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This paper presents a radically new approach to the century old problem of
computing the implicit equation of a parametric surface. For surfaces without base
points, the new method expresses the implicit equation in a determinant which is one
fourth the size of the conventional expression based on Dixon's resultant. If base
points do exist, previous implicitization methods either fail or become much more
complicated, while the new method actually simplifies.

The new method is illustrated using the bicubic patches from Newell's teapot
model. Dixon’s method can successfully implicitize only 8 of those 32 patches, ex-
pressingtheimplicit equation asan 18 x 18determinant. Thenew method successfully
implicitizesall 32 of the patches. Four of theimplicit equationscan bewrittenas3 x 3
determinants, eight can bewritten as 4 x 4 determinants, and theremaining 20 implicit
equations can be written using 9 x 9 determinants.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling.

General Terms: Algorithms

Additional Key Words and Phrases. Bézier patches, implicitization, base points.

1 INTRODUCTION

For any 2-D parametric curve z = %, y = % where «, b,
and d are polynomials, there exists an implicit equation f(z, y) =
0, where f is aso a polynomial, which defines exactly the same

curve. For example, a circle can be defined by the parametric
equation & = L:—i y = 15z or by the implicit equation =* +
y*> — 1 = 0. The processof finding the implicit equation given the
parametric equationsisknown asimplicitization. Implicitization of
2-D curvesleadsto many practical algorithms. For example, avery
fast algorithm for computing the intersection of two 2-D curves of
low degreeis based on implicitization [23]. Implicitization reduces
the problem of curve intersection to one of finding the roots of a
single polynomial.

Similarly, for any parametric surface z = gi(—g y = Zi(—i%

z = ;Ei; where a, b, ¢, and d are polynomialsin s, ¢, there exists
a polynomial implicit equation f(z,y, z) = 0 which defines the
same surface.
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The general problem of surfaceimplicitization has been studied
for well over acentury. In 1862, Salmon [18] noted that surfaceim-
plicitization can be performed by eliminating the parameters from
the parametric surface equations. Presumably he had in mind us-
ing Sylvester’s “dialytic method” with which one could eliminate
two variables from three polynomials, though the result generally
needed to be “ expressed as the quotient of one determinant divided
by another" [17]. In 1908, Dixon published a more compact re-
sultant for eliminating two variablesfrom three polynomialswhich
has becomethe standard method for surfaceimplicitization, at least
in the absence of base points. In 1983, Sederberg [19] resurrected
Dixon’s and Salmon’s work in addressing the problem of how to
implicitize surface patches. Other implicitization methods are sur-
veyedin [10], andinclude onesbased on Grobner bases[1], numer-
ical techniques[16], and multivariate resultants [4].

To implicitize atensor product surfaceof degreem x n, Dixon's
resultant producesa2mn x 2mn matrix whose elements are linear
inz,y, z. The determinant of that matrix is the implicit equation.
For a biquadratic surface, the matrix is 8 x 8, and for a bicubic
patch, the matrix is 18 x 18. (In this paper, any statement that a
determinant is the implicit equation of a curve or surface should be
taken as shorthand for “setting that determinant to zero gives the
implicit equation”.)

Surface implicitization has seen limited practical use partly be-
cause of the huge expressions involved, but also because in the
event of base points (see section 4.1), things can get even more
complicated. For example, if base points exist, Dixon’s resultant
is identically zero and hence fails to produce the implicit equa-
tion. Manocha has shown that in many cases the largest non-zero
minor of Dixon’s determinant is the implicit equation, but often
it includes an extraneous factor [14]. Substantial further work is
then needed to remove the unwanted factor. Implicitization using
Grobner bases [6] also usually fails when base points occur, since
the implicit equation does not belong to the ideal generated by the
parametric equations[15], although this problem can sometimes be
circumvented by introducing some auxiliary polynomials into the
Gribner system [12, 10]. Nonetheless, Grobner bases are known
to be very slow in implicitizing bicubic patches.

Several other procedures have been devised to implicitize sur-
faceswith basepoints[2, 9, 15, 16]. We don’t review those methods
here, but observe that those methods are generally more compli-
cated than Dixon’s method. Furthermore, base points are not arare
occurrence; most of the teapot patches have numerous base points.

This paper presentsa fundamentally new procedure for implic-
itizing curves and surfaces in which the implicit equation can be
written in much more compact form than before. Furthermore, in
the presence of base points, the expressions actually simplify. In
particular, the new method allowstheimplicit equationfor ageneral
bicubic patch to be written asa 9 x 9 determinant whose elements



are all degree two in z,y, z. If a base point exists, one row of
that determinant canin general bereplaced by degree one elements.
Section 2 introduces the new strategy asit appliesto curveimplic-
itization. We refer to this method as the moving curve method.
Section 3 introduces the moving surface method for surfaceimplic-
itization. Sections4 and 5 discusshow to implicitize general tensor
product and triangular patches using moving surfaces. Section 6
reports on what happenswhen those methodsare used to implicitize
the 32 bicubic patches of the teapot. It turns out that those patches
show surprising diversity in the number of base points.

2 CURVEIMPLICITIZATION

Thestandard method for implicitizing a2-D curveisto use Bezout's
resultant [22]. For a degree » rational curve, Bezout's resultant is
the determinant of an » x n matrix whose elements are linear in
z, y. For example, the implicit equation of the curve
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can be found by taking the resultant of
t*(x — 2) + t(2z — 4) + (3¢ — 5)
and
(y —3)+1(2y — 1) + (3y — 4).
Bezout's resultant for these two polynomialsin ¢ is:
r—2 2xr—4 r—2 3xr—5
y—3 2y—1 y—3 3y—4
r—2 3xr—5 2c —4 3z -5
y—3 3y—4 2y—1 3y—-4
5¢ — 10 S —y—7 2
50 —y—7 —-5z—2y+11 |- (2)

Setting (2) to zero gives the implicit equation for (1).

Bezout's resultant is purely an algebraic device. By studying
the following geometric interpretation of Bezout'sresultant, we are
led to the new implicitization algorithm.

A pencil of lines can be described by the equation

(aozx + boy + co)(1 — t) + (a1 + b1y +c1)t =0 (3

where the equations aoz + boy + co = Oand a1z + b1y +¢c1 =10
define any two distinct lines.

Giventwo distinct pencils, (acoz + booy + coo)(1—t) + (a10z +
bioy + c10)t = 0and (aorz + bory + co1)(1—t) + (ennx + buy +
cu)t = 0, one line from each pencil corresponds to each value
of ¢, and those two lines intersect in a point. The locus of points
thus created for —co < ¢ < oo is aconic section, as illustrated
in Figure 1. This observation is attributed to Steiner and Chasles
in the 1830’s, though a roughly equivalent method for generating
conic sections dates back to Newton [5].

It is easily shown that the implicit equation of this curveis

a0t + booy + coo  aw0% + boy + c10 | 0 (4)
ant +bouy +cou aux +buy+cu |-

This same curve can actually be defined using many different
pairs of pencils of lines, and it turns out that Bezout's resultant for
degree two curves is nothing more than one manifestation of this

Figure 1: Intersection of Two Pencilsof Lines

fact. For example, the two rows of the Bezout resultant (2) can be
shown to define pencils of lines

(bx —10)t+ (5e —y—7)=0 (5)

and
(br—y—T7t+(-5z—-2y+11)=0 (6)

which intersect in the parametric curve (1).

The idea of defining a conic section as the intersection of two
pencilsof lines can be generalized to curvesof any degree. Onesuch
generalization is given in [24]. This section presents some results
similar tothosein[24], but using adifferent approach. Theapproach
taken herelaysthefoundationfor the surfaceimplicitization method
presented in section 3.

Given a degree v rational curve Q(t) = (z(t), y(t), w(t)),
define g(t) to bethe GCD of «(t), y(¢), and w(t). We can write

Q1) = g()P(1) = g(1) Y X', (7

whereX; = (z1, yi, wi). If Fisthedegreeof g(t), n = v — 5, we
will say that Q(t) has 3 base points.
A moving line

XL(t) ::X'ZLJtJ =0 L; = (aJabJacj)a X= (x,y,w)

7=0
_ e (8)
is a parametric family of implicitly defined lines, with one line
corresponding to each “time” ¢. For m = 1, the moving lineis a
pencil. A moving lineis saidto “follow” arational curveif

Q(t)- L(t) =0, 9

which meansthat at any time ¢, point Q(¢) liesonline L(t).

A setof movinglines L;(t),7 = 0, ..., Aislinearly independent
if there do not exist constantsc;, ¢ = 0O,..., A (not al zero) such
that Z;\zo ciLi(t) =0.

Theorem 1. For a degreev curve Q(t) with 8 base points, there
exist at least2m + 2+ § — v linearly independent moving lines of
degree m which follow the curve.

Proof:

implies



m

L(t) = Z(ai, bi, co)t’, (13)

1=0

n+m
P(t)- L(t) = { > (aims + by —I—Ciwj)}tk (14)

k=0 \itj=k

The condition P(t) - L(¢) = 0 canbeexpressed M/ b = 0 where M
isthe (n + m + 1) x (3m + 3) matrix

To Yo wo 0 0 0 0
r1 Y1 w1 To 0 0 0
T2 Y2 w2 Tr1 0 0 0
Tn Yn W Tn—1 (15)
0 0 0 0 ... Za1 o1 waa
L 0O 0 O 0 R 1 Yn Wy |
and .
b = [ ao bo co Am bm Cm ] . (16)

The dimension of the solution set is 3m + 3 — rank(}M). But
rank(M) < n+m+1 soatleast2m+2—n=2m+2+F—v
linearly independent moving lines follow Q(¢). W

If m = n — 1, we know from theorem 1 that there exist m + 1
linearly independent moving lines L;(t) - X = 0 where

m

Li(t) =Y Lt Lij = (i, bij,ci;); i=0,..

J=0

.m (17)

such that
Q(t)- Li(t) = 0,

Theorem 2. Select any set of m + 1 linearly independent moving
lines that follow Q(t) and define

i=0,...,m. (18)

Lo X
0= - ] (19)
Lo X ovi Lo+ X

Lom - X

Then f(X) = 0 is the implicit equation of Q(t). (In the case of
an improperly parametrized curve [20], f(X) = 0 will actually be
some power of the implicit equation, since we generally take the
implicit equation to be an irreducible polynomial).

Proof: f(X) = Oistheimplicit equation of Q(¢) if the following
conditions are met:

1 f(Q(1)) = 0.

2. For al X for which f(X) = 0, there exists a value of ¢ such
that X = xQ(t) where « is ascalar constant. Sincewe are dealing
with homogeneous (projective) coordinates, this simply meansthat
X and Q(t) map to the same point in 2-D Cartesian space.

Asfor requirement 1, (17) and (18) can be written

Lo ... Lom

o+
oo

Qt)y=<{ . p. (20

o -

Lo ... Lmm "

Specializingt = = and letting X = Q(r), (20) can be expressed

Lo X Lom - X 1 0
~ ~ r 0
= (21)
Lo X oo Lo+ X m 0
For (21) to be valid, either
1 0
T 0
L b= (22)
T;" 0
or
Lo X Lom - X
=0 (23)
Lmo-X oo Lowm X

Equation 22 never holds; hence (23) must be true, and condition 1
is satisfied.

Condition 2 requires that f(X) # 0. We can prove that this
holds because the moving lines are linearly independent (see the
appendix in the electronic version of this paper). Therefore f(X)
must be anon-zero polynomial of degreeat most n = m + 1. Now
consider apoint X* for which f(X*) = 0. Take an arbitrary line
az+by+cw = Othat contains X *. Therearer rootsof theequation
(a,b, c)- Q(t) = 0, but 2 of those roots map to the undefined point
(0,0,0), leaving n values of ¢ which map to actual intersection
points between the line and Q(t). Each of those values of ¢ satisfy
condition 1, that is, they map to » points for which f(Q(¢)) = 0,
and each of those pointsliesontheline (¢, b, ¢) - X = 0.

The equation f(X) = 0 definesan algebraic curve of degreen
which intersects a general line in n points. Suppose f(X*) = 0,
but there does not exist a value of ¢ for which Q(t) = kX*. This
meansthat we havefoundn + 1 pointsat which adegreer algebraic
curve intersects a line, a violation of Bezout'stheorem. Wl

So far, we have merely examined well known curve impliciti-
zation methods from a different angle, but yielding no significant
computational advantage. We are now prepared to venture into
profitable new territory. We define a 2—-D moving curve as

C(X;t) = i (X)) =0 (24)

where X = (z,y,w) and f;(X) is a polynomial of degree d.
Thus C(X;¢) = 0isafamily of algebraic curves that vary with
t. A moving curve is said to “follow" arational curve P(t) =
(z(t),y(t), w(t)) if for al valuesof ¢, the point P(¢) lies on the
moving curve:

CP)t) =Y fila(t),y(t), w(®))¥' =0.  (25)

For adegreen curve P(t), there are at least M%’"—“l —nd
linearly independent moving curves of degree d in X and degree
m in t that follow the curve P(¢). This can be shown as follows.
Since C'(P(t); t) isadegree nd + m polynomial in ¢ and the total
number of coefficientsinthe polynomials f;(X) ( = 0,1,..., m)
is ﬁﬂxdlzzxm—“l, condition (25) is equivalent to a system of

nd + m + 1 linear equations with (AEAMED - ynknowns,



Hence there are at least (DA™MD _ (9 4 4 1) =
Adt8m+l) _ ¢ linearly independent moving curves that fol-
low P(t). If (m + 1)(d*+ 3d — 2) > 2nd, there exist at least
m + 1 linearly independent moving curves that follow P(¢). For
example,d = 1andm = n — 1isthe casein theorems 1 and 2.

Theorem 3. Givenm + 1 moving curves
Ci(Xit) =D f(X)¥ =0, i=0,...,m  (26)
7=0

which follow P(t), we define

Joo(X) Jom(X)

o= - (27)
Fro(X) o Frm(X)

If thedegreeof f(X) isn — 3 (whichimpliesthat f(X) £ 0), then
f(X) = 0istheimplicit equation of P(t).

Proof: Essentially the same as the proof for theorem2. Il

We now explore the possible degrees for moving curves which
follow P(t). Lettingd = 2 and m = [251], we find that there
exist at least m + 1 linearly independent curves of degree 2 in X
and degree m in ¢ that follow the curve P(t). In the case where
n 1S 0dd, theorem 1 assures that there will also be one moving line
of degree m which follows P(t). Thus, from theorem 3, arational
curve with no base points, and of even degree, can generally be
implicitized asthe determinant of a 3 x % matrix whose elements
are degree 2 in z, y, w. Likewise, arational curve of odd degree
and no base points can generally be implicitized as the determinant
of an 2% x 24 matrix with one linear row, and the remaining
rows quadratic.

We emphasize the word generally because theorem 3 requires
f(X) £ 0. Under certain conditions, the determinant in (27) will
vanish, even though the rows are linearly independent. The reason
isthat the rows might belinearly independent, but polynomially de-
pendent. Thefollowing theorem showsthat high order singularities
can create such acondition. A thorough description of the geomet-
ric properties of curves for which this condition occurs remains an
open question, though it appears at present that singularities are not
the complete answer.

Theorem 4. Theimplicit equation of a quartic curve with no base
points can bewritten asa2x 2 determinant. If the curve doesn’t have
atriple point, then each element of the determinant is a quadratic;
otherwise onerow is linear and one row is cubic.

Therather tedious proof includesshowing that if f(X) isformed
by a2 x 2 determinant with quadratic elements, the following four
statements are equivalent:

1 f(X)=0.
2. Thereexists adegree one moving line that follows P(¢).
3. P(t) hasatriple point.

4.
o 0 wo O O O
r1 Y1 w1 o Yo wWo
T2 Y2 w2 T1 Y1 w1
r3 Y3 w3 T2 Y2 w2
T4 Y4 wa T3 Y3 w3
0 0 O x4 ya wa

=0. (28)

The details of the proof are omitted here (see the appendix of
the electronic version of the paper). However, this discussion is
important becausesimilar phenomenacan occur with surfaces.

3 SURFACES

It is convenient to define arational surface in homogeneousform:
X(s,t) = (X(s,t),Y(s,t), Z(s,t),W(s, 1)) (29)

where X (s,t),Y (s,t),Z(s,t),W(s,t) are polynomias in s, ¢.
The Cartesian coordinates of points on the surface are given by
X(s,t) Y(s,t) Z(s,t)

T Wen YT wWey CTwey 0

Among the most common rational surfacesused in computer graph-
ics are the tensor product patchesfor which, in power basis,

dp  dy

X(s,t) = szijsitj, Xi] = (xij, yw,zw,wi]). (31)

i=0 5=0

3.1 BasePoaints

A basepointisavalueof (s, ¢) for which X(s, ¢t) = (0,0,0,0). In
the absenceof base points, the implicit equation of atensor product
surface can be expressed using Dixon’s resultant [8], which is the
determinant of a 2d1d> x 2d1d> matrix whose elements are linear
in(z,y,z). For example, a biquadratic surface requiresan 8 x 8
determinant, and a bicubic surface an 18 x 18 determinant. The
method presented in this section expressed the implicit equation of
a bicubic patch with no base points asa 9 x 9 determinant whose
elementsaredegreetwoin (z, y, z). (Itiswell knownthat all tensor
product surfaces have multiple base pointsat s = oo and ¢ = oo.
Here we mean no additional base points.)

Base points are of interest for two reasons. First, each simple
base point decreasesthe degree of the implicit equation of theratio-
nal surface by one. Thefull story on the relationship between base
points and degree becomes more complicated when considering
base points with higher multiplicity [3, 13].

Second, if base points exist, Dixon’s resultant vanishes iden-
tically. To implicitize surfaces which contain base points, more
complicated methods have been devised [2, 9, 15, 16] such as the
method of undetermined coefficients, successive elimination, per-
turbations, and customized resultants. In general, these methods
are much more complicated in the presence of base points.

By contrast, theimplicitization approachin this paper simplifies
inthe case of basepoints. Ingeneral, for each base point on abicubic
patch, one of the rows of the 9 x 9 determinant can be converted
from degree two to degreeonein (z, y, z).

3.2 Moving Surfaces

We define a moving surface as
9(X,s,) = hi(X)yi(s,4) = 0 (32)
=1

where the equations 2;(X) = 0,¢ = 1,..., o definea collection
of implicit surfaces and where the v;(s,¢), : = 1,...,0 are a
collection of polynomialsin s and ¢. We will refer to the v;(s, t)
as the blending functions for the moving surface. We require the
blending functions to be linearly independent and to have no non-
constant factor common to all of them. A moving surfaceis said to
follow arational surface X (s, t) (29) if

g(X(s,t),s,t) =0. (33)

When we make a statement such as “so many moving surfaces
exist", itisimplied that thosemoving surfacesfollow the parametric
surface under discussion, even though we may not explicitly say so.



Theorem 5. Given a set of o moving surfaces
g (X, s, 1) = Z hyi(X)yi(s,8) =0, j=1,....0, (34)
=1

each of which follows a given rational surfaceX (s, t) (29). Define

har(X) his (X)
f(X) = : : : : (35
ho1(X) hoo(X)

If the degreed of f(X) isequal to the degree of the implicit equa-
tion of the rational surface X(s, t), then f(X) = 0 is the implicit
equation of X(s, t).

Proof: f(X) = Oistheimplicitequation of X (s, t) if thefollowing
conditions are met:
1L f(X)Z0.
2. f(X(s,t)) =0.
3. For all X for which f(X) = 0, there exists a parameter pair s, ¢
suchthat X = kX(s, t) where « is ascalar constant.
Condition 1 is satisfied by the requirement in the theorem that
the degree of f(X) isequal to the degree of the implicit equation.
The fact that each of the & moving surfaces follow X(s, t)
means that the set of equations

hua(X) hie(X) 7 ( nils.1)
P L =0 (39

hot(X) oo hoo(X) | L ve(s )
is satisfied for X = X(s,¢). If for some (s,t) f(X(s,t)) # O,
thenvyi(s,t) = ... = v-(s,t) = 0. Butsincevi(s, t), ..., vo(s,t)
have no common factor, there are at most a finite number of (s, t)
values for which v1(s,t) = ... = (s, t) = 0. Consequently if

there are any (s, t) pairs such that f(X(s, ¢)) # 0, the number of
such pairsisfinite. But since f(X(s, t)) isapolynomial in (s, t),
it is therefore identically zero and condition 2 is met.

Base points map (“blow up") to entire curves on the surface
known as seam curves [15]. Some authors haved argued that these
curves can be interpreted as lying on the implicit surface but not
on the parametric surface since there is not a parameter value for
which X = xX(s,t) if X lies on a seam curve [3]. We avoid
that debate here, and are content to prove that condition 3 holds
at least for points not on seam curves. Suppose then that there
exists a point X* such that f(X) = 0 but X* # kX(s,t) for
any (s, t). Choosealine through X* which does not intersect any
seam curves and which is not tangent to the surface. Take any two
planes containing that line and compute their intersection with the
parametric surface X (s, t), yielding two curvesin parameter space
g1(s,t) = 0and g2(s,t) = 0. Those two curves will intersect at
all base points of the surface, and at d other (s, t) parameter pairs
where d is the degree of the implicit equation of the surface [13].
But from condition 2, those d parameter pairs map to points for
which f(X) = 0, making atotal of d + 1 pointslying on aline for
which f(X) = 0, acontradiction of Bezout'stheorem. ll

Sections 4 and 5 will prove that it is always possible to find
a square matrix of moving surfaces that follow any given tensor
product or triangular surface patch, and they present a systematic
way of finding such matrices. It is very difficult to give a rigorous
proof that for any given X (s, ¢) amatrix (35) can always be found
so that the degree of f(X) is equal to the degree of the implicit
equation of therational surface X (s, ¢) (and hence the determinant
is not identically zero). However, in scores of example cases, we
have never failed to find such a matrix.

3.3 Examples

Theorem 5 proposesamethod for implicitizing rational surfacesby
finding sets of moving surfaceswhich follow it. We here illustrate
that concept with a few simple cases. These may seem somewhat
ad hoc, but they have the advantage of being concrete numerical
exampleswhichare small enoughto verify by hand. No explanation
is given in these examples of how to find the moving surfaces,
sections 4 and 5 outline a procedure for that.

3.3.1 Explicit Surface

The simplest parametric surfaceto implicitize isthe explicit surface
t=s; y=1t z=q(s,t) (37)

for whichtheimplicit equationismerely ¢(z, y) —z = 0. Thiscase
is so trivial, that it actually becomes a little more complicated to
implicitize it using moving surfacesthan to merely write ¢(z, y) —
z = 0. However, it serves as a simple introduction to moving
surfaces. In this case, we can take as blending functions v1(s, t) =
s, v2(s,t) = ¢, v3(s, t) = 1. Thethree moving surfaces, in matrix

form, are
1 0 — s
0 1 -y t =0 (38)
a(z,y) b(z,y) —z+¢(0,0) 1

wherea(z, y) andb(z, y) arechosento satisfy a(z,y )z +b(z, y)y+
¢(0,0) = ¢(z, y). Thesethree moving surfaces clearly follow the
parametric surface, and the determinant of the 3 x 3 matrix in (38)
is clearly the implicit equation.

3.3.2 Cubic Surface

As far as the authors are aware, the closest hint in the literature
to anything like moving surfacesis the observation, dating back at
least to Salmon in 1862 [18], that a degree three algebraic surface
can be defined as the intersection of three “bundles’ of planes
(the classical term for what we here would call a moving plane
with blending functions 1, s, and ¢). Salmon began with those
three bundles of planes, and computed the parametric and implicit
equations of the surface from them (see [21] for a more recent
presentation).

For implicitization, we work in reverse, finding the moving
planes given the parametric equations. Here are a set of parametric
equations for a surface that we know in advance to have a degree
three implicit equation. The parametric equations have six base
points.

o =242 4 * 4 474 Ats 2t + t5° 4 3s
y=—2%s —ts—2%+s—s—2i+2
v = 3%+ 2t° — 2ts* — 3ts — 2t — s° — 3s* — 25
w:—t+t52+52—s+53+t3—1+t2

Once again, the moving surface blending functionsare 1, s, and
t. Thethree moving surfaces, in matrix form, are

{i}:o (39)
1

and the implicit equation is the determinant of the matrix.

T y z
y+w 29—z y+2w
z—y —cr+2w T —y




3.3.3 Steiner Surface
The canonical Steiner surfaceis given by parametric equations
x=2st; y=2t;, z=2s w:sz—l—tz—l—l.

Thisis aspecial caseof atriangular surface patch, ageneral implic-
itization procedure for which is given in section 5. We can again
take v1(s, ) = s, v2(s,t) = ¢, v3(s,t) = 1. The three moving

surfaces, in matrix form, are
S
t =0 (40)
1

The determinant of the matrix, ©2y? + 2222 + y%%% — 2zyzw is
indeed the implicit equation of the canonical Steiner surface.

Y —2z T
Y —z 0
r7 Ty—xz—2zw T4 yz

3.3.4 Surface of Revolution

When Newell reverse-engineered his teapot in 1975 [7], rational
Bézier patches were not in wide use and so the surfaces of revolu-
tion were approximated using polynomial patches. While that ap-
proximation iswell within graphical tolerance, there are advantages
to reformulating the teapot using rational Bézier patches. First, the
rational case can exactly represent surfaces of revolution. Second,
arational bicubic patch can model 180° of a surface of revolution,
thus cutting in half the number of patches used to model the rim,
body, lid, and bottom. Third, and most importantly for current
needs, an exact surface of revolution can be implicitized in amuch
more compact form than can the polynomial approximationin [7].

In this section, we implicitize a patch from the lower body of
the teapot which has been modified to exactly represent a surface
of revolution. Asdiscussed in section 6, without that modification,
theimplicit equation takesthe form of a9 x 9 determinant whereas
the implicit equation of the modified patch can be expressed in a
2 x 2 determinant.

The teapot lower body is defined by rotating around the = axis
the cubic polynomial Bézier curve with control points (2,0, .9),
(2,0,.45), (1.5,0,.225), and (1.5,0,.15). The exact surface of
revolution can be represented in rational Bézier form by

(1-s)°
—(1_p13 N2 9200y L3 3s(1—s)?
X(s,1) =[(1-1)° 3t(1—1)* 3t3(1—t) ]M 3531 5)
53
where M =
(2,0,.9,1) 2491y (=232l 2,0,.9,1)

( (-
(2,0,.45,1)  (2%2L) (=255 (-20,.451)
(1.5,0,.225,1) (125254 (=123.281) (_150,.225,1)
(

15,0,.15,1) (2321 (—1573371571) (-1.5,0,.15,1)

Theimplicit equation of this surface can be expressedina?2 x 2
determinant. In this case, we can take vi(s, t) = 1, v2(s,t) = s
and the two moving surfaces are

(t+y)C —B —2zC 11 _
—yC (t+y)C+ B s =0 (41)
where
B =618 + 6720z + 17000z* — 64000/9z°
+ 1305/2y* — 120y°z + 1305/2z° — 120z°z

C = 322 + 3y® + 1600z> + 6900z + 1197

The determinant then gives the implicit equation of the surface of
revolution — a degree 6 polynomial.

4 TENSOR PRODUCT PATCHES

We now present a systematic method for computing moving sur-
faceswhich follow atensor product patch (31). Itismost convenient
towork in power basis. Aswewill see, agood choiceforthe; (s, t)
in (32) is simply the tensor product basis:

'yi(s,t)zsjtk; (42)
J=0,...,b1 k=0,...,b i=k(b2+1)+75+1,

SO0 = (b]_ =+ 1)(b2 =+ 1)

A degreen polynomial inthreevariableshas(n+1)(n+2)(n+
3)/6 coefficients. Thus, if al o polynomials k;(X) are degree n,
there are a total of o(n + 1)(n + 2)(n 4+ 3)/6 coefficients. We
can determine », alower bound on the number of linearly indepen-
dent families of moving surfaces ¢(X, s, ¢) that follow X(s, ¢) by
generating a set of linear equations as we did for the curve casein
(15). For the surface case, the identity in (33) can be satisfied by
solvingaset of (nd1+ b1+ 1) x (nd2+ b2+ 1) linear homogeneous
equationsin o(n + 1)(n + 2)(n + 3)/6 unknowns. Thus,

b1+ D(b2+1)(n+ L)(n+ 2)(n+ 3)
6
—(ndl + b1+ 1)(nd2 + b+ 1) (43)

If we can find values of =, b1, and b2 so that n > o, there will
be enough & ;; (X) to fill asquare matrix and, if the conditionsin
theorem 5 are met, the determinant of that matrix will betheimplicit
equation of P (s, ¢). Two cases turn out to exactly give n = o
moving planes, and moving quadrics. Choosing » = 1 (moving
planes), by = 2d1— land bo =do— 1y|eldsn = o = 2d1d>. With
this choice, the implicit equation of a bicubic patch with no base
points occurs as the determinant of an 18 x 18 matrix. It can be
shown that Dixon’s resultant is aspecial case of thisimplicitization
method using moving planes.

If wechoosen = 2 (themoving algebraic surfacesare quadrics),
by = d1 — 1andb2 =dy — 1,Wethenhaveatleastn == did>
linearly independent moving surfaces. This means, for example,
that a bicubic patch with no base points can generally be implicit-
izedintheform of a9 x 9 determinant whose elementsare quadratic
inz,y, z. A biquadratic patch with no base points can generally be
implicitized using a4 x 4 matrix with quadratic elements.

We stress the word generally. For arbitrarily chosen control
points, experience has shown that the conditions in theorem 5 are
always satisfied. As will be seen in the teapot patches, however,
when control pointsare placed in some coherent fashion, the likeli-
hood of singularities increasesand the conditionsin theorem 5 may
no longer be met. Section 7 comments on thisin more detail.

41 BasePoints

Forn =1,b1 =di1— landb, = d2 — 1, wefind that = 0. Note
that » in (43) isalower bound on the number of linearly independent
moving surfaces; the actual number might be higher, depending on
therank of the (nd1 + b1 + 1) x (nd2 + b2 + 1) matrix. Here we
show that in the presence of base points, the rank doesindeed drop.

Theorem 6. If P(s, t) hasp distinct base points in general position
(as defined in the proof found in the appendix of the electronic
version), there exist at least p linearly independent moving planes
whose blending functions are given by (42) withb, = d1 — 1 and
by =dy— 1.

Proof: Thisisabrief sketch of the proof. The complete proof can

be found in the appendix of the electronic version of the paper.
Asnoted, the identity in (33) can be satisfied by solving a set of

4d,d» homogeneouslinear equationsin 4d;d, unknowns. The way



we generated those equations before was to simply expand (33),
producing a polynomial of degree 2d1 — 1in s and degree 2d, — 1
in¢. Thispolynomial has 4d1d, terms, and the 4d1d, equations are
created by setting the coefficient of each of those terms equal to
zero.

We could create an equally valid set of 4d.d» equations by
choosing 4d.d, different parameter pairs(s;, t;),57 = 1,...,4d1d>
and taking the equationsto be

didy

D hi(X (5,155, 45) =0, j=1,...,4dxdz.
=1

However, if we take p of those (s;, ;) to be base points, those p
equations will be identically zero and the rank of the matrix will
diminish by p. Hence, it ispossibleto find at least p moving planes.
|

This means that for 6y = d1 — 1 and b, = d> — 1, we can
find p moving planes and (at least) did> — p moving quadrics
that follow P(s, t). If the determinant of the di1d> x did> matrix
containing those p moving planes and d1d» — p moving quadricsis
not identically zero, it is the implicit equation.

Thisdiscussion on base points hasdealt with distinct base points.
One might be tempted to postul ate that base pointswith multiplicity
greater than one [13] would always free up moving planesequal in
number to the total base point multiplicity. While this happensin
many cases (such as with the teapot), it is not always so. A more
detailed analysisof this question must await a future paper.

What if more than d1d» base points occur, since then there are
no more quadratic rows left to convert to linear rows? Again, a
complete answer to this question will be left for later. However,
preliminary tests suggest that the size of the matrix can continue
to shrink, usually allowing blending functions with b1 < d1 — 2,
and/or b, < d» — 2. The example in section 3.3.4 is such a case,
involving 12 base points. We note that the surface of revolution can
also beimplicitized asa4 x 4 determinant with two linear rowsand
two quadratic rows. In that case, b1 = b, = 1.

5 TRIANGULAR PATCHES

By atriangular surface patch, we mean onewhose parametric equa-
tions are of pure degree d:

X(s,t)= Y Xys't. (44)

i+5<d

In this case, the right choice for moving surface blending functions
aretheo = d(d + 1)/2 monomialsin s, ¢ of total degree < d:

vi(s,t) =s't", j=0,...,d—1, k=0,...,d—j—1; (45)

withi = j(d — 5%) + k + 1.

As in the tensor product case, if al o polynomials #;(X) are
degreen, thereareatotal of o(n + 1)(n+2)(n + 3)/6 coefficients.
Theidentity in (33) can besatisfied by solving aset of (nd+d)(nd+
d+1)/2linear homogeneousequationsine (n+1)(n+2)(n+3)/6
unknowns. Thus, the number of degree» moving surfacesisat least

n = dd+1)(n+1)(n+2)(n+3)/12
—(nd +d)(nd + d+1)/2. (46)
Letting » = 1, we find that there are at least d moving planes.

Letting » = 2, there are at least (d? 4 7d)/2 moving quadrics.
However, 4d of those moving quadrics can be created from the

moving planes as follows. Let a moving plane be given by (32).
Then

(c1z + c2y + c3z + caw) Z hi(X)vi(s,t) =0

=1

gives a moving quadric that also follows the surface. Hence, for
each moving plane, there exists four moving quadrics, and there are
only (d?47d)/2—4d = (d*— d)/2 moving quadricswhich cannot
be created from moving planes. Hence, the matrix in (35) can just
exactly befilled with d linear rows and (d% — d)/2 quadratic rows.
If the determinant does not vanish, f(X) is degree d? as expected.

The Steiner surface example in section 3.3.3 is an application
of this method, for d = 2.

Thebase point discussionin section 4.1 appliesalso to triangular
patches; each simple basepoint will generally allow aquadratic row
to be converted to alinear row.

The cubic surface examplein section 3.3.2 illustrates what can
happen when several (6 in this case) base points occur.

6 THE TEAPOT

The 32 bicubic patches defining Newells' teapot [7] provide a sur-
prisingly diverse set of tests for moving surface implicitization.

The teapot patchesfall into ten groups: rim, upper body, lower
body, upper handle, lower handle, upper spout, lower spout, upper
lid, lower lid, and bottom. All patchesin agiven group are simple
linear transformations of one another, sotheir implicit equationsare
similar.

In every case, it is possible to implicitize these patches using
9 x 9 determinants with tensor product blending functions (42) for
which b1 = b, = 2. The 16 patchesin the rim, lower lid, upper
body and lower body all have degree nine implicit equations (all
having nine base points), and their implicit equations can each be
expressed as 9 x 9 determinants with nine linear rows. Those nine
moving planes can be found by solving a set of linear equations as
discussed in section 4.

The four patchesin the upper lid have five base points (degree
13 implicit equations). The determinant has five moving planes
and four moving quadratics. The four bottom patches have three
base points (degree 15 implicit equations), and their determinant
has three moving planes and six moving quadratics.

All four spout patches have no base points (degree 18 implicit
equations), and their determinant has nine moving quadratics.

The four handle patches provided a surprise. These patches
have no base points (degree 18 implicit equations). However, the
determinant has three moving planes, three moving quadratics, and
threemoving cubics! Thisphenomenonisreminiscent of thedegree
four planar curve with atriple point.

It turns out that the rim’s implicit equation can al so be expressed
asa3 x 3 determinant using o1 = 1, 62 = s, a3 = s°. Inthis
case, there are two moving quartics and one moving plane. This
discovery was made purely by trial and error, but the search was
motivated by the fact that for this surface, = is aquadratic function
of s only, soweimmediatelzy knew there existsa moving planewith
o1 =1, 00 = 5, 03 = s°. The two moving quartics were pure
serendipity.

Similarly, the upper lid's implicit equation can be written as a
4 % 4 determinant with three moving quarticsand onemoving plane.
The blending functionsare o1 = 1, 62 = s, 03 = 52, 04 = s°.
Finally, the four bottom patches can be implicitized using a4 x 4
determinant with one moving plane, one moving quartic, and two
moving quintics. The blending functions are o1 = 1, 02 = s,
03 = 52, o4 = S".



7 DISCUSSION

This paper has proven several theorems and provided empirical
support which suggests that the method of moving surfaces is a
comprehensive solution to the problem of surface implicitization,
and the resulting expressions for the implicit equation are much
more compact than those obtained with previous methods.

Thiswork haslargely been an adventurein experimental math-
ematics. The basic notion of moving surfaceswas arrived at using
pencil and paper, as was the realization that o moving surfaces
can always be found for tensor product and triangular patches such
that, if the determinant formed by them (35) does not vanish, it
must be the implicit equation. While we have not yet succeeded
in theoretically showing that a non-vanishing determinant always
exists, empirical substantiation has been provided using computer
algebra. We have tried numerous examples with randomly chosen
control points (assuring that the surface has no base points or high
order singularities), and the blending functionsin sections4.1 and 5
have alwaysworked. Thus, we conjecturethat for randomly chosen
control points, the methodsin sections4.1 and 5 are robust.

We have also run numerous test cases in which we generated
surfaces with randomly chosen simple base points, and havefound
no counterexampleto the conjecture that in randomly chosen cases
it always works to trade one quadratic row for a linear row (until
there are more base points than quadratic rows), thereby reducing
the degree of the surface by one.

Based on our experience, an automatic algorithm for implicitiz-
ing bicubic patches (for example) would begin by determining the
degree of the implicit equation. This can be done very quickly by
firing two skew raysinto it [11] and checking at how many unique
(s, t) pairsthey eachintersect the surface. Thisisthe degree. If the
degree is 18, compute how many moving quadrics exist. If there
are exactly nine, they will fill a9 x 9 determinant which definesthe
implicit equation. If there are more than nine, search for moving
planesand moving cubicsto fill the determinant. If the degreeisbe-
tween 9 and 18, search for » moving planes and s moving quadrics
suchthat r 4+ 2s = degree. If the degreeislessthan 9, try blending
functions (42) with b, = b, = 1

Whether or not a non-zero determinant can always be found
which satisfies the conditions in theorem 5 remains an open ques-
tion. All of the hundreds of cases we have studied thus far have
yielded anon-zero determinant, though at present we have no proof
that this is always so. We have observed that base points with
multiplicity greater than one can produce surprising results. In
one example, a case was studied involving a base point that was a
common double point onthe curves z(s, t) = y(s,t) = z(s,t) =
w(s, t) = 0 (thus abase point of multiplicity four [13]). Theantic-
ipation was that four of the rows on the standard 9 x 9 determinant
could convert from quadratic to linear. In fact, only three moving
planes exist! Nonetheless, we succeeded in finding a solution in-
volving an 8 x 8 determinant with six moving quadrics and two
moving planes.

We note that moving surfaces can also solvethe inversion prob-
lem (given a point on the surface, compute the corresponding pa-
rameter values).
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Appendix

Thisappendix containsadditional detailsfor the proofs of theorems
2,4 and6.

Proof of Theorem 4. In order to show that f(X) in (19) is not
identically zero, we prove the following facts:

1. rank(M) = 2n, where M is the matrix defined in (15).

2 Let Li(t) - X, i = 0,1,...,m be another set of linearly
independent moving lines and define

Ly - X b, X

F'(X) =

then there exists a non-zero constant ¢ such that
F1(X) = c- f(X).
3. f(X)£0.

1. Wefirst assumez(t) and w(¢) do not have a common factor.
Denote by M the matrix obtained by deleting from M columns
2,5,...,3n — 1. The determinant of M3 is none other than the
resultant of z(¢) and w(t), hence is nonzero. Therefore rank( M)
=rank(M1) = 2n.

If z(¢) and w(t) do haveacommon factor, there exist constants
a(a # 0) and § such that az(t) + By(t) and w(t) are coprime,
since curve P(t) = (z(t), y(t), w(t)) doesn't have a base point.
Now consider curve P'(¢) = (az(t) + By(t), y(t), w(t)). Inthis
case, the matrix M in (15) isthe 2n x 3n matrix M’ =

!
Ty Yo wWo
! !
Ty Y1 w1 To Yo wWo

I
r1 Y1 w1
I3
o Yo wWo

/ . /
Ty Yn Wn . T, Y1 w1

!
Ty Yn Wn

wherez! = ax; + By, 1 =0,1,...,n.

Since ax(t) + Sy(t) and w(t) do not have common factors,
rank(M') = 2n. By taking column reductions to matrix A/’ we
haverank(M) = rank(M') = 2n.

2. Let

m

/_2: o,y ro_ ' ' . -

Li = L”t , Li] = (ai],bi],cij), 1= O, 1,...,m.
3=0

From statement 1 we know there are exactly » independent moving
lineswhich follow P(¢). Hencethere exist constantsd;; such that

o Lim), i=01... m.

(Ligs ooy Lim) = > dis(Lyo, ..
7=0

or, in matrix form,
L'=D-1L,

where L' = (L,), L = (L:5), D = (dij).

SinceZ;(t)-X,i=0,1,...,mand Li(t)- X, = 0,1,...,m
are two sets of independent moving lines, we have rank(L') =
rank(L) =m+1,hencerank(D) = m+1,i.e. Disaninvertible
matrix.

On the other hand, we also have

F/(X) = det(D) - f(X).
Sincedet(D) # 0, statement 2 is proved.

3. This statement follows immediately from statement 2 and
the fact that Bezout's resultant does not vanish. But we can also
proveit without using that resullt.

First we assume «(¢) and w(t) do not have a common factor.
We can solve equations M'b = 0 in the following way:

Takeb;,+ = 0,1, ..., n — lasfree parametersand solvefor «;,
1=01...,.n—1landc;,: =0,1,...,» — 1. Each given set of
parameters b; gives one unique solution since rank(M1) = 2n. If
we choose parameters (bo, . . ., b, —1) to bee; (creating an n dimen-
sional vector with all componentsbeing 0 except :*" element being
1),:=12,..., n,respectively, thenweget » linearly independent
moving lines. Furthermore, if we form determinant (19) from these
moving lines, the coefficient for monomial term y™ of f(X) is 1,
hence f(X) isnot identically zero.

Now suppose «(¢) and w(¢) do haveacommon factor, thenthere
exist constants o« # 0) and 3 such that az(t) 4+ Sy(¢) and w(t)
do not haveacommon factor. Similarly asin the proof of statement
1weconsider curveP’(¢) := (az () + By(t), y(), w(t)). Tofind
moving lines which follow this curve, we need to solve the linear
equation M’ - b’ = 0, where M is defined as before and

b/ = (aé)a bé)a Cé)a Tty a:z—la :l—l’ C:L—l)Ta t= Oa 1a e, 1

Since az(t) + By(t) and w(t) do not have common factor, the
determinant corresponding to (19) formed by the moving lines of
curveP’(¢) (denoteit by g(z, y)) doesn’t vanish, thusistheimplicit
equation of curve P’(¢).

On the other hand, noticing matrices M and M’ havethe rela-
tionship

M' =M. B,

where
B = diag(C,C,...,0),

and C'isa3 x 3 matrix:
00
1 0],
01

8

we know the solutionsof A/ -4 = O and M’ - & = 0 have the
relationship

o™ R

b=DBV,

from which we can easily obtain the determinant formed by the
moving lines of curve P(t) isjust g(ax + Sy, y), henceis non-
zero.

This complete the proof of theorem 2. Il

Proof of Theorem 4:

l=2

Supposethe fi;(X) (4,5 = 0,1) in ( 27) are all quadratics. If
f(X) =0, then foo(X) f11(X)
= f1o(X) fou(X). We show that f;;(X) (i,5 = 0,1) all can be
factored into linears. The proof is by contradiction.

Suppose for example foo(X) is prime, then there exists a con-
stant ¢ such that flo(X) = Cfoo(X) or f01(X) = Cfoo(X). If



fo(X) = cfwn(X), then fu(X) = cfu(X), this contradicts
the fact that the coefficients of two rows are linearly indepen-
dent. |If f01(X) = Cfoo(X), then f]_]_(X) = Cflo(X). But
fio(P(t)) + tfir(P(t)) =0, ¢ = 0,1, so fio(P(¢)) = 0, means
that P(t) isin fact a degree two curve and this contradicts the fact
that P(¢) doesn't have base point.

Now let foo(X) = lo(X) L(X) and fu(X) = L(X) L(X),
SO flo(X) = lo(X) lz(X) and fo]_(X) = ll(X) la(X) Hence we
have lo(P(t)) + tl3(P(t)) = 0. that is, there existsamoving line
which follows P(¢).

Conversely, if thereexistsamoving line L(X; ¢) which follows
P(t), then every moving quadratic which follows P(¢) must be
L(X;t) scaled by alinear function in ¢ and y. Thisis so because
if the moving line and the moving quadratic wereto form a2 x 2
determinant which is not identically zero, it would be the implicit
equation according to theorem 3. But that expression would be
cubic in z, y and the true implicit equation is a quartic because
there is no base point. Hence f(X) = 0.

2= 4

Supposemoving line L(X; t) = (aox + boy + cow) + t(arz +
b1y + caw) followsP(t), so L(P(t); t) = 0. Thisisequivalentto a
system of homogeneouslinear equations with ao, bo, co, a1, b1 and
c1 being unknowns. It is easy to know that the coefficient matrix
is none other than the matrix in (28). Hence the equations have
non-zero solutions if and only if (28) holds.

2= 3.

Suppose P(t) hasatriple point T . Let Lo(X) = 0 betheline
which passesthrough T and P(0),and L1(X) = Obethelinewhich
passesthrough T and P(1). Define L(X; t) = (1 — t)cLo(X) +
tL1(X). We prove that there exists a scalar ¢ for which L(X; ¢)
follows P(t). For this, the intersection of line L(X; ¢) with curve
P(¢) can be expressed as the degree five polynomial L(P(t);t).
This polynomial has zeros at the three triple point parameters, as
well as zerosat ¢t = Oand ¢t = 1. We can choose ¢ so that
L(P(t); t) = 0for oneother value of ¢, which makesit identically
zero, and hence L(X; t) follows P(¢).

Conversely, if there exists a pencil of lines which follows a
quartic curve, the pencil axismust lie at atriple point on the curve,
because as ¢ sweeps monotonically from —oo to +o0, L(X; )
rotates monotonically 180° about a fixed axis A. However, if
L(X; t) wereto intersect P(¢) at morethan one point other than A,
then as ¢ sweepsmonotonically from —oo to 400, theline A-P ()
would not rotate monotonically.

The equivalence of the above four statments shows that if the
quartic curve doesn’t have a triple point then the implicit equation
can beformed by two quadratic rows, and if the quartic curve does
have a triple point we can find a moving line following it. If we
multiply the moving line by adegreetwo polynomial in z, y, w (that
has six coefficients), we see that there is a six parameter family of
moving cubicsthat are degree onein ¢ which also follow the quartic
curve. In the following we prove we can also find a moving cubic
which follows the curve and which is not just a quadratic scale of
the moving line. To do this, we only need to show there exists at
least seven moving cubics.

Supposethe quartic curve P(t) hasatriple point T = P(t1) =
P(t2) = P(t3). Without loss of generality, we assumethat ¢1 #
to # 3 (if someof them areequal thediscussionwill involvederiva-
tives). To find the moving cubics C(X;t) = fo(X) + tf1(X)
which follows the curve P(t), we just substitute the equation of
P(¢) into C(X; ¢) and get a degree thirteen polynomial ¢(t), then
choosefourteen different parameters s, so, . .., s14 and obtain four-
teen equations g(s;) = 0, ¢ = 1,2,...,14. Specifically we can
choosethree of the parametersbet, ¢» and ¢z and get three equations
fo(T)+t; f1(T) = 0,7 = 0, 1, 2. Thesethreeeguationsarelinearly
dependent because they are equivalent to fo(T) = fi(T) = O.

Hence we only have thirteen equations, but there are twenty un-
knowns, so there exist at least seven moving cubics which follow
the quartic curve. l

Proof of Theorem 6: In the theorem, we impose the require-
ment that the p basepointsarein “ general position”. Herewedefine
what that means. Given aset of points(s;, ¢;),s = 1,..., k, define

vi=(1,..., s?dl_l, ti .., tis?dl_l, ..
I R SR U S
The points are in general position if the vectors v;, ¢ = 1,... &,
are linearly independent.
We prove the following facts:

LIf (si,¢), 5 =1,...,k (k < d = 4d1d») are in general
position, then there exist additional points (s, ), 1 = k +
1,...,d suchthat (s;,t;), : = 1,...,d are aso in general
position, that is,

M:(vlT,va,...,vdT)T
has full rank.

2. Let

didy

h(s, 1) = Zhi(X(s,t))yi(s,t),

where h;(X) are linear functionsin z,y, z and v:(s, t) are
blending functions defined in (42). If (s, t:), i =1,...,d
arein general position, then i(s, t) = Oiff

R(si,t:) =0, i=1,...,d.

3. If P(s,t) has p distict base points and these base points are
in general position, then there are at least p moving planes
which follow P (s, ¢).

1. We only need to prove that there exists (sx+1, tx+1) such
that (s:,¢:), ¢ = 1,...,k + 1 arein general position, the general
case follows from induction.

By assumption, (s:,¢), ¢ = 1,...,k are in general position,
that is v1, ..., vx arelinearly independent. Therefore there exists

ak x k submatrix of M, say M1 = M oz ok )such
Ji 32 - Jk
that det(M1) # 0. Now define
M = (vlT,...,va,vT)T,
wherev = (1,..., 8271 ¢ . ts?mt g2l 2t

s?%~1) and consider a (k + 1) x (k + 1) submatrix of M’,

M{:M’( 1 2 k k+l)’

JiJ2 - Ik l

herel # j;,i = 1,..., k. Becausedet(M1) # O, det(M;)isanon-
zero polynomial in s and ¢ (denoted by f (s, t)). Hencethere exists
SOme(S, t) = (Sk+1, tk+1) such that det(M{) = f(sk+1, tk+1) #*
0. Thus M; has full rank, i.e, (si, ), ¢ = 1,...,k + 1 arein
general position.

2. Noticing &(s, t) is a tensor product polynomial of degree
2d; — 1in s and degree 2d, — 1in ¢, we can rewrite h(s, t) as

2dy —12dp—1

h(s, t) = Z Z hi]sitj.

i=0 3=0



If h(s,t) =0, wecertainly have h(s;,t;) =0,: =1,...,d.

Conversely, if h(s;,t;) =0,: =1,...,d,weget M - b =0,
where M is define as before and b = (hoo, - - ., k24, —1,0, hot, - - -
s h2d1_171, ey h072d2_1, ey h2d1—172d2—1)- Since M is an invert-
ible matrix we must haveb = 0, thus 2(s, t) = 0.

3. Let(s;,t:),i=1,..., p bethe p base points of P(s, t) and
these base points are in general position. According to statement
1, we can find pairs (s, t;), 1 = p+ 1,...,d such that (s;, t;),
i = 1,...,d are in general position. Therefore, h(s,t) = 0 is
equivalentto (s;, ¢;) = 0,1 =1,...,d by statement 2.

Butsince(s;, ¢:),t = 1,..., p arebasepointsof P(s, t), equa-
tionsh(s;,t;) =0,i=1,..., p areidentities. Hence (s, t) = 0
hasat least p solutions, i.e. thereareat least » moving planeswhich
follow P(s,¢). W



