the combined
efforts of systems of each kind.

2. Related Work

We give a short description of some of the experiments to combine MRS and CAS
and roughly categorize them into three classes with respect to the treatment of
proofs that is adopted, that is, with respect to the correctness issue. In doing so
we describe in detail only the approaches of integrating CAS into MRS; that is,
essentially the MRS is the master and the CAS the slave, since our approach is also
of this kind. With the same right, one can of course follow the converse direction,
namely, to approach the integration from the point of the CAS; and indeed such
approaches are also successfully undertaken (see, e.g., [15, 9]).

The question about the granularity of integration is treated uniformly by all
these experiments. The application of the CAS is treated as another (derived) rule
of inference at the level of the (tactic) calculus, so the granularity of integration
depends on the granularity of the calculus or the tactics involved.

In the first category of attempts (see, e.g., [21, 3]) one essentially trusts that the
CAS properly work; hence, their results are directly incorporated into the proof. All
these experiments are at least partly motivated by achieving a broader applicability
range of formal methods; and this objective is definitively achieved, since the range
of mathematical theorems that can be formally proved by the system combinations
is much greater than that provable by MRS alone. However, CAS are very complex
programs and therefore trustworthy only to a limited extent, so that the correctness
of proofs in such a hybrid system can be questioned. This is not only a minor
technical problem, but will remain unsolved for the foreseeable future, since the
complexity (not only the code complexity, but also the mathematical complexity)
of a CAS does not permit verification of the program itself with currently avail-
able program verification methods. Conceptually, the main contribution of such
an integration is the solution of the software-engineering problem of how to pass
the control between the programs and translate results forth and back. While this
is an important subproblem, it does not seem to cover the full complexity of the
interaction of reasoning and computation found in mathematical theorem proving.
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In an alternative approach that formally respects correctness, but essentially trusts
CAS, an additional assumption standing for the CAS is introduced, so that essen-
tially formulae are derived that are proved modulo the correctness of the computer
algebra system at hand (see, e.g., [21]).

The second category (for which [20] is paradigmatic) is more conscious about
the rôle of proofs and uses the CAS only as an oracle, receiving a result, whose
correctness can then be checked deductively. While this certainly solves the cor-
rectness problem, this approach has only limited coverage, since even checking
the correctness of a calculation may be beyond the scope of most MRS, when
they don’t have additional information. Indeed, from the point of applicability, the
results of the CAS help only in cases where the verification of a result is simpler
than its discovery, such as prime factorizations, solving equations, or symbolic
integration. For other calculations, such as symbolic addition or multiplication of
polynomials and differentiation, the verification is just as complex as the calcu-
lation itself, so that employing the CAS does not speed the proof construction.
Typically, in longer calculations, both types of subcalculations are contained.

A third approach of integrating computer algebra systems into a particular kind
of mechanized reasoning system consists in the meta-theoretic extension of the
reasoning system as proposed, for instance, in [6, 24] and been realized in NUPRL

[17]. In this approach a constructive mechanized reasoning system is basically used
as its own meta-system. The constructive features are exploited to synthesize a
correct computer algebra system; and because of bridge rules between ground and
meta-system, it is possible to integrate the so-built CAS that it can be directly used
as a component. The theoretical properties of the meta-theoretic extension guaran-
tee that if the original system was correct, then the extended system is correct too.
This method is the most appealing one from the viewpoint of correctness, although
the assumption that the original (also rather complex) system must be correct can
hardly be expected to be self-evident for any nontrivial system. A disadvantage
compared with the other two approaches is that it is not possible to employ an
existing CAS, but that it is necessary to (re)implement one in the strictly formal
system given by the basic MRS. Of course, this is subject to the limitations posed
by the (mathematical and software engineering) complexities mentioned above.

The main problem of integrating CAS into MRS without violating correctness
requirements is that CAS are generally highly optimized toward maximal speed of
computation but not toward generating explanations of the computations involved.
In most cases, this is dealt with by meta-theoretic considerations about why the
algorithms are adequate. This lack of explanation not only makes it impossible for
the average user to understand or convince himself of the correctness of the com-
putation, but leaves any MRS essentially without any information why two terms
should be equal. This is problematic, since computational errors have been reported
even for well-tested and well-established CAS. From the reported categories of
approaches, only the last one seriously addresses this problem.
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3. �MEGA as an Open System for Integrating Computation

�MEGA is a proof development system, based on the proof planning paradigm.
In this section we describe its architecture and components and show how this
supports the integration of computer algebra systems. Since the goal of this paper
is not to present a system description of�MEGA, but to document the integration
of computer algebra into it, we try to be as concise as possible and introduce the
relevant parts only: the general architecture, the proof planner, and the integration
possibilities for external reasoners.

3.1. THE PROOF DEVELOPMENT ENVIRONMENT�MEGA

The entire process of theorem proving in�MEGA can be viewed as an interleaving
process of proof planning, execution, and verification centered on a hierarchical
proof plan data structure.

Several integrated tools support the user in interacting with the system. Some
of them are also available to the proof planner.

Theory Database

Since methods and control knowledge used in proof planning are mostly domain-
specific,�MEGA organizes the mathematical knowledge in a hierarchy of theo-
ries. Theories represent signature extensions, axioms, definitions, and methods that
make up typical established mathematical domains. Each theorem has its home
theory and therefore has access to the theory’s signature extensions, axioms, de-
finitions, and lemmata without explicitly introducing them. A simple inheritance
mechanism allows one to incrementally build larger theories from smaller parts.

We give an overview of the part of�MEGA’ S theory database that is necessary
for solving our extended example in Figure 1.

Proof Explanation

Proof presentation is one important feature of a mathematical assistant that has
been neglected by traditional deduction systems.�MEGA employs an extension
of the PROVERB system [27] developed by our group that allows for presenting
proofs and proof plans in natural language. In order to produce coherent texts that
resemble those found in mathematical textbooks, PROVERB employs state-of-the-
art techniques of natural language processing.

Because of the possibly hierarchical nature of�MEGA proofs, these can be
verbalized at more than one level of abstraction, which can be selected by the user.

To summarize our view of proofs, for every theorem an explicit proof has to be
constructed so that on the one hand it can be checked by a proof checker and on the
other hand the system provides support to represent this proof in a high-level form
that is easily readable by humans [27]. Neither the process of generating proofs
nor that of checking them is fully replaced by the machine but only supported. If a
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human mathematician wants to see a proof, he/she can do so at an appropriate level
of abstraction.

3.2. PROOF PLANNING

The central data structure for the overall process is theProof plan Data Structure
(PDS). This is a hierarchical data structure that represents a (partial) proof at
different levels of abstraction (calledproof plans). It is represented as a directed
acyclic graph, where the nodes are justified by (LCF-style) tactic applications.
Conceptually, each such justification represents a proof plan (theexpansionof the
justification) at a lower level of abstraction that is computed when the tactic is
executed.? In �MEGA, we explicitly keep the original proof plan in an expansion
hierarchy. Thus, thePDS makes the hierarchical structure of proof plans ex-
plicit and retains it for further applications such as proof explanation or analogical
transfer of plans.

Once a proof plan is completed, its justifications can successively be expanded
to verify the well-formedness of the correspondingPDS. This verification phase
is necessary, since the correctness of the different components (in particular, that of
external ones like automated theorem provers or computer algebra systems) cannot
be guaranteed. When the expansion process is carried out down to the underlying
ND-calculus (natural deduction), the soundness of the overall system relies solely
on the correctness of the verifier and of ND. This also provides a basis for the
controlled integration of external reasoning components if each reasoner’s results
can (on demand) be transformed into a sub-PDS. The level to which the proofs
have to be expanded depends on the sophistication of the proof checker. As pointed
out by Barendregt [4], a more complex proof-checker that accepts proofs in a
more expressive formalism may drastically reduce the length of the communicated
proofs. If the high-level justifications are not expanded but accepted as they are,
our approach reduces to one in which the computer algebra system is fully trusted.
In short, the hierarchical nature of thePDS supports the full spectrum of user
preferences, from total trust in the CAS, over partial trust in certain levels to full
expansion of the proofs in a detailed calculus level description that is machine
checkable.

A PDS can be constructed by automated or mixed-initiative planning, or pure
user interaction that can make use of the integrated tools. In particular, new pieces
of PDS can be added by directly calling tactics, by inserting facts from a database,
or by calling some external reasoner (cf. Section 3.3) such as an automated theorem
prover or a computer algebra system. Automated proof planning is adequate only
for problem classes for which methods and control knowledge have already been
established.

? This proof plan can be recursively expanded, until we have reached a proof plan that is in fact
a fully explicit proof, since all nodes are justified by the inference rules of a higher-order variant of
Gentzen’s calculus of natural deduction (ND).
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The goal of proof planning is to fill gaps in a givenPDS by forward and
backward reasoning [26] (proof plans were first introduced by Bundy; see [10,
11]). Thus, from an abstract point of view the planning process is the process of
exploring the search space ofplanning statesthat is generated by theplan operators
in order to find a completeplan from a giveninitial state to aterminal state.
�MEGA’ S proof planner is an extension of the well-known STRIPS algorithm

that can be evoked to construct a proof plan for a nodeg (the goal node) from a
setI of supporting nodes(the initial state) by using a setOpsof proof planning
operators, here called methods. Amethodis a (partial) specification of a tactic in a
meta-level language. In�MEGA, planning is combined with hierarchical expansion
of methods and precondition abstraction. The plans found by this procedure are
directly incorporated into thePDS as a separate level of abstraction.

In this model, the actual reasoning competence of the planner and the user
builds upon the availability of appropriate methods together with meta-level control
knowledge that guides the planning. At the moment,�MEGA provides user-defined
method ratings as a means of control and can use analogy as a control strategy of
the planner. Two examples of methods are displayed in Section 3.4 on the extended
example.

3.3. INTEGRATION OF COMPUTER ALGEBRA SYSTEMS AS EXTERNAL

REASONERS

According to the different modes of�MEGA there are different levels on which an
external reasoning system, RSYS, can be integrated:

– Interactive calls: RSYS is represented as a commandcall-RSys that in-
vokes the reasoner on a particular subproblem and returns the result.

– Proof planning: RSYS is represented as a method whose specification con-
tains knowledge about the problem-solving behavior and option settings for
RSYS.

– Justifications: RSYS can serve as a justification of a declaratively given sub-
goal that is left to be proved by RSYS.

In any case, the proof found by RSYS must eventually be transformed into a
PDS, since this is the proof-theoretic basis of�MEGA. For automated theorem
provers like OTTER [32], we described the integration in [25] and the necessary
proof transformation toPDS in [27], so we will not pursue this matter here. The
integration of CAS follows the same paradigm and is the main topic of this paper,
so we will develop the paradigm for the case of external computations in�MEGA.
We will see examples for the three different levels of integrations of a CAS into
�MEGA in the example in the next section, so we will not go into that here. This
leaves us with the question of the transformation of the CAS results intoPDS.
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If we take the idea of generating explicitPDS seriously also for computations,
we can neither just take existing systems nor follow the approach of meta-theoretic
extensions, since�MEGA is a classical proof system and does not use constructive
logic. On the other hand, we cannot forgo using them even in cases where the
verification of a calculation is much easier than the calculation itself (e.g., inte-
gration of functions); the computation needed for verifying alone is in many cases
still much too complicated to be automatically checked without any guidance. For
instance, even the proof for the binomial formula(x+y)2 = x2+2xy+y2 (a trivial
problem for any computer algebra system) needs more than 70 single steps in the
natural deduction calculus.? Thus, using theorem provers or rewriting systems to
find such proofs can produce unnecessarily large search spaces and absorb valu-
able resources. On the other hand, such proofs show a remarkable resemblance
to algebraic calculations themselves and suggest the use of the CAS not only to
instantly compute the result of the given problem, but also to guide a proof in the
way of exploiting the implicit knowledge of the algorithms. We propose to do this
extraction of information not by trying to reconstruct the computation in the MRS
after the result is generated – as we have seen, even in case of a trivial example for a
CAS, this may turn out to be a very hard task for an MRS – but rather by extending
the CAS algorithm itself so that it produces some logically usable output alongside
the actual computation. Surely in most cases a user would not like to see proofs
at a level where the binomial formula is explained (although a novice might want
to). This means that a hierarchical approach to proof generation is appropriate, in
which the abstraction level of the proof presentation can be chosen by the user.

Our approach is to use the mathematical knowledge implicit in the CAS to
extract proof plans that correspond to the mathematical computation in the CAS.
So, essentially the output of a CAS should be transferable into a sequence of tactics,
which presents a high-level description for the proof of correctness of the compu-
tation the CAS has performed. Note that this does not prove general correctness
of the algorithms involved; instead it gives a proof only for a particular instance of
computation. The high-level description can then be used to produce a readable ex-
planation or further expanded to a level that can be automatically checked by proof
checkers. The level of abstraction on which the checking can take place depends
on the level of sophistication of the proof checker. For a naive proof checker, the
proof must be expanded to an explicit calculus level. The decision to extract proof
plans rather than concrete proofs from the CAS is essential to the goal of being
verbose without transmitting too much detail.

For our purpose, we need different modes, in which we can use the CAS. Nor-
mally, during a proof search, we are only interested in the result of a computation,
since the assumption that the computation is correct is normally justified for es-
tablished CAS. When we want to understand the computation – in particular, in a
successful proof – we need a mode of the CAS that gives enough information to

? Proofs of this length are among the hardest ever found by totally automatic theorem provers
without domain-specific knowledge.
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generate a high-level description of the computation in terms of the mathematics
involved. This is described in the next section in detail. First, however, we de-
scribe how the integrated system automatically solves an extended example from
an economics examination.

3.4. EXTENDED EXAMPLE

The concrete task at hand is to minimize the costs for running a machine while
producing a certain product.

PROBLEM. The output of a machine can range over a certain interval,I = [1,7].
The cost of the product prod is determined by the costs of water and electricity for
producing prod, which are given by the functions

• r1 = (0.5d2 + 3) m3

prod,

• r2 = (4d2 − 24d + 6) kWh
prod,

and the prices for water and electricity,

• p1 = 2 DM
m3 ,

• p2 = 0.5 DM
kWh.

Determine the outputd in I of the machine such that the total costs are minimal.

This example serves our purposes for several reasons. First, it allows us to show
the interaction of proof planning with symbolic computation and the extraction of
proof plans from calculations. Second, the mathematics involved is simple enough
to be fully explained (only simple polynomial manipulations are necessary). Third,
it is not an example we created, but the problem is a slightly varied version of a
minimization problem from a master’s examination in economics at the Universität
des Saarlandes, Saarbrücken [33].

To solve problems like this, we have integrated a simple CAS into�MEGA,
calledµ-CAS.?

Theµ-CAS-system is very simple and can at the moment perform only basic
polynomial manipulations and differentiation, but it suffices for automatically solv-
ing the example at hand. Clearly, for a practical system for mathematical reasoning,
a much more developed system like Maple [12], Reduce [22], AXIOM [28], or
Mathematica [34] has to be integrated. The technicalities of the integration will be
described in Section 4.
? The µ-CAS system is part of the standard distribution of�MEGA, which can be obtained

from http://www.ags.uni-sb.de/software/deduktion/omega. The example is accessible as
WiWi-Exam in the theoryeconomy.

JADKS02.tex; 23/09/1998; 9:44; p.11



338 M. KERBER, M. KOHLHASE AND V. SORGE

For the formalization of the example, we use the theory mechanism of�MEGA

to create a theoryeconomy (see Figure 1) that contains the domain-specific knowl-
edge (both the factual and the method knowledge) needed for the problem solution.
Obviously, we need a background theory ofcostsin economics (that handles both
numerical parts and denomination of cost functions) and one ofminimizationof
real functions. Therefore, our theory inherits material from the theoriescosts
and calculus. The calculus theory is provided by�MEGA and contains rel-
evant parts of the knowledge of an elementary calculus textbook. For instance,
the real numbersare introduced as a complete, dense Archimedianfield (based
on elementary algebraic notions such asgroupsandrings defined in the respective
theories). The set of real numbers (showing the existence of such a complete, dense
Archimedian field) are constructed as the quotient field of the ring of sequences of
rational numbers over the ideal of null-sequences. The rational numbers in turn
are constructed as signed fractions of natural numbers that are defined from the
Peano axioms in theorynatural. All of these mathematical theories are based
on the theoriesfunction, set, andrelation that specify naive (simply typed)
set theory and the properties of functions and relations on such sets. Finally, the
whole hierarchy builds on the theory base, which declares the underlying logic by
providing the logical connectives and quantifiers and the basic ND inference rules.

The theoryeconomy provides a typeυ of units that covers the different units
of denominations – in our example m3 (for volume), kWh (for work), prod (for
product), and DM (for the price). We then formalize prices as triples consisting of
one real number and two units and cost functions as a real function together with
two units (read as input/output units). Note that just as in the real world, addition
(⊕), multiplication (⊗), and comparison of costs and cost functions are defined as
that of their real parts with respect to the denominations. For these calculations we
have the axioms CF1 and CF2. If two denominations differ, we can relate them by
their prices. For this purpose we use axiom Pr.

CF1 cf (f, u, v)⊕ cf (g, u, v) = cf (f + g, u, v),
CF2 cf (f, u, v)⊗ cf (g, v,w) = cf (f · g, u,w),
Pr price(f, u, v)⇒ cf (g, v,w) = cf (f · g, u,w).

Optimization ineconomy is formalized by a predicateOpton a cost functioncf (f ,
DM,prod) and an intervalI that is true wheneverf has a total minimum? on I .

O Opt(cf (f,DM,prod), I )⇔ ∃x TotMin(x, f, I ).

Thus, we can state the problem as the following formula:??

? The predicate TotMin and the problem-solving knowledge related to it are inherited from the
theorycalculus.
?? Actually the formalization of the problem is not fully correct, since the examiner not only is

interested in the proof that there exists such anx, but he/she wants to know the value ofx as well
as a proof that this value fits the requirements. Obviously, such an answer cannot be obtained from
the formula here, but only from a proof that is constructive for the variablex, where we can extract
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Figure 1. Theory hierarchy in�MEGA’s knowledge base.

THM H ` Opt([cf (λd 0.5d2 + 3,m3,prod)⊕
cf (λd 4d2− 24d + 6, kWh,prod)], [1,7]),

whereH is a set of hypotheses that are needed for the complete proof, for instance
the price axioms

Pm3 price(2,DM,m3),

PkWh price(0.5,DM, kWh).
The planner solves the problem by generating a high-level proof plan consisting of
methods from its domain specific method base on economics exam questions.?

a witness term. This is no problem for a CAS nor for an MRS based on constructive logic, but
for a traditional MRS based on classical logic, the proof construction process has to be refined to
guarantee constructivity forx. Note that the arguments why the witness forx meets the requirements
can still be classical and nonconstructive. For�MEGA this means that the proof planner may only use
methods in our proof plan that are constructive to get the wanted answer as presented here and not a
nonconstructive abstract argument. Finally, note that this phenomenon is another argument in favor
manipulating explicit proofs. Without this, one may find oneself in the position that one is convinced
(by meta-theoretic arguments) of the existence of a (constructive) proof, but in fact without one from
which to extract a term witness to answer the exam question.
? Questions for certain standard exams are a good example for a very restricted mathematical

domain, since the proofs and calculations involved are highly standardized. Therefore, finding the
proof plan in this example is not a big problem for�MEGA.
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We are going to outline this process by describing its major steps. In par-
ticular, we will demonstrate how the proof planner of�MEGA and theµ-CAS-
system interact, and make explicit on which entries of a mathematical database
this interaction depends. The planner finds the following simple proof plan:

1 Mult-by-Price

2 Mult-by-Price

3 Add-by-Denom

4 Optimize

5 TotMin-Rolle

where the first three methods compute the actual cost function by adjusting the
denominations and adding. Method 4 uses Axiom O for optimization. As the ex-
ample contains only polynomials of degree two, the planner selects a method
TotMin-Rolle (cf. Figure 3) for finding total minima that makes implicit use of
Rolle’s theorem from thecalculus theory:

Letf be a polynomial of degree two. Thenf has a total minimum atx ∈ [a, b]
iff f has a minimum atx andf (a) ≥ f (x) ≤ f (b).
Formally we get the following equivalence:

TotMin TotMin(x, f, [a, b]) ⇔ x ∈ [a, b] ∧Min(x, f ) ∧
f (x) ≤ f (a) ∧ f (x) ≤ f (b).

Note that Rolle’s theorem is accessible in the current theory and, to ensure correct-
ness, the database has to contain its formal proof.

Now let us take a closer look at some of the methods in order to get a feel-
ing of how this initial proof plan can be expanded. In Figures 2 and 3 we have
given slightly simplified presentations of theMult-by-Price andTotMin-Rolle
method.?

The declaration slot of the method simply defines the meta-variables used in
the body of the method. The premises, conclusions, and the constraint describe
the applicability of the method. In the example ofMult-by-Price, for instance,
line L4 has to be present and to be an open subgoal, whileL1 andL3 are lines
that can be used in order to inferL4. L1 has to be given already, whereasL3 is
generated by the application of the method (indicated by the⊕). Since the method
is intended to proveL4, after the application of the method, this line can be deleted
from the current planning state (we indicate this by the	). In the constraint slot
further applicability criteria are described, which cannot be formulated in terms of
proof line schemata. Declarations, premises, constraints, and conclusions form the
specification part of the method. In order to be able to mechanically adapt methods,

? We have especially adjusted the syntax of the constraint in a way that is more comprehensive
for the reader.
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Method : Mult-by-Price

Declarations
L1, L2, L3, L4: prln
H1,H2,H3: list(prln) J1: just
f, g, v,w, φ, φ′, ψ,ψ ′: variable

Premises L1,⊕L3

Constraint

ψ ← (2ndarg(termocc(cf, φ)) 6= DM→ termocc(cf, φ))
g← 1starg(ψ) v← 2ndarg(ψ) w← 3rdarg(ψ)
ψ ′ ← cf (g · f,DM, w)
φ′ ← replace(ψ ′, ψ, φ)

Conclusions 	L4

Declarative
Content

(L1) H2 ` price(f,DM, v) (J1)
(L2) H1,H2 ` cf (g, v,w) = ψ ′ (PrL1)
(L3) H3 `φ′ (Call-CAS)
(L4) H1,H2,H3 `φ (=substL3L2)

Procedural
Content schema − interpreter

Figure 2. TheMult-by-Price method from theorycost.

the tactic part is further subdivided into the declarative content and the procedural
content. (However, this particular feature is not important for the purpose of this
paper.) In our examples the procedural content consists of aschema-interpreter,
which essentially inserts the declarative content (using the bindings made in the
planning phase) at the correct place in the current partial proof tree. In the concrete
example the linesL1 throughL4 are inserted (Note that we adopted a linearized
version of ND proofs as introduced in [2].)

In order to understand to which piece of actual proof these methods evaluate, we
have to examine the declarative content and the bindings performed in particular in
the constraint. The constraint of theMult-by-Price-method states a rather simple
computation: if there is a cost function in the given open line which has a denomi-
nation other than DM, it is multiplied with the appropriate price. The multiplication
of the real parts is carried out by the CAS, and the corresponding cost function is
constructed. As this point is crucial for understanding the working scheme of a
method, we will view the bindings in the constraint step by step: When applied
to the current plan the method is matched with the open goals of the planning
state. The first pass of the planner yields thatL4 can be matched with our theorem
THM. Thus, its formulaOpt([cf (λd 0.5d2 + 3,m3,prod) ⊕ cf (λd 4d2 − 24d +
6, kWh,prod)], [1,7]) is bound to the meta-variableφ. It is then examined to find
an occurrence of a cost function. If such a subterm exists, its arguments are bound
to g, v,w; and by matching lineL1, we receive the numerical part ofprice in f
(if the appropriate price is not provided, the application of the method would fail
here). Afterwards the new cost function is computed (according to axiom Pr) in
ψ ′, and finallyφ′ contains the result of replacing the old cost function inφ byψ ′.
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Hence in the first plan step the optimization formula stored inφ′ contains the cost
functioncf (λd 1d2 + 6,DM,prod) as a subterm.

With all these meta-variables instantiated the subproof contributed by theMult-
by-Price method consists of linesL2 andL3 in the declarative content. Here we
observe thatL2 results from applying the price-axiom Pr (which is fetched from
the database) to lineL1. Furthermore note that inL3 we have a call to the CAS as
a justifying method for the line. This means that at this point in the proof planning
procedure, the CAS is called in order to compute the product of price and original
cost function. The line resulting from this calculation is then used as the new open
subgoal in the planning state.

Summarizing, the effects of the methodMult-by-Price can be observed in two
steps. First the goal line THM is justified with the method, yielding the following
subproof:

L1 H ` Opt([cf (λd 1d2+ 6,DM,prod)⊕ (Open)
cf (λd 4d2− 24d + 6, kWh,prod)], [1,7]),

THM H ` Opt([cf (λd 0.5d2 + 3,m3,prod)⊕ (MbPL1)

cf (λd 4d2− 24d + 6, kWh,prod)], [1,7]).
Then the method in the justification of line THM (which has been abbreviated

because of lack of space) could be expanded, thereby inserting the intermediate
steps as described above by instantiating the macro steps of the method. Note that
the following expanded subproof is at a more detailed level of abstraction in the
PDS. In particular, the justification of THM itself is different at this level.

Pm3 Pm3 ` price(2,DM,m3), (HYP)
L2 H ` cf (λd 0.5d2 + 3,m3,prod)

= cf (λd 1d2+ 6,DM,prod),
(Pr Pm3)

L1 H `Opt([cf (λd 1d2 + 6,DM,prod)⊕
cf (λd 4d2 − 24d + 6, kWh,prod)], [1,7]),

(Open)

THMH `Opt([cf (λd 0.5d2 + 3,m3,prod)⊕
cf (λd 4d2 − 24d + 6, kWh,prod)], [1,7]).

(=substL1L2)

In the proof of THM, the methodMult-by-Price is applied twice in order to
normalize both summands. To preserve space, we will not present the next two
methods of our proof plan as extensively as theMult-by-Price-method.Add-
by-Denom is very similar toMult-by-Price and applies axiom CF1 inside the
optimization functionOpt to compute the final cost function. In its course the
CAS is called once to perform a polynomial addition. Then theOptimize-method
simply introduces the definition for theOpt function of axiom O.

Far more interesting than these two methods is theTotMin-Rolle method,
as it contains a different example for the use of a CAS in�MEGA. Again the
presentation of the method in Figure 3 is simplified.

TheTotMin-Rolle method is applied at a stage of the proof where the actual
minimum of the cost function has to be introduced. This task is fulfilled within
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Method : TotMin-Rolle

Declarations
L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11: prln
H1,H2,H3: list(prln) J1, J2: just
a, b, f, x: variable y, φ, α, β: term

Premises L1, L2

Constraint
degree(φ)

.= 2
y ← compute_with_CAS(minimum,φ)

Conclusions 	L12

Declarative
Content

(L1) H1 `∀f ∀x (f ′(x) = 0∧
f ′′(x) > 0)⇒ Min(x, f )

(J1)

(L2) H2 `∀a ∀b ∀x x ∈ [a, b] ⇔
(a ≤ x ∧ x ≤ b) (J2)

(L3) H3 `φ′(y) = 0 (Call-CAS)
(L4) H3 `φ′′(y) > 0 (Call-CAS)
(L5) H3 `α ≤ y (Simplify)
(L6) H3 ` y ≤ β (Simplify)
(L7) H3 `φ(y) ≤ φ(α) (Simplify)
(L8) H3 `φ(y) ≤ φ(β) (Simplify)
(L9) H3 `Min(y, φ) (L1 L3 L4)
(L10) H3 ` y ∈ [α, β] (L2 L5 L6)
(L11) H3 `TotMin(y, φ, [α, β]) (TotMinL7L8L9L10)
(L12) H3 `∃x TotMin(x, φ, [α, β]) (∃I L11)

Procedural
Content schema − interpreter

Figure 3. TheTotMin-Rolle method from theorycalculus.

the constraint of the method. Thecompute_with_CAS statement actually calls the
CAS in quiet mode to compute the minimum of the functionφ and store it in the
meta-variabley. At this stage, the CAS is used as an oracle here, just as in [20]. In
our example the minimum of the cost function is aty = 2, and the ND-line of the
form

∃xTotMin(x, λx (3x2 + (−12x + 9)), [1,7])
will be transformed by eliminating the existentially quantified variable:

TotMin(2, λx (3x2 + (−12x + 9)), [1,7]).
The rest of the proof plan is devoted to proving that the result is actually a total
minimum. This is done by using the definition for TotMin from the database and
furthermore by using the definitions for minimum and interval that correspond to
line L1 andL2 in the methodTotMin-Rolle. These definitions are introduced in
linesL9 throughL11 by applying them to the correct assertions given in linesL3

throughL8. This is expressed by the justifications in the corresponding lines; for
instance, the justification of lineL10 states that we can infery ∈ [α, β] from the
linesL5 andL6 with the definition of interval in lineL2.

A closer look at the justifications of linesL3 throughL8 reveals that these
contain methods themselves. LinesL3 andL4 again depend on calculations of
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the CAS which computes the first and second derivative of our cost function.
The justifications Simplify correspond to a method performing basic arithmetic
simplifications and comparisons.

Consisting of only five methods, the above proof plan gives the impression of
a small proof, and on an abstract level it is indeed; an experienced mathematician
might not want to see more. But expanding the plan into a partially grounded ND
proof gives it a length of 90 lines, containing lines justified by the CAS. The proof
on this level may roughly correspond to a proof that a novice would like to see and
that would form a reasonable solution of the exam problem once it is presented
in natural language by the PROVERB system. By rerunning the CAS in a proof
plan generating mode on the CAS-justifications and extracting proof plans, the
proof can be expanded to a more detailed proof plan containing an account of the
mathematics behind the calculations. This proof plan already contains 135 plan
steps and – if the user does not feel comfortable with the level of detail yet – can
then be expanded to a calculus-level ND proof of length 354. Note that even this
proof is not a stand-alone proof of the minimization theorem, but depends on the
proofs of a number of lemmata from a database. Furthermore, in these proofs the
simplification of ground arithmetic expressions is not expanded, for instance, into
a representation involving zero and the successor function either, which would be
necessary to obtain a detailed logic-level proof.

4. Integrating Computations into Explicit Proofs

In this section we describe SAPPER(System forAlgorithmicProof PlanExtraction
andReasoning), which generates proof plans from CAS output. As mentioned in
Section 3.3, for the intended integration it is necessary to augment the CAS with
mathematical information for aproof plan generating modein order to achieve the
proposed integration at the level of proofs. For theµ-CAS system, which we have
developed to demonstrate the feasibility of the approach, this was rather simple, as
we will demonstrate below. Enriching a state-of-the-art CAS with such a mode for
producing the necessary additional protocol information would, of course, require
a considerable amount of work.

4.1. ARCHITECTURE

The SAPPER system can be seen as a generic interface for connecting�MEGA

(or another proof plan-based mechanized reasoning system) with one or several
computer algebra systems (see Figure 4). An incorporated CAS is treated as a
slave to�MEGA, which means that only the latter can call the first one and not vice
versa. From the software engineering point of view,�MEGA and the CAS are two
independent processes while the interface is a process providing a bridge for com-
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Figure 4. Interface between�MEGA and computer algebra systems.

munication. Its rôle is to automate the broadcasting of messages by transforming
output of one system into data that can be processed by the other.?

Unlike other approaches (see [23, 19], for example), we do not want to change
the logic inside our MRS. In the same line, we do not want to change the compu-
tational behavior of the computer algebra algorithms. In order to achieve this goal,
the trace output of the algorithm is kept as short as possible. In fact, most of the
computations for constructing a proof plan is left to the interface. The proof plans
can directly be imported into�MEGA.

This approach makes the integration independent of the particular systems,
and indeed all the results below are independent of the CAS employed and make
only some general assumptions about the MRS (such as being proof plan-based).
Moreover, the interface approach helps us to keep the CAS free of any logical
computation, for which such a system is not intended anyway. Finally, the interface
minimizes the required changes to an existing CAS, while maintaining the possi-
bility of using the CAS stand-alone. The only requirement we make for integrating
a particular CAS is that it has to produce enough protocol information so that a
proof plan can be generated from this information. The proof plan in turn can be
expanded by the MRS into a proof verifying the concrete computation.

? This is an adaptation of the general approach on combining systems in [16].
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The interface itself can be roughly divided into two parts: thetranslation part
and theplan generator. The first performs syntax translations between�MEGA

and a CAS in both directions, while the latter transforms only verbose output of
the CAS to�MEGA proof plans. Clearly only the translation part depends on the
particular CAS that is invoked.

For the translations a collection of data structures – calledabstract CAS? – is
provided each one referring to a particular connected CAS (or just parts of one).
The main purpose of these structures is to specify function mappings, relating a
particular function of�MEGA to a corresponding CAS-function and the type of its
arguments. Furthermore, it provides functionality to convert the given arguments
of the mapped�MEGA function to CAS input. In the same fashion it transforms
results of algebraic computations back into data that can be further processed by
�MEGA. The functionality in this part of our interface offers us the possibility
of connecting any CAS as a black box system, as in the first approach we have
described in Section 2. For instance, we may want to use a very efficient system
without a mode for generating proof plans in proof search as a black box system,
and then another less efficient system with such a mode for the actual proof con-
struction, once it is clear what the proof should look like. This corresponds to recent
techniques used in knowledge-based systems, where the explanation component
is not just a trace of the rules applied during the search, but the explanation is
reconstructed by an independent component.

The plan generator solely provides the machinery for our main goal, the proof
plan extraction. Equipped with supplementary information on the proof by�MEGA,
it records the output produced by the particular algebraic algorithm and converts
it into a proof plan. Here the requirements of keeping the CAS side free of logi-
cal considerations and, on the other hand, of keeping the interface generic seem
conflicting at first glance. However, this conflict can be solved by giving both
sides of the interface access to a database of mathematical facts formalizing the
mathematics behind the particular CAS algorithms. Conceptually, this database,
together with the mappings governing the access, provides the semantics of the
integration of�MEGA with a particular CAS. Thus, expanding the plan generator
is simply done by expanding the theory database by adding new tactics.

While �MEGA itself can access the complete database, SAPPER’ S plan gener-
ator in the interface is only able to use tactics and lookup hypotheses of a theory
(cf. Figure 4). The CAS does not interact with the database at all: it only has to
know about it and references the logical objects (methods, tactics, theorems, or
definitions) in the proof plan generating mode. Thus, knowledge about the data-
base is compiled a priori into the algebraic algorithms in order to document their
calculations.

? In a reimplementation of SAPPERwe would probably use the OpenMath protocol [1] as a lingua
franca on the CAS side.

JADKS02.tex; 23/09/1998; 9:44; p.20



INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 347

4.2. PROOF PLAN EXTRACTION

Let us now take a closer look at the implementation of the proof plan generation in
µ-CAS and at the expansion process of its output. This should demonstrate how
proofs can be extracted from computer algebra calculation and provide an intuition
on the requirements that our approach poses on the CAS side.

As an example we will consider a polynomial addition from the example above.
Normally, an experienced mathematician would not like to see any proof at all for
that, while a high-school student would like to. As we have seen in our example, the
main purpose of theAdd-by-Demon-method is to compute the final cost function
cf (λd (3d2 − 12d + 9),DM,prod). This is done inµ-CAS by adding the two
polynomialsλd d2+ 6 andλd 2d2− 12d + 3. In the remainder of this subsection
we will expand this addition in several steps and thereby obtain a calculus-level
proof for the computation.

Before examining this example in detail, let us consider the general scheme of
the proof plan generation inside the polynomial addition algorithm ofµ-CAS. We
first take a look at the different representations of a polynomialp in the variables
x1, . . . , xr : p = ∑n

i=1 αix
e1i
1 · · · x

eri
r . The logical language of�MEGA is a variant

of the simply typedλ-calculus (indeed we use a stronger type system, but here
we want to keep things as simple as possible), so the polynomials are represented
as polynomial functions, that is, asλ-expressions, where the formal parameters
x1, . . . , xr areλ-abstracted (mathematically,p is a function ofr arguments):

p: λx1 · · · λxr (+ (∗αn (∗ (↑ x1 e1n) · · ·)) · · · (∗α1 (∗ (↑ x1 e11) · · ·)).
For the notation, we use a prefix notation; the symbols+, ∗, and↑ denote bi-
nary functions for addition, multiplication, and exponentiation on the reals. In this
representation, we can useβ-reduction for the evaluation of polynomials.

In µ-CAS, we use a variable dense, expanded representation as an internal data
structure for polynomials (as described in [36], for instance). Thus, every mono-
mial is represented as a list containing its coefficient together with the exponents
of each variable. Hence we get the following representation forp:

p: ((αn e1n · · · ern) · · · (α1 e11 · · · er1)).
Let us now turn to the actualµ-CAS algorithm for polynomial addition. This

simple algorithm adds polynomialsp andq by a case analysis on the exponents?

with recursive calls to itself. So letp = ∑n
i=1 αix

e1i
1 · · · x

eri
r andq = ∑m

i=1 βix
f1i
1

· · · xfrir . We have presented the algorithm in thej th component ofp and thekth
component ofq in a LISP-like pseudo-code in Figure 5. Intuitively, the algorithm
proceeds by ordering the monomials, advancing the leading monomial either of the
? We assume a lexicographic monomial order and employ it for ordering the exponents. Thus we

make use of the operators>, <, and= in an intuitive sense. Furthermore we can define the rank of
a monomial as the vector given by its exponents and the rank of a polynomial as the maximum rank
of its monomials with respect to the lexicographic monomial order.
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first or the second arguments; in the case of equal exponents, the coefficients of the
monomials are added.

(poly-add (p q)
(= (e1j · · · erj )(f1k · · · frk ))

(tactic "mono-add")

(cons-poly (αj + βk)xe1j1 · · · x
erj
r

(poly-add
n∑

i=j+1
αix

e1i
1 · · · xerir

m∑
i=k+1

βix
f1i
1 · · · xfrir ))

(> (e1j · · · erj )(f1k · · · frk ))
(tactic "pop-first")

(cons-poly αjx
e1j
1 · · · x

erj
r

(poly-add
n∑

i=j+1
αix

e1i
1 · · · x

eri
r

m∑
i=k
βix

f1i
1 · · · x

fri
r ))

(< (e1j · · · erj )(f1k · · · frk ))
(tactic "pop-second")

(cons-poly βkx
f1k
1 · · · x

frk
r

(poly-add
n∑
i=j
αix

e1i
1 · · · x

eri
r

m∑
i=k+1

βix
f1i
1 · · · x

fri
r )))

Figure 5. Polynomial addition inµ-CAS.

Obviously, the only expansions of the original algorithm needed for the proof
plan generation are the additional(tactic...) statements.? They just produce
the additional output by returning keywords of tactic names to the plan generator
and do not have any side effects. In particular, the computational behavior of the
algorithm does not have to be changed at all.

If we now apply this algorithm to the two polynomials

p := x2 + 6 q := 2x2 − 12x + 3,

we obtain the following proof plan:

(mono-add, pop-second, mono-add).

First the two quadratic monomials fromp andq are added; then the linear term
of q (the second argument) is raised, since it only appears in one argument; and
finally the remaining monomials are added.

In the case of the polynomial addition, each of the methods (proof plan opera-
tors) directly corresponds to a tactic with the same name; that is, the list of the three
? Observe that in this case, the called tactics do not need any additional arguments, since our

plan generator in the interface keeps track of the position in the proof and thus knows on which
monomials the algorithm works when returning a tactic. This way we need not be concerned which
form a monomial actually has during the course of the algorithm.
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methods above directly represents a concrete proof plan for polynomial addition of
the concrete polynomialsp andq. (In the following representation we omitted the
context in which the polynomials are embedded in the actual proofs.)

((x2+ 6)+ (2x2 − 12x + 3))

(3x2 + (6+ (−12x + 3))) (mono-add)

(3x2 − 12x + (6+ 3)) (pop-second)

(3x2 − 12x + 9) (mono-add)

These four lines correspond to a step-by-step version of the basic high-school
algorithm. So far the expansion of thecall-cas-method has been exclusively done
byµ-CAS proof plan generation mode. But at this stageµ-CAS cannot provide us
with any more details about the computation, and the subsequent expansion of the
next hierarchic level can be achieved without further use of a CAS.

Let us, for instance, take a look at thepop-second tactic to understand its
logical content. The tactic itself describes a reordering in a sum that looks in the
general case as follows:

(a + (b + c)) = (b + (a + c)) (1)

For the current example we can viewa andc as arbitrary polynomials andb as a
monomial of rank greater than that of the polynomiala. It is now obvious that the
behavior ofpop-second is determined by the pattern of the sum it is applied to.
If in Equation (1) the polynomialc does not exist,pop-second is equivalent to a
single application of the law of commutativity. Otherwise, as in our example, the
tactic performs a series of commutativity and associativity steps. Thepop-second
step above can thus be expanded in a plan that reflects the single step applications
of the laws of commutativity and associativity.

(3x2 + (6+ (−12x + 3)))

(3x2 + ((6− 12x) + 3)) (associativity)

(3x2 + ((−12x + 6)+ 3)) (commutativity)

(3x2 − 12x + (6+ 3)) (associativity)

Assuming we have expanded the twomono-add tactics as well, we have con-
structed a representation of the proof at a level where it needs only the axioms in
the polynomial ring. To finally expand this to a fully explicit calculus-level proof,
we further expand all three justifications of the above lines. This process leads to
a sequence of eliminations of universally quantified variables in the correspond-
ing hypothesis, the axioms of commutativity and associativity. In our example the
commutativity axiom would be transformed in the following fashion:

∀a∀b (a + b) = (b + a) (THM)

∀b (6+ b) = (b + 6) (∀E 6)

(6− 12x) = (−12x + 6) (∀E −12x).
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Here, the justification(THM) in the first proof line indicates that the commuta-
tivity of + was imported from the theoryreal in�MEGA’s mathematical database,
where it was established as a theorem. The remaining lines are natural deduction
inferences: universal eliminations that instantiatea with the number 6 andb with
the term−12x.

Altogether this single application of thepop-second-tactic is equivalent to a
calculus-level proof of 11 inference steps. The length of the subproof for this trivial
polynomial addition is 43 single steps. This example shows how it is possible to
mechanically construct a proof verifying the correctness of any particular CAS
computation without verifying the CAS algorithm (or their implementation) in the
general case.

However, the calculus-level proofs for the computations are very long and rather
boring, and therefore hardly any human user might actually want to see, much less
read, them. Therefore, the PROVERBproof explanation system in�MEGA provides
a more realistic alternative, since it gives the user access to representations of the
parts of the proof on various levels of abstractions making use of the hierarchical
structure of the underlyingPDS. For instance, it is then possible to present the
computations with some intermediate steps, as it is customary in textbooks. For
example, we could include the three steps of the high-school algorithm mentioned
above, to illustrate the polynomial addition. (The decision which steps should be
included and which omitted depends, of course, on the expertise of readers for
which a particular proof presentation is intended.)

Despite all these abstractions in both developing and presenting the proof, we
can still use any proof checker for ND-calculus to verify all steps including com-
putations. Furthermore, if we assume we have a more sophisticated proof checker,
for example one that works modulo the axioms of polynomial rings, it is also
possible to check the proof on an abstract level. As already mentioned, the more
sophisticated the proof checker is, the more concise the communicated proofs can
be.

We have tested proof plan extraction from simple recursive and iterative CAS
algorithms, where it works quite well, since these algorithms closely correspond to
the mathematical definitions of the corresponding concepts. However, more com-
plicated schemes like divide-and-conquer algorithms (for instance, the polynomial
multiplication of Karatsuba and Ofman [30]) cannot be adapted to our approach
so easily without extending the mathematical knowledge base by corresponding
lemmata.

The example of the polynomial addition is surely a trivial one; we have chosen
it solely for presentation reasons. In particular, it is very likely to be correct in
any real-world implementation, since it is well tested and does not depend on
sophisticated mathematical theorems for which fuzzy boundary cases must be con-
sidered. For the sake of argument, let us assume an error in the implementation.
For instance, in the second case of the polynomial addition algorithm in Figure 5
the cons-poly statement was forgotten, so that the algorithm has the following
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(incorrect) form:

(> (e1j · · · erj )(f1k · · · frk ))
(tactic "pop-first")

(poly-add
n∑

i=j+1
αix

e1i
1 · · · x

eri
r

m∑
i=k
βix

f1i
1 · · · x

fri
r ).

In the computation of((x2+6)+ (2x2−12x +3)) that we have discussed above,

the second case is never used, and the computation would be correct although the
program is not.

If we now change the order of addition of our polynomialsp andq to q + p,
we get the following incorrect result from the changed algorithm:

((x2 + 6)+ (2x2 − 12x + 3)) = (3x2 + 9).

Inserting the proof plan generated by the faulty algorithm then yields

((2x2 − 12x + 3)+ (x2+ 6))

(3x2 + ((−12x + 3)+ 6)) (mono-add)

(3x2 + (3+ 6)) (pop-first)

(3x2 + 9) (mono-add)

In checking, the proof checker would see that thepop-first step is not justi-
fied, since the expansion corresponds to the application of the law of associativity.
This would yield((−12x + 3) + 6) = (−12x + (3 + 6)) and thus would not
be applicable during the expansion. Thus, the proof plan and consequently the
calculation would be rejected by�MEGA.

Note that in a large system with literally millions of possible cases, the correct-
ness of a calculation like(x2+6)+ (2x2−12x+3) depends only on a tiny subset
of the whole program. It is a strength of our approach that only the calculations
that are necessary for a given proof would be checked. This has the advantage that
errors on different levels can be detected (in particular, on the levels of algorithms,
of compilers, and of processors). Of course, for very long computations, checking
can be pretty expensive. Moreover, highly elaborated and efficient algorithms in
state-of-the-art CAS might be hard to augment with proof plan generation modes.
As we have seen in the example above, the mathematical knowledge in the data-
base has to reflect the mathematical knowledge in the algorithm in order to easily
decorate the algorithms by a proof plan generation mode. However, to extend and
prove corresponding lemmata is not a trivial task for sophisticated algorithms.
In particular, such an approach would go very much in the direction of program
verification.

Even if it proves practically impossible to extract the information that is valu-
able at the conceptual, mathematical level, it is always possible to reserve these
elaborated techniques for the quiet mode used in proof discovery, and use more
basic algorithms, for which the mathematics is easier and that are more easily
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decorated by a proof plan generation mode, for the proof extraction phase. Systems
like Axiom[28] or MuPAD [18] seem to come closest among standard CAS to the
needs for a proof plan generation, since one can already attach axiomatizations to
algorithms.

5. Conclusion

In this work we have reported on an experiment of integrating a computer algebra
system into the interactive proof development environment�MEGA, not only at the
systemlevel, but also at the level ofproofs. The motivation for such an integration
is the need for support of a human user when his/her proofs contain nontrivial
computations. We have shown that the proof planning paradigm in general and the
�MEGA system in particular provide an open environment for such an extended
integration that supports different integration levels.

In our approach it is not possible to use a standard CAS for the integration as it
is, since such a system provides answers, but no directly usable justifications from
which proof plans can be extracted. This, however, turned out to be essential in an
environment that is built to construct communicable and checkable proofs.

To achieve a solution that is compatible with such a strong requirement, we have
adopted a generic approach, where the only requirement for the CAS is that it has
a proof plan generation mode for the generation of communicable and checkable
proofs. Since we want to achieve the two goals simultaneously, namely, to have
high-level descriptions of the calculations of the CAS for communicating them to
human users as well as low-level ones for mechanical checking, we represent the
protocol information in form of high-level hierarchical proof plans, which can be
expanded to the desired detail. Fully expanded proof plans correspond to natural
deduction proofs that can be mechanically checked by a simple proof checker. In
the case that the CAS has made a mistake, the proof checker will detect it.

The general idea and the fundamentals of the integration of a CAS into an MRS
are independent from the concrete proof development environment�MEGA and the
concrete computer algebra systemµ-CAS. It can be realized in any plan-based the-
orem prover. Proof extraction can even be realized on any tactic-based system and
with any CAS that can protocol its calculations in form of tactics.Axiom[28] and
MuPAD [18] seem to be best suited for a corresponding extension, since one can
already attach axiomatizations to algorithms. If in addition the algorithms could
be enriched in a way that they produce protocol information in every computation
step, that is, state which of the attached axioms are used and what the particular
instantiations are, the systems would probably fit in with our approach pretty well.

A useful extension of our approach would consist in the usage of various algo-
rithms for the same computation, for instance, one as a fast and efficient algorithm
that is not suitable for knowledge extraction while searching for a proof. After-
wards, when actually documenting the whole proof, a less efficient algorithm,
which is optimized to find short proofs, can provide a complete proof plan.
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Although the correctness issue can be achieved by a tactic-based approach as
well and does not need the specifications that are used in proof planning, the full
strength of an integration where considerable automated support is provided cannot
be achieved on this level, since it is not possible to perform mechanical reasoning
about the tactics. Such an automation can, however, be achieved by the proof plan-
ning approach, where the proof planner can automatically call a CAS procedure,
when the conditions in the corresponding method are met. The usefulness of an
integration on this level can already be seen in the case of our simpleµ-CAS: After
the integration we are able to prove optimization problems that were out of reach
without such a support. On the other hand, the system is able to give explanations of
the involved computations at various levels of abstraction, a feature that is missing
from today’s CAS.

From our experiments we expect that the successful integration of any powerful
computer algebra systems would considerably enhance the reasoning power of any
mechanized reasoning system.
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