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This paper presents a radically new approach to the century old problem of
computing the implicit equation of a parametric surface. For surfaces without base
points, the new method expresses the implicit equation in a determinant which is one
fourth the size of the conventional expression based on Dixon’s resultant. If base
points do exist, previous implicitization methods either fail or become much more
complicated, while the new method actually simplifies.

The new method is illustrated using the bicubic patches from Newell’s teapot

model. Dixon’s method can successfully implicitize only 8 of those 32 patches, ex-

pressing the implicit equation as an 18�18determinant. The new methodsuccessfully

implicitizes all 32 of the patches. Four of the implicit equations can be written as 3�3

determinants, eight can be written as 4�4 determinants, and the remaining 20 implicit

equations can be written using 9 � 9 determinants.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Ge-

ometry and Object Modeling.

General Terms: Algorithms
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1 INTRODUCTION

For any 2–D parametric curve x = a(t)
d(t) , y = b(t)

d(t) where a, b,
and d are polynomials, there exists an implicit equation f(x; y) =
0, where f is also a polynomial, which defines exactly the same
curve. For example, a circle can be defined by the parametric

equation x = 1�t2

1+t2 , y = 2t
1+t2 or by the implicit equation x2 +

y2 � 1 = 0. The process of finding the implicit equation given the
parametric equations is known as implicitization. Implicitization of
2–D curves leads to many practical algorithms. For example, a very
fast algorithm for computing the intersection of two 2–D curves of
low degree is based on implicitization [23]. Implicitization reduces
the problem of curve intersection to one of finding the roots of a
single polynomial.

Similarly, for any parametric surface x = a(s;t)
d(s;t) , y = b(s;t)

d(s;t) ,

z = c(s;t)
d(s;t) where a, b, c, and d are polynomials in s; t, there exists

a polynomial implicit equation f(x;y; z) = 0 which defines the
same surface.
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The general problem of surface implicitization has been studied
for well over a century. In 1862, Salmon [18] noted that surface im-
plicitization can be performed by eliminating the parameters from
the parametric surface equations. Presumably he had in mind us-
ing Sylvester’s “dialytic method” with which one could eliminate
two variables from three polynomials, though the result generally
needed to be “expressed as the quotient of one determinant divided
by another" [17]. In 1908, Dixon published a more compact re-
sultant for eliminating two variables from three polynomials which
has become the standard method for surface implicitization, at least
in the absence of base points. In 1983, Sederberg [19] resurrected
Dixon’s and Salmon’s work in addressing the problem of how to
implicitize surface patches. Other implicitization methods are sur-
veyed in [10], and include ones based on Gröbner bases [1], numer-
ical techniques [16], and multivariate resultants [4].

To implicitize a tensor product surface of degreem�n, Dixon’s
resultant produces a 2mn� 2mn matrix whose elements are linear
in x; y; z. The determinant of that matrix is the implicit equation.
For a biquadratic surface, the matrix is 8 � 8, and for a bicubic
patch, the matrix is 18 � 18. (In this paper, any statement that a
determinant is the implicit equation of a curve or surface should be
taken as shorthand for “setting that determinant to zero gives the
implicit equation".)

Surface implicitization has seen limited practical use partly be-
cause of the huge expressions involved, but also because in the
event of base points (see section 4.1), things can get even more
complicated. For example, if base points exist, Dixon’s resultant
is identically zero and hence fails to produce the implicit equa-
tion. Manocha has shown that in many cases the largest non-zero
minor of Dixon’s determinant is the implicit equation, but often
it includes an extraneous factor [14]. Substantial further work is
then needed to remove the unwanted factor. Implicitization using
Gröbner bases [6] also usually fails when base points occur, since
the implicit equation does not belong to the ideal generated by the
parametric equations [15], although this problem can sometimes be
circumvented by introducing some auxiliary polynomials into the
Gröbner system [12, 10]. Nonetheless, Gröbner bases are known
to be very slow in implicitizing bicubic patches.

Several other procedures have been devised to implicitize sur-
faces with base points [2, 9, 15, 16]. We don’t review those methods
here, but observe that those methods are generally more compli-
cated than Dixon’s method. Furthermore, base points are not a rare
occurrence; most of the teapot patches have numerous base points.

This paper presents a fundamentally new procedure for implic-
itizing curves and surfaces in which the implicit equation can be
written in much more compact form than before. Furthermore, in
the presence of base points, the expressions actually simplify. In
particular, the new method allows the implicit equation for a general
bicubic patch to be written as a 9 � 9 determinant whose elements



are all degree two in x; y; z. If a base point exists, one row of
that determinant can in general be replaced by degree one elements.
Section 2 introduces the new strategy as it applies to curve implic-
itization. We refer to this method as the moving curve method.
Section 3 introduces the moving surface method for surface implic-
itization. Sections 4 and 5 discuss how to implicitize general tensor
product and triangular patches using moving surfaces. Section 6
reports on what happens when those methods are used to implicitize
the 32 bicubic patches of the teapot. It turns out that those patches
show surprising diversity in the number of base points.

2 CURVE IMPLICITIZATION

The standard method for implicitizing a 2–D curve is to use Bezout’s
resultant [22]. For a degree n rational curve, Bezout’s resultant is
the determinant of an n � n matrix whose elements are linear in
x; y. For example, the implicit equation of the curve

x =
2t2 + 4t+ 5
t2 + 2t+ 3

; y =
3t2 + t+ 4
t2 + 2t+ 3

(1)

can be found by taking the resultant of

t2(x� 2) + t(2x� 4) + (3x� 5)

and
t2(y � 3) + t(2y� 1) + (3y� 4):

Bezout’s resultant for these two polynomials in t is:���������

���� x� 2 2x� 4
y � 3 2y � 1

����
���� x� 2 3x� 5
y � 3 3y� 4

����
���� x� 2 3x� 5
y � 3 3y � 4

����
���� 2x� 4 3x� 5

2y� 1 3y � 4

����

���������
=

���� 5x� 10 5x� y � 7
5x� y � 7 �5x� 2y+ 11

���� : (2)

Setting (2) to zero gives the implicit equation for (1).
Bezout’s resultant is purely an algebraic device. By studying

the following geometric interpretation of Bezout’s resultant, we are
led to the new implicitization algorithm.

A pencil of lines can be described by the equation

(a0x + b0y + c0)(1� t) + (a1x+ b1y + c1)t = 0 (3)

where the equations a0x + b0y + c0 = 0 and a1x+ b1y + c1 = 0
define any two distinct lines.

Given two distinct pencils, (a00x+b00y+c00)(1�t)+(a10x+
b10y+ c10)t = 0 and (a01x+ b01y+ c01)(1� t) + (a11x+ b11y +
c11)t = 0, one line from each pencil corresponds to each value
of t, and those two lines intersect in a point. The locus of points
thus created for �1 � t � 1 is a conic section, as illustrated
in Figure 1. This observation is attributed to Steiner and Chasles
in the 1830’s, though a roughly equivalent method for generating
conic sections dates back to Newton [5].

It is easily shown that the implicit equation of this curve is���� a00x+ b00y + c00 a10x+ b10y + c10

a01x+ b01y + c01 a11x+ b11y + c11

���� = 0: (4)

This same curve can actually be defined using many different
pairs of pencils of lines, and it turns out that Bezout’s resultant for
degree two curves is nothing more than one manifestation of this
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Figure 1: Intersection of Two Pencils of Lines

fact. For example, the two rows of the Bezout resultant (2) can be
shown to define pencils of lines

(5x� 10)t+ (5x� y � 7) = 0 (5)

and
(5x� y � 7)t+ (�5x� 2y + 11) = 0 (6)

which intersect in the parametric curve (1).
The idea of defining a conic section as the intersection of two

pencils of lines can be generalized to curves of any degree. One such
generalization is given in [24]. This section presents some results
similar to those in [24], but using a different approach. The approach
taken here lays the foundation for the surface implicitization method
presented in section 3.

Given a degree � rational curve Q(t) = (x(t); y(t); w(t)),
define g(t) to be the GCD of x(t), y(t), and w(t). We can write

Q(t) = g(t)P(t) = g(t)

nX
i=0

Xit
i; (7)

whereXi � (xi; yi; wi). If � is the degree of g(t), n = ���, we
will say thatQ(t) has � base points.

A moving line

X �L(t) := X �
mX
j=0

Ljt
j = 0; Lj = (aj; bj ; cj); X � (x; y;w)

(8)
is a parametric family of implicitly defined lines, with one line
corresponding to each “time” t. For m = 1, the moving line is a
pencil. A moving line is said to “follow” a rational curve if

Q(t) � L(t) � 0; (9)

which means that at any time t, pointQ(t) lies on line L(t).
A set of moving linesLi(t), i = 0; . . . ; � is linearly independent

if there do not exist constants ci, i = 0; . . . ; � (not all zero) such
that
P�

i=0 ciLi(t) � 0.

Theorem 1. For a degree � curve Q(t) with � base points, there
exist at least 2m+ 2+ �� � linearly independent moving lines of
degree m which follow the curve.

Proof:
Q(t) � L(t) � g(t)P(t) � L(t) � 0 (10)

implies
P(t) � L(t) � 0 (11)

since g(t) 6� 0. We define

P(t) =

nX
i=0

(xi; yi; wi)t
i; (12)



L(t) =

mX
i=0

(ai; bi; ci)t
i; (13)

P(t) � L(t) =

n+mX
k=0

( X
i+j=k

(aixj + biyj + ciwj)

)
tk (14)

The conditionP(t) �L(t) � 0 can be expressedMb = 0 whereM
is the (n +m + 1)� (3m+ 3) matrix2
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(15)

and
b =

�
a0 b0 c0 � � � am bm cm

�T
: (16)

The dimension of the solution set is 3m + 3 � rank(M). But
rank(M) � n+m+ 1, so at least 2m+ 2�n = 2m+ 2+�� �
linearly independent moving lines followQ(t).

If m = n � 1, we know from theorem 1 that there exist m+ 1
linearly independent moving lines Li(t) �X = 0 where

Li(t) =

mX
j=0

Lijt
j; Lij = (aij ; bij ; cij); i = 0; . . .m (17)

such that
Q(t) � Li(t) � 0; i = 0; . . . ;m: (18)

Theorem 2. Select any set of m+ 1 linearly independent moving
lines that follow Q(t) and define

f(X) =

��������
L00 � X . . . L0m � X
� . . . �
� . . . �
� . . . �

Lm0 �X . . . Lmm �X

��������
: (19)

Then f(X) = 0 is the implicit equation of Q(t). (In the case of
an improperly parametrized curve [20], f(X) = 0 will actually be
some power of the implicit equation, since we generally take the
implicit equation to be an irreducible polynomial).

Proof: f(X) = 0 is the implicit equation ofQ(t) if the following
conditions are met:
1. f(Q(t)) � 0.
2. For all X for which f(X) = 0, there exists a value of t such
thatX = �Q(t) where � is a scalar constant. Since we are dealing
with homogeneous (projective) coordinates, this simply means that
X andQ(t) map to the same point in 2–D Cartesian space.

As for requirement 1, (17) and (18) can be written2
664

L00 . . . L0m

� . . . �
� . . . �
� . . . �

Lm0 . . . Lmm

3
775
8>><
>>:

1
t
...
tm

9>>=
>>; �Q(t) �

8>><
>>:

0
0
...
0

9>>=
>>; : (20)

Specializing t = � and letting X = Q(�), (20) can be expressed2
664

L00 �X . . . L0m �X
� . . . �
� . . . �
� . . . �

Lm0 �X . . . Lmm �X

3
775
8>><
>>:

1
�
...
�m

9>>=
>>; =

8>><
>>:

0
0
...
0

9>>=
>>; : (21)

For (21) to be valid, either8>><
>>:

1
�
...
�m

9>>=
>>; =

8>><
>>:

0
0
...
0

9>>=
>>; (22)

or ��������
L00 �X . . . L0m �X
� . . . �
� . . . �
� . . . �

Lm0 �X . . . Lmm �X

��������
= 0: (23)

Equation 22 never holds; hence (23) must be true, and condition 1
is satisfied.

Condition 2 requires that f(X) 6� 0. We can prove that this
holds because the moving lines are linearly independent (see the
appendix in the electronic version of this paper). Therefore f(X)
must be a non-zero polynomial of degree at most n = m+ 1. Now
consider a point X� for which f(X�) = 0. Take an arbitrary line
ax+by+cw = 0 that containsX�. There are � roots of the equation
(a; b; c) �Q(t) = 0, but � of those roots map to the undefined point
(0; 0;0), leaving n values of t which map to actual intersection
points between the line andQ(t). Each of those values of t satisfy
condition 1, that is, they map to n points for which f(Q(t)) = 0,
and each of those points lies on the line (a; b; c) �X = 0.

The equation f(X) = 0 defines an algebraic curve of degree n
which intersects a general line in n points. Suppose f(X�) = 0,
but there does not exist a value of t for which Q(t) = �X�. This
means that we have foundn+1 points at which a degreen algebraic
curve intersects a line, a violation of Bezout’s theorem.

So far, we have merely examined well known curve impliciti-
zation methods from a different angle, but yielding no significant
computational advantage. We are now prepared to venture into
profitable new territory. We define a 2–D moving curve as

C(X; t) :=
mX
j=0

fj(X)tj = 0 (24)

where X = (x;y; w) and fj(X) is a polynomial of degree d.
Thus C(X; t) = 0 is a family of algebraic curves that vary with
t. A moving curve is said to “follow" a rational curve P(t) =
(x(t); y(t); w(t)) if for all values of t, the point P(t) lies on the
moving curve:

C(P(t); t) =
mX
j=0

fj(x(t); y(t); w(t))tj � 0: (25)

For a degree n curveP(t), there are at least d(d+3)(m+1)
2 � nd

linearly independent moving curves of degree d in X and degree
m in t that follow the curve P(t). This can be shown as follows.
Since C(P(t); t) is a degree nd+m polynomial in t and the total
number of coefficients in the polynomials fj(X) (j = 0; 1; . . . ; m)

is (d+1)(d+2)(m+1)
2 , condition (25) is equivalent to a system of

nd + m + 1 linear equations with (d+1)(d+2)(m+1)
2 unknowns.



Hence there are at least (d+1)(d+2)(m+1)
2 � (nd + m + 1) =

d(d+3)(m+1)
2 � nd linearly independent moving curves that fol-

low P(t). If (m + 1)(d2 + 3d � 2) � 2nd, there exist at least
m + 1 linearly independent moving curves that follow P(t). For
example, d = 1 and m = n� 1 is the case in theorems 1 and 2.

Theorem 3. Given m+ 1 moving curves

Ci(X; t) :=
mX
j=0

fij(X)tj = 0; i = 0; . . . ;m (26)

which follow P(t), we define

f(X) =

��������
f00(X) . . . f0m(X)
� . . . �
� . . . �
� . . . �

fm0(X) . . . fmm(X)

��������
(27)

If the degree of f(X) is n�� (which implies that f(X) 6� 0), then
f(X) = 0 is the implicit equation of P(t).

Proof: Essentially the same as the proof for theorem 2.

We now explore the possible degrees for moving curves which
follow P(t). Letting d = 2 and m = [n�1

2 ], we find that there
exist at least m+ 1 linearly independent curves of degree 2 in X
and degree m in t that follow the curve P(t). In the case where
n is odd, theorem 1 assures that there will also be one moving line
of degree m which follows P(t). Thus, from theorem 3, a rational
curve with no base points, and of even degree, can generally be
implicitized as the determinant of a n

2 �
n
2 matrix whose elements

are degree 2 in x; y;w. Likewise, a rational curve of odd degree
and no base points can generally be implicitized as the determinant
of an n+1

2 � n+1
2 matrix with one linear row, and the remaining

rows quadratic.
We emphasize the word generally because theorem 3 requires

f(X) 6� 0. Under certain conditions, the determinant in (27) will
vanish, even though the rows are linearly independent. The reason
is that the rows might be linearly independent, but polynomially de-
pendent. The following theorem shows that high order singularities
can create such a condition. A thorough description of the geomet-
ric properties of curves for which this condition occurs remains an
open question, though it appears at present that singularities are not
the complete answer.

Theorem 4. The implicit equation of a quartic curve with no base
points can be written as a 2�2 determinant. If the curve doesn’t have
a triple point, then each element of the determinant is a quadratic;
otherwise one row is linear and one row is cubic.

The rather tedious proof includes showing that iff(X) is formed
by a 2� 2 determinant with quadratic elements, the following four
statements are equivalent:

1. f(X) � 0.

2. There exists a degree one moving line that followsP(t).

3. P(t) has a triple point.

4. ����������

x0 y0 w0 0 0 0
x1 y1 w1 x0 y0 w0

x2 y2 w2 x1 y1 w1

x3 y3 w3 x2 y2 w2

x4 y4 w4 x3 y3 w3

0 0 0 x4 y4 w4

����������
= 0: (28)

The details of the proof are omitted here (see the appendix of
the electronic version of the paper). However, this discussion is
important because similar phenomena can occur with surfaces.

3 SURFACES

It is convenient to define a rational surface in homogeneous form:

X(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t)) (29)

where X(s; t); Y (s; t);Z(s; t);W (s; t) are polynomials in s; t.
The Cartesian coordinates of points on the surface are given by

x =
X(s; t)

W (s; t)
; y =

Y (s; t)

W (s; t)
; z =

Z(s; t)

W (s; t)
: (30)

Among the most common rational surfaces used in computer graph-
ics are the tensor product patches for which, in power basis,

X(s; t) =

d1X
i=0

d2X
j=0

Xijs
itj; Xij = (xij; yij; zij; wij): (31)

3.1 Base Points

A base point is a value of (s; t) for whichX(s; t) = (0; 0;0; 0). In
the absence of base points, the implicit equation of a tensor product
surface can be expressed using Dixon’s resultant [8], which is the
determinant of a 2d1d2 � 2d1d2 matrix whose elements are linear
in (x; y; z). For example, a biquadratic surface requires an 8 � 8
determinant, and a bicubic surface an 18 � 18 determinant. The
method presented in this section expressed the implicit equation of
a bicubic patch with no base points as a 9 � 9 determinant whose
elements are degree two in (x; y; z). (It is well known that all tensor
product surfaces have multiple base points at s = 1 and t = 1.
Here we mean no additional base points.)

Base points are of interest for two reasons. First, each simple
base point decreases the degree of the implicit equation of the ratio-
nal surface by one. The full story on the relationship between base
points and degree becomes more complicated when considering
base points with higher multiplicity [3, 13].

Second, if base points exist, Dixon’s resultant vanishes iden-
tically. To implicitize surfaces which contain base points, more
complicated methods have been devised [2, 9, 15, 16] such as the
method of undetermined coefficients, successive elimination, per-
turbations, and customized resultants. In general, these methods
are much more complicated in the presence of base points.

By contrast, the implicitization approach in this paper simplifies
in the case of base points. In general, for each base point on a bicubic
patch, one of the rows of the 9 � 9 determinant can be converted
from degree two to degree one in (x; y; z).

3.2 Moving Surfaces

We define a moving surface as

g(X; s; t) :=
�X
i=1

hi(X)
i(s; t) = 0 (32)

where the equations hi(X) = 0, i = 1; . . . ; � define a collection
of implicit surfaces and where the 
i(s; t), i = 1; . . . ; � are a
collection of polynomials in s and t. We will refer to the 
i(s; t)
as the blending functions for the moving surface. We require the
blending functions to be linearly independent and to have no non-
constant factor common to all of them. A moving surface is said to
follow a rational surfaceX(s; t) (29) if

g(X(s; t); s; t) � 0: (33)

When we make a statement such as “so many moving surfaces
exist", it is implied that those moving surfaces follow the parametric
surface under discussion, even though we may not explicitly say so.



Theorem 5. Given a set of � moving surfaces

gj(X; s; t) =
�X
i=1

hji(X)
i(s; t) = 0; j = 1; . . . ; �; (34)

each of which follows a given rational surface X(s; t) (29). Define

f(X) =

������
h11(X) . . . h1�(X)

...
...

...
h�1(X) . . . h��(X)

������ : (35)

If the degree d of f(X) is equal to the degree of the implicit equa-
tion of the rational surface X(s; t), then f(X) = 0 is the implicit
equation of X(s; t).

Proof: f(X) = 0 is the implicit equation ofX(s; t) if the following
conditions are met:
1. f(X) 6� 0.
2. f(X(s; t)) � 0.
3. For allX for which f(X) = 0, there exists a parameter pair s; t
such thatX = �X(s; t) where � is a scalar constant.

Condition 1 is satisfied by the requirement in the theorem that
the degree of f(X) is equal to the degree of the implicit equation.

The fact that each of the � moving surfaces follow X(s; t)
means that the set of equations2

4 h11(X) . . . h1�(X)
...

...
...

h�1(X) . . . h��(X)

3
5
8<
:


1(s; t)
...


�(s; t)

9=
; = 0 (36)

is satisfied for X = X(s; t). If for some (s; t) f(X(s; t)) 6= 0,
then 
1(s; t) = . . . = 
�(s; t) = 0. But since 
1(s; t); . . . ; 
�(s; t)
have no common factor, there are at most a finite number of (s; t)
values for which 
1(s; t) = . . . = 
�(s; t) = 0. Consequently if
there are any (s; t) pairs such that f(X(s; t)) 6= 0, the number of
such pairs is finite. But since f(X(s; t)) is a polynomial in (s; t),
it is therefore identically zero and condition 2 is met.

Base points map (“blow up") to entire curves on the surface
known as seam curves [15]. Some authors haved argued that these
curves can be interpreted as lying on the implicit surface but not
on the parametric surface since there is not a parameter value for
which X = �X(s; t) if X lies on a seam curve [3]. We avoid
that debate here, and are content to prove that condition 3 holds
at least for points not on seam curves. Suppose then that there
exists a point X� such that f(X) = 0 but X� 6= kX(s; t) for
any (s; t). Choose a line through X� which does not intersect any
seam curves and which is not tangent to the surface. Take any two
planes containing that line and compute their intersection with the
parametric surfaceX(s; t), yielding two curves in parameter space
g1(s; t) = 0 and g2(s; t) = 0. Those two curves will intersect at
all base points of the surface, and at d other (s; t) parameter pairs
where d is the degree of the implicit equation of the surface [13].
But from condition 2, those d parameter pairs map to points for
which f(X) = 0, making a total of d+ 1 points lying on a line for
which f(X) = 0, a contradiction of Bezout’s theorem.

Sections 4 and 5 will prove that it is always possible to find
a square matrix of moving surfaces that follow any given tensor
product or triangular surface patch, and they present a systematic
way of finding such matrices. It is very difficult to give a rigorous
proof that for any givenX(s; t) a matrix (35) can always be found
so that the degree of f(X) is equal to the degree of the implicit
equation of the rational surfaceX(s; t) (and hence the determinant
is not identically zero). However, in scores of example cases, we
have never failed to find such a matrix.

3.3 Examples

Theorem 5 proposes a method for implicitizing rational surfaces by
finding sets of moving surfaces which follow it. We here illustrate
that concept with a few simple cases. These may seem somewhat
ad hoc, but they have the advantage of being concrete numerical
examples which are small enough to verify by hand. No explanation
is given in these examples of how to find the moving surfaces;
sections 4 and 5 outline a procedure for that.

3.3.1 Explicit Surface

The simplest parametric surface to implicitize is the explicit surface

x = s; y = t; z = q(s; t) (37)

for which the implicit equation is merely q(x; y)�z = 0. This case
is so trivial, that it actually becomes a little more complicated to
implicitize it using moving surfaces than to merely write q(x; y)�
z = 0. However, it serves as a simple introduction to moving
surfaces. In this case, we can take as blending functions 
1(s; t) =
s, 
2(s; t) = t, 
3(s; t) = 1. The three moving surfaces, in matrix
form, are"

1 0 �x
0 1 �y

a(x; y) b(x; y) �z + q(0; 0)

#(
s
t
1

)
= 0 (38)

where a(x;y) and b(x;y) are chosen to satisfy a(x;y)x+b(x; y)y+
q(0; 0) = q(x; y). These three moving surfaces clearly follow the
parametric surface, and the determinant of the 3� 3 matrix in (38)
is clearly the implicit equation.

3.3.2 Cubic Surface

As far as the authors are aware, the closest hint in the literature
to anything like moving surfaces is the observation, dating back at
least to Salmon in 1862 [18], that a degree three algebraic surface
can be defined as the intersection of three “bundles” of planes
(the classical term for what we here would call a moving plane
with blending functions 1, s, and t). Salmon began with those
three bundles of planes, and computed the parametric and implicit
equations of the surface from them (see [21] for a more recent
presentation).

For implicitization, we work in reverse, finding the moving
planes given the parametric equations. Here are a set of parametric
equations for a surface that we know in advance to have a degree
three implicit equation. The parametric equations have six base
points.

x = 2 + 2t3 + s2 + 4t2 + 4ts+ 2t+ ts2 + 3s

y = �2t2s� ts� 2s2 + s� s3
� 2t+ 2

z = �3t2s+ 2t2
� 2ts2

� 3ts� 2t� s3
� 3s2

� 2s

w = �t+ ts2 + s2
� s+ s3 + t3

� 1 + t2

Once again, the moving surface blending functions are 1, s, and
t. The three moving surfaces, in matrix form, are"

x y z
y + w 2y� z y+ 2w
z � y �x+ 2w x� y

#(
s
t
1

)
= 0 (39)

and the implicit equation is the determinant of the matrix.



3.3.3 Steiner Surface

The canonical Steiner surface is given by parametric equations

x = 2st; y = 2t; z = 2s; w = s2 + t2 + 1:

This is a special case of a triangular surface patch, a general implic-
itization procedure for which is given in section 5. We can again
take 
1(s; t) = s, 
2(s; t) = t, 
3(s; t) = 1. The three moving
surfaces, in matrix form, are"

y �2z x
y �z 0
xz xy � xz � 2zw x2 + yz

#(
s
t
1

)
= 0 (40)

The determinant of the matrix, x2y2 + x2z2 + y2z2 � 2xyzw is
indeed the implicit equation of the canonical Steiner surface.

3.3.4 Surface of Revolution

When Newell reverse-engineered his teapot in 1975 [7], rational
Bézier patches were not in wide use and so the surfaces of revolu-
tion were approximated using polynomial patches. While that ap-
proximation is well within graphical tolerance, there are advantages
to reformulating the teapot using rational Bézier patches. First, the
rational case can exactly represent surfaces of revolution. Second,
a rational bicubic patch can model 180� of a surface of revolution,
thus cutting in half the number of patches used to model the rim,
body, lid, and bottom. Third, and most importantly for current
needs, an exact surface of revolution can be implicitized in a much
more compact form than can the polynomial approximation in [7].

In this section, we implicitize a patch from the lower body of
the teapot which has been modified to exactly represent a surface
of revolution. As discussed in section 6, without that modification,
the implicit equation takes the form of a 9� 9 determinant whereas
the implicit equation of the modified patch can be expressed in a
2� 2 determinant.

The teapot lower body is defined by rotating around the z axis
the cubic polynomial Bézier curve with control points (2; 0; :9),
(2; 0; :45), (1:5;0; :225), and (1:5;0; :15). The exact surface of
revolution can be represented in rational Bézier form by

X(s; t) = [(1� t)3 3t(1� t)2 3t2(1� t) t3]M

8><
>:

(1� s)3

3s(1� s)2

3s2(1 � s)
s3

9>=
>;

where M =2
64
(2; 0; :9; 1) ( 2;4;:9;1

3 ) (�2;4;:9;1
3 ) (�2;0; :9; 1)

(2; 0; :45;1) ( 2;4;:45;1
3 ) (�2;4;:45;1

3 ) (�2;0; :45;1)
(1:5;0; :225;1) ( 1:5;3;:225;1

3 ) (�1:5;3;:225;1
3 ) (�1:5;0; :225;1)

(1:5;0; :15;1) ( 1:5;3;:15;1
3 ) (�1:5;3;:15;1

3 ) (�1:5;0; :15;1)

3
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The implicit equation of this surface can be expressed in a 2�2
determinant. In this case, we can take 
1(s; t) = 1, 
2(s; t) = s
and the two moving surfaces are�

(x+ y)C �B �2xC
�yC (x+ y)C +B

��
1
s

�
= 0 (41)

where

B = 618 + 6720z + 17000z2
� 64000=9z3

+ 1305=2y2
� 120y2z + 1305=2x2

� 120x2z

C = 3x2 + 3y2 + 1600z2 + 6900z+ 1197

The determinant then gives the implicit equation of the surface of
revolution — a degree 6 polynomial.

4 TENSOR PRODUCT PATCHES

We now present a systematic method for computing moving sur-
faces which follow a tensor product patch (31). It is most convenient
to work in power basis. As we will see, a good choice for the 
i(s; t)
in (32) is simply the tensor product basis:


i(s; t) = sjtk; (42)

j = 0; . . . ; b1; k = 0; . . . ; b2; i = k(b1 + 1) + j + 1;

so � = (b1 + 1)(b2 + 1).
A degreen polynomial in three variables has (n+1)(n+2)(n+

3)=6 coefficients. Thus, if all � polynomials hi(X) are degree n,
there are a total of �(n + 1)(n + 2)(n + 3)=6 coefficients. We
can determine �, a lower bound on the number of linearly indepen-
dent families of moving surfaces g(X; s; t) that follow X(s; t) by
generating a set of linear equations as we did for the curve case in
(15). For the surface case, the identity in (33) can be satisfied by
solving a set of (nd1 +b1+1)�(nd2+b2+1) linear homogeneous
equations in �(n+ 1)(n+ 2)(n+ 3)=6 unknowns. Thus,

� =
(b1 + 1)(b2 + 1)(n+ 1)(n+ 2)(n+ 3)

6
�(nd1 + b1 + 1)(nd2 + b2 + 1): (43)

If we can find values of n, b1, and b2 so that � � �, there will
be enough hji(X) to fill a square matrix and, if the conditions in
theorem 5 are met, the determinant of that matrix will be the implicit
equation of P(s; t). Two cases turn out to exactly give � = �:
moving planes, and moving quadrics. Choosing n = 1 (moving
planes), b1 = 2d1�1 and b2 = d2�1 yields � = � = 2d1d2. With
this choice, the implicit equation of a bicubic patch with no base
points occurs as the determinant of an 18 � 18 matrix. It can be
shown that Dixon’s resultant is a special case of this implicitization
method using moving planes.

If we choosen= 2 (the moving algebraic surfaces are quadrics),
b1 = d1 � 1 and b2 = d2 � 1, we then have at least � = 
 = d1d2

linearly independent moving surfaces. This means, for example,
that a bicubic patch with no base points can generally be implicit-
ized in the form of a 9�9 determinant whose elements are quadratic
in x;y; z. A biquadratic patch with no base points can generally be
implicitized using a 4� 4 matrix with quadratic elements.

We stress the word generally. For arbitrarily chosen control
points, experience has shown that the conditions in theorem 5 are
always satisfied. As will be seen in the teapot patches, however,
when control points are placed in some coherent fashion, the likeli-
hood of singularities increases and the conditions in theorem 5 may
no longer be met. Section 7 comments on this in more detail.

4.1 Base Points

For n = 1, b1 = d1 � 1 and b2 = d2 � 1, we find that � = 0. Note
that � in (43) is a lower bound on the number of linearly independent
moving surfaces; the actual number might be higher, depending on
the rank of the (nd1 + b1 + 1)� (nd2 + b2 + 1) matrix. Here we
show that in the presence of base points, the rank does indeed drop.

Theorem 6. If P(s; t) has � distinct base points in general position
(as defined in the proof found in the appendix of the electronic
version), there exist at least � linearly independent moving planes
whose blending functions are given by (42) with b1 = d1 � 1 and
b2 = d2 � 1.

Proof: This is a brief sketch of the proof. The complete proof can
be found in the appendix of the electronic version of the paper.

As noted, the identity in (33) can be satisfied by solving a set of
4d1d2 homogeneous linear equations in 4d1d2 unknowns. The way



we generated those equations before was to simply expand (33),
producing a polynomial of degree 2d1 � 1 in s and degree 2d2 � 1
in t. This polynomial has 4d1d2 terms, and the 4d1d2 equations are
created by setting the coefficient of each of those terms equal to
zero.

We could create an equally valid set of 4d1d2 equations by
choosing 4d1d2 different parameter pairs (sj; tj), j = 1; . . . ; 4d1d2

and taking the equations to be

d1d2X
i=1

hi(X((sj; tj)))
i(sj; tj) = 0; j = 1; . . . ; 4d1d2:

However, if we take � of those (sj; tj) to be base points, those �
equations will be identically zero and the rank of the matrix will
diminish by �. Hence, it is possible to find at least � moving planes.

This means that for b1 = d1 � 1 and b2 = d2 � 1, we can
find � moving planes and (at least) d1d2 � � moving quadrics
that follow P(s; t). If the determinant of the d1d2 � d1d2 matrix
containing those � moving planes and d1d2� � moving quadrics is
not identically zero, it is the implicit equation.

This discussion on base points has dealt with distinct base points.
One might be tempted to postulate that base points with multiplicity
greater than one [13] would always free up moving planes equal in
number to the total base point multiplicity. While this happens in
many cases (such as with the teapot), it is not always so. A more
detailed analysis of this question must await a future paper.

What if more than d1d2 base points occur, since then there are
no more quadratic rows left to convert to linear rows? Again, a
complete answer to this question will be left for later. However,
preliminary tests suggest that the size of the matrix can continue
to shrink, usually allowing blending functions with b1 � d1 � 2,
and/or b2 � d2 � 2. The example in section 3.3.4 is such a case,
involving 12 base points. We note that the surface of revolution can
also be implicitized as a 4�4 determinant with two linear rows and
two quadratic rows. In that case, b1 = b2 = 1.

5 TRIANGULAR PATCHES

By a triangular surface patch, we mean one whose parametric equa-
tions are of pure degree d:

X(s; t) =
X
i+j�d

Xijs
itj: (44)

In this case, the right choice for moving surface blending functions
are the � = d(d+ 1)=2 monomials in s; t of total degree < d:


i(s; t) = sjtk; j = 0; . . . ; d� 1; k = 0; . . . ; d� j� 1; (45)

with i = j(d� j�1
2 ) + k + 1.

As in the tensor product case, if all � polynomials hi(X) are
degreen, there are a total of�(n+1)(n+2)(n+3)=6 coefficients.
The identity in (33) can be satisfied by solving a set of (nd+d)(nd+
d+1)=2 linear homogeneousequations in�(n+1)(n+2)(n+3)=6
unknowns. Thus, the number of degreenmoving surfaces is at least

� = d(d+ 1)(n+ 1)(n+ 2)(n+ 3)=12

�(nd+ d)(nd+ d+ 1)=2: (46)

Letting n = 1, we find that there are at least d moving planes.
Letting n = 2, there are at least (d2 + 7d)=2 moving quadrics.
However, 4d of those moving quadrics can be created from the

moving planes as follows. Let a moving plane be given by (32).
Then

(c1x+ c2y + c3z + c4w)

�X
i=1

hi(X)
i(s; t) = 0

gives a moving quadric that also follows the surface. Hence, for
each moving plane, there exists four moving quadrics, and there are
only (d2+7d)=2�4d = (d2�d)=2 moving quadrics which cannot
be created from moving planes. Hence, the matrix in (35) can just
exactly be filled with d linear rows and (d2 � d)=2 quadratic rows.
If the determinant does not vanish, f(X) is degree d2 as expected.

The Steiner surface example in section 3.3.3 is an application
of this method, for d = 2.

The base point discussion in section 4.1 applies also to triangular
patches; each simple base point will generally allow a quadratic row
to be converted to a linear row.

The cubic surface example in section 3.3.2 illustrates what can
happen when several (6 in this case) base points occur.

6 THE TEAPOT

The 32 bicubic patches defining Newells’ teapot [7] provide a sur-
prisingly diverse set of tests for moving surface implicitization.

The teapot patches fall into ten groups: rim, upper body, lower
body, upper handle, lower handle, upper spout, lower spout, upper
lid, lower lid, and bottom. All patches in a given group are simple
linear transformations of one another, so their implicit equations are
similar.

In every case, it is possible to implicitize these patches using
9� 9 determinants with tensor product blending functions (42) for
which b1 = b2 = 2. The 16 patches in the rim, lower lid, upper
body and lower body all have degree nine implicit equations (all
having nine base points), and their implicit equations can each be
expressed as 9� 9 determinants with nine linear rows. Those nine
moving planes can be found by solving a set of linear equations as
discussed in section 4.

The four patches in the upper lid have five base points (degree
13 implicit equations). The determinant has five moving planes
and four moving quadratics. The four bottom patches have three
base points (degree 15 implicit equations), and their determinant
has three moving planes and six moving quadratics.

All four spout patches have no base points (degree 18 implicit
equations), and their determinant has nine moving quadratics.

The four handle patches provided a surprise. These patches
have no base points (degree 18 implicit equations). However, the
determinant has three moving planes, three moving quadratics, and
three moving cubics! This phenomenonis reminiscent of the degree
four planar curve with a triple point.

It turns out that the rim’s implicit equation can also be expressed
as a 3 � 3 determinant using �1 = 1, �2 = s, �3 = s2. In this
case, there are two moving quartics and one moving plane. This
discovery was made purely by trial and error, but the search was
motivated by the fact that for this surface, z is a quadratic function
of s only, so we immediately knew there exists a moving plane with
�1 = 1, �2 = s, �3 = s2. The two moving quartics were pure
serendipity.

Similarly, the upper lid’s implicit equation can be written as a
4�4 determinant with three moving quartics and one moving plane.
The blending functions are �1 = 1, �2 = s, �3 = s2, �4 = s3.
Finally, the four bottom patches can be implicitized using a 4� 4
determinant with one moving plane, one moving quartic, and two
moving quintics. The blending functions are �1 = 1, �2 = s,
�3 = s2, �4 = s3.



7 DISCUSSION

This paper has proven several theorems and provided empirical
support which suggests that the method of moving surfaces is a
comprehensive solution to the problem of surface implicitization,
and the resulting expressions for the implicit equation are much
more compact than those obtained with previous methods.

This work has largely been an adventure in experimental math-
ematics. The basic notion of moving surfaces was arrived at using
pencil and paper, as was the realization that � moving surfaces
can always be found for tensor product and triangular patches such
that, if the determinant formed by them (35) does not vanish, it
must be the implicit equation. While we have not yet succeeded
in theoretically showing that a non-vanishing determinant always
exists, empirical substantiation has been provided using computer
algebra. We have tried numerous examples with randomly chosen
control points (assuring that the surface has no base points or high
order singularities), and the blending functions in sections 4.1 and 5
have always worked. Thus, we conjecture that for randomly chosen
control points, the methods in sections 4.1 and 5 are robust.

We have also run numerous test cases in which we generated
surfaces with randomly chosen simple base points, and have found
no counterexample to the conjecture that in randomly chosen cases
it always works to trade one quadratic row for a linear row (until
there are more base points than quadratic rows), thereby reducing
the degree of the surface by one.

Based on our experience, an automatic algorithm for implicitiz-
ing bicubic patches (for example) would begin by determining the
degree of the implicit equation. This can be done very quickly by
firing two skew rays into it [11] and checking at how many unique
(s; t) pairs they each intersect the surface. This is the degree. If the
degree is 18, compute how many moving quadrics exist. If there
are exactly nine, they will fill a 9� 9 determinant which defines the
implicit equation. If there are more than nine, search for moving
planes and moving cubics to fill the determinant. If the degree is be-
tween 9 and 18, search for r moving planes and s moving quadrics
such that r+ 2s = degree. If the degree is less than 9, try blending
functions (42) with b1 = b2 = 1

Whether or not a non-zero determinant can always be found
which satisfies the conditions in theorem 5 remains an open ques-
tion. All of the hundreds of cases we have studied thus far have
yielded a non-zero determinant, though at present we have no proof
that this is always so. We have observed that base points with
multiplicity greater than one can produce surprising results. In
one example, a case was studied involving a base point that was a
common double point on the curves x(s; t) = y(s; t) = z(s; t) =
w(s; t) = 0 (thus a base point of multiplicity four [13]). The antic-
ipation was that four of the rows on the standard 9� 9 determinant
could convert from quadratic to linear. In fact, only three moving
planes exist! Nonetheless, we succeeded in finding a solution in-
volving an 8 � 8 determinant with six moving quadrics and two
moving planes.

We note that moving surfaces can also solve the inversion prob-
lem (given a point on the surface, compute the corresponding pa-
rameter values).
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linear Computational Geometry. In D. Kapur and J. L. Mundy,
editors, Geometric Reasoning, pages 413–446. Elsevier Sci-
ence Publisher, MIT Press, 1989.

[2] Chionh, Eng Wee. Base Points, Resultants, and the Implicit
Representation of Rational Surfaces. PhD thesis, University
of Waterloo, 1990.

[3] Chionh, Eng Wee and Ronald N. Goldman. Degree, Multi-
plicity, and Inversion Formulas for Rational Surfaces using
U-resultants. Computer Aided Geometric Design, 9:93–108,
1992.

[4] Chionh, Eng Wee and Ronald N. Goldman. Using Multivariate
Resultants to Find the Implicit Equation of a Rational Surface.
The Visual Computer, 8(3):171–180, 1992.

[5] Coolidge, Julian. A History of the Conic Sections and Quadric
Surfaces. Oxford, 1945.

[6] Cox, David, John Little and Donal O’Shea. Ideals, Vari-
eties, and Algorithms. Undergraduate Texts in Mathematics.
Springer-Verlag, 1992.

[7] Crow, Frank. The Origins of the Teapot. IEEE Computer
Graphics and Applications, 7(1):8–19, 1987.

[8] Dixon, A. L. The Eliminant of Three Quantics in Two In-
dependent Variables. Proceedings of London Mathematical
Society, 6:46–49, 473–492, 1908.

[9] Hoffmann, Christoph. Geometric and Solid Modeling: An
Introduction. Morgan Kaufmann, 1989.

[10] Hoffmann, Christoph. Implicit Curves and Surfaces in CAGD.
IEEE Computer Graphics & Applications,13(1):79–88, 1993.

[11] Kajiya, James. Ray Tracing Parametric Patches. Proceedings
of SIGGRAPH 82 (Boston, July 26–30, 1982). In Computer
Graphics, 16,3 (July 1982), 245–254.

[12] Kalkbrener, Michael. ThreeContributions to Elimination The-
ory. PhD thesis, Johannes Kepler Universitat, Linz, Austria,
1991.

[13] Katz, Sheldon and Thomas W. Sederberg. Genus of the Inter-
section Curve of Two Parametric Surface Patches. Computer
Aided Geometric Design, 5:253–258, 1988.

[14] Krishnan, S. and Dinesh Manocha. An Efficient Surface Inter-
section Algorithm Based on the Lower Dimensional Formu-
lation. Technical Report TR94-062, Department of Computer
Science, University of North Carolina, 1994.

[15] Manocha, Dinesh and John F. Canny. Algorithms for Implic-
itizing Rational Parametric Surfaces. Computer-Aided Geo-
metric Design, 9:25–50, 1992.

[16] Manocha, Dinesh and John F. Canny. The Implicit Represen-
tation of Rational Parametric Surfaces. Journal of Symbolic
Computation, 13:485–510, 1992.

[17] Salmon, George. Modern Higher Algebra. Chelsea, New
York, 5th edition, pp. 83–86, 1885.

[18] Salmon, George. A Treatise on the Analytic Geometry of Three
Dimensions. Longmans, Green and Co., London, 5th edition,
p. 264, 1915.

[19] Sederberg, Thomas W. Implicit and Parametric Curves and
Surfaces for Computer Aided Geometric Design. PhD thesis,
Purdue University, 1983.

[20] Sederberg, Thomas W. Improperly Parametrized Rational
Curves. Computer Aided Geometric Design, 3:67–75, 1986.

[21] Sederberg, Thomas W. Techniques for Cubic Algebraic Sur-
faces. IEEE Computer Graphics and Applications, 10(4):14–
26, 1990.

[22] Sederberg, Thomas W., David C. Anderson, and Ronald N.
Goldman. Implicit Representation of Parametric Curves and
Surfaces. Computer Vision, Graphics and Image Processing,
28:72–84, 1984.

[23] Sederberg, Thomas W. and Scott R. Parry. A Comparison of
Curve-Curve Intersection Algorithms. Computer-Aided De-
sign, 18:58–63, 1986.

[24] Sederberg, Thomas W., Takafumi Saito, Dongxu Qi, and
Krzysztof S. Klimaszewski. Curve Implicitization using Mov-
ing Lines. Computer Aided Geometric Design, 11:687–706,
1994.



Appendix

This appendix contains additional details for the proofs of theorems
2, 4 and 6.

Proof of Theorem 4. In order to show that f(X) in (19) is not
identically zero, we prove the following facts:

1. rank(M) = 2n, where M is the matrix defined in (15).

2. Let L0i(t) � X, i = 0; 1; . . . ; m be another set of linearly
independent moving lines and define

f 0(X) =

��������
L000 �X . . . L00m �X
� . . . �
� . . . �
� . . . �

L00m �X . . . L0mm �X

��������
then there exists a non-zero constant c such that

f 0(X) = c � f(X):

3. f(X) 6� 0.

1. We first assume x(t) andw(t) do not have a common factor.
Denote by M1 the matrix obtained by deleting from M columns
2; 5; . . . ; 3n � 1. The determinant of M1 is none other than the
resultant of x(t) and w(t), hence is nonzero. Therefore rank(M)
= rank(M1) = 2n.

If x(t) andw(t) do have a common factor, there exist constants
�(� 6= 0) and � such that �x(t) + �y(t) and w(t) are coprime,
since curve P(t) = (x(t); y(t); w(t)) doesn’t have a base point.
Now consider curve P0(t) = (�x(t) + �y(t); y(t); w(t)). In this
case, the matrix M in (15) is the 2n� 3n matrix M 0 =0
BBBBBBBBBBB@

x00 y0 w0

x01 y1 w1 x00 y0 w0

... x01 y1 w1
. . .

x00 y0 w0

x0n yn wn

... x01 y1 w1

x0n yn wn

...
. . . x0n yn wn

1
CCCCCCCCCCCA

where x0i = �xi + �yi, i = 0; 1; . . . ; n.
Since �x(t) + �y(t) and w(t) do not have common factors,

rank(M 0) = 2n. By taking column reductions to matrix M 0 we
have rank(M) = rank(M 0) = 2n.

2. Let

L0i =

mX
j=0

L0ijt
j; L0ij = (a0ij; b

0
ij; c

0
ij); i = 0; 1; . . . ;m:

From statement 1 we know there are exactly n independentmoving
lines which follow P(t). Hence there exist constants dij such that

(L0i0; . . . ; L0im) =

mX
j=0

dij(Lj0; . . . ; Ljm); i = 0; 1; . . . ;m:

or, in matrix form,
L0 = D � L;

where L0 = (L0ij), L = (Lij), D = (dij).

SinceLi(t) �X, i = 0; 1; . . . ;m andL0i(t) �X, i = 0;1; . . . ;m
are two sets of independent moving lines, we have rank(L0) =
rank(L) = m+1, hence rank(D) = m+1, i.e. D is an invertible
matrix.

On the other hand, we also have

f 0(X) = det(D) � f(X):

Since det(D) 6= 0, statement 2 is proved.

3. This statement follows immediately from statement 2 and
the fact that Bezout’s resultant does not vanish. But we can also
prove it without using that result.

First we assume x(t) and w(t) do not have a common factor.
We can solve equationsMb = 0 in the following way:

Take bi , i = 0; 1; . . . ; n� 1 as free parameters and solve for ai ,
i = 0; 1; . . . ; n � 1 and ci, i = 0; 1; . . . ; n � 1. Each given set of
parameters bi gives one unique solution since rank(M1) = 2n. If
we choose parameters (b0; . . . ; bn�1) to be ei (creating an n dimen-
sional vector with all components being 0 except ith element being
1), i = 1; 2; . . . ; n, respectively, then we getn linearly independent
moving lines. Furthermore, if we form determinant (19) from these
moving lines, the coefficient for monomial term yn of f(X) is 1,
hence f(X) is not identically zero.

Now supposex(t) andw(t) do have a common factor, then there
exist constants�(� 6= 0) and � such that �x(t) + �y(t) and w(t)
do not have a common factor. Similarly as in the proof of statement
1 we consider curveP0(t) := (�x(t)+�y(t); y(t); w(t)). To find
moving lines which follow this curve, we need to solve the linear
equation M 0 � b0 = 0, where M 0 is defined as before and

b0 = (a00; b
0
0; c

0
0; � � � ; a

0
n�1; b

0
n�1; c

0
n�1)

T ; i = 0; 1; . . . ; n� 1:

Since �x(t) + �y(t) and w(t) do not have common factor, the
determinant corresponding to (19) formed by the moving lines of
curveP0(t) (denote it by g(x; y)) doesn’t vanish, thus is the implicit
equation of curveP0(t).

On the other hand, noticing matrices M and M 0 have the rela-
tionship

M 0 = M � B;

where
B = diag(C; C; . . . ; C);

and C is a 3� 3 matrix:

C =

 
� 0 0
� 1 0
0 0 1

!
;

we know the solutions of M � b = 0 and M 0 � b0 = 0 have the
relationship

b = B � b0;

from which we can easily obtain the determinant formed by the
moving lines of curve P(t) is just g(�x + �y; y), hence is non-
zero.

This complete the proof of theorem 2.

Proof of Theorem 4:
1 () 2.
Suppose the fij(X) (i; j = 0; 1) in ( 27) are all quadratics. If

f(X) � 0, then f00(X)f11(X)
� f10(X)f01(X). We show that fij(X) (i; j = 0; 1) all can be
factored into linears. The proof is by contradiction.

Suppose for example f00(X) is prime, then there exists a con-
stant c such that f10(X) = cf00(X) or f01(X) = cf00(X). If



f10(X) = cf00(X), then f11(X) = cf01(X), this contradicts
the fact that the coefficients of two rows are linearly indepen-
dent. If f01(X) = cf00(X), then f11(X) = cf10(X). But
fi0(P(t)) + tfi1(P(t)) � 0, i = 0;1, so fi0(P(t)) � 0, means
that P(t) is in fact a degree two curve and this contradicts the fact
that P(t) doesn’t have base point.

Now let f00(X) = l0(X) l1(X) and f11(X) = l2(X) l3(X),
so f10(X) = l0(X) l2(X) and f01(X) = l1(X) l3(X). Hence we
have l0(P(t)) + tl3(P(t)) � 0. that is, there exists a moving line
which follows P(t).

Conversely, if there exists a moving lineL(X; t)which follows
P(t), then every moving quadratic which follows P(t) must be
L(X; t) scaled by a linear function in x and y. This is so because
if the moving line and the moving quadratic were to form a 2 � 2
determinant which is not identically zero, it would be the implicit
equation according to theorem 3. But that expression would be
cubic in x, y and the true implicit equation is a quartic because
there is no base point. Hence f(X) � 0.

2 () 4:
Suppose moving line L(X; t) = (a0x+ b0y+ c0w)+ t(a1x+

b1y+c1w) followsP(t), soL(P(t); t) � 0. This is equivalent to a
system of homogeneous linear equations with a0; b0; c0; a1; b1 and
c1 being unknowns. It is easy to know that the coefficient matrix
is none other than the matrix in (28). Hence the equations have
non-zero solutions if and only if (28) holds.

2 () 3:
SupposeP(t) has a triple pointT . Let L0(X) = 0 be the line

which passes throughT andP(0),andL1(X) = 0 be the line which
passes through T and P(1). Define L(X; t) = (1 � t)cL0(X) +
tL1(X). We prove that there exists a scalar c for which L(X; t)
follows P(t). For this, the intersection of line L(X; t) with curve
P(t) can be expressed as the degree five polynomial L(P(t); t).
This polynomial has zeros at the three triple point parameters, as
well as zeros at t = 0 and t = 1. We can choose c so that
L(P(t); t) = 0 for one other value of t, which makes it identically
zero, and hence L(X; t) follows P(t).

Conversely, if there exists a pencil of lines which follows a
quartic curve, the pencil axis must lie at a triple point on the curve,
because as t sweeps monotonically from �1 to +1, L(X; t)
rotates monotonically 180� about a fixed axis A. However, if
L(X; t) were to intersectP(t) at more than one point other thanA,
then as t sweeps monotonically from�1 to +1, the lineA–P(t)
would not rotate monotonically.

The equivalence of the above four statments shows that if the
quartic curve doesn’t have a triple point then the implicit equation
can be formed by two quadratic rows, and if the quartic curve does
have a triple point we can find a moving line following it. If we
multiply the moving line by a degree two polynomial in x; y;w (that
has six coefficients), we see that there is a six parameter family of
moving cubics that are degree one in twhich also follow the quartic
curve. In the following we prove we can also find a moving cubic
which follows the curve and which is not just a quadratic scale of
the moving line. To do this, we only need to show there exists at
least seven moving cubics.

Suppose the quartic curveP(t) has a triple pointT = P(t1) =
P(t2) = P(t3). Without loss of generality, we assume that t1 6=
t2 6= t3 (if some of them are equal the discussion will involve deriva-
tives). To find the moving cubics C(X; t) := f0(X) + tf1(X)
which follows the curve P(t), we just substitute the equation of
P(t) into C(X; t) and get a degree thirteen polynomial g(t), then
choose fourteen different parameters s1; s2; . . . ; s14 and obtain four-
teen equations g(si) = 0, i = 1; 2; . . . ; 14. Specifically we can
choose three of the parameters be t1, t2 and t3 and get three equations
f0(T)+tif1(T) = 0, i = 0; 1; 2. These three equations are linearly
dependent because they are equivalent to f0(T) = f1(T) = 0.

Hence we only have thirteen equations, but there are twenty un-
knowns, so there exist at least seven moving cubics which follow
the quartic curve.

Proof of Theorem 6: In the theorem, we impose the require-
ment that the � base points are in “generalposition". Here we define
what that means. Given a set of points (si; ti), i = 1; . . . ; k, define

vi = (1; . . . ; s2d1�1
i ; ti; . . . ; tis

2d1�1
i ; . . .

. . . ; t2d2�1
i ; . . . ; t2d2�1

i s2d1�1
i ); i = 1; . . . ; k:

The points are in general position if the vectors vi, i = 1; . . . ; k,
are linearly independent.

We prove the following facts:

1. If (si; ti), i = 1; . . . ; k (k � d := 4d1d2) are in general
position, then there exist additional points (si; ti), i = k +
1; . . . ; d such that (si; ti), i = 1; . . . ; d are also in general
position, that is,

M = (vT1 ; vT2 ; . . . ; vTd )T

has full rank.

2. Let

h(s; t) :=

d1d2X
i=1

hi(X(s; t))
i(s; t);

where hi(X) are linear functions in x;y; z and 
i(s; t) are
blending functions defined in (42). If (si; ti), i = 1; . . . ; d
are in general position, then h(s; t) � 0 iff

h(si; ti) = 0; i = 1; . . . ; d:

3. If P(s; t) has � distict base points and these base points are
in general position, then there are at least � moving planes
which follow P(s; t).

1. We only need to prove that there exists (sk+1; tk+1) such
that (si; ti), i = 1; . . . ; k + 1 are in general position, the general
case follows from induction.

By assumption, (si; ti), i = 1; . . . ; k are in general position,
that is v1; . . . ; vk are linearly independent. Therefore there exists

a k � k submatrix of M , say M1 = M

�
1 2 ... k

j1 j2 ... jk

�
such

that det(M1) 6= 0. Now define

M 0 = (vT1 ; . . . ; vTk ; vT )T ;

where v = (1; . . . ; s2d1�1; t; . . . ; ts2d1�1; . . . . . . ; t2d2�1; . . . ; t2d2�1

s2d1�1), and consider a (k + 1)� (k + 1) submatrix of M 0,

M 0
1 = M 0

�
1 2 ... k k+1

j1 j2 ... jk l

�
;

here l 6= ji, i = 1; . . . ; k. Because det(M1) 6= 0, det(M 0
1) is a non-

zero polynomial in s and t (denoted by f(s; t)). Hence there exists
some (s; t) = (sk+1; tk+1) such that det(M 0

1) = f(sk+1; tk+1) 6=
0. Thus M 0

1 has full rank, i.e., (si; ti), i = 1; . . . ; k + 1 are in
general position.

2. Noticing h(s; t) is a tensor product polynomial of degree
2d1 � 1 in s and degree 2d2 � 1 in t, we can rewrite h(s; t) as

h(s; t) =

2d1�1X
i=0

2d2�1X
j=0

hijs
itj:



If h(s; t) � 0, we certainly have h(si; ti) = 0, i = 1; . . . ; d.
Conversely, if h(si; ti) = 0, i = 1; . . . ; d, we get M � b = 0,

where M is define as before and b = (h00; . . . ; h2d1�1;0; h01 ; . . .
; h2d1�1;1 ; . . . ; h0;2d2�1; . . . ; h2d1�1;2d2�1). Since M is an invert-
ible matrix we must have b = 0, thus h(s; t) � 0.

3. Let (si; ti), i = 1; . . . ; � be the � base points of P(s; t) and
these base points are in general position. According to statement
1, we can find pairs (si; ti), i = � + 1; . . . ; d such that (si; ti),
i = 1; . . . ; d are in general position. Therefore, h(s; t) � 0 is
equivalent to (si; ti) = 0, i = 1; . . . ; d by statement 2.

But since (si; ti), i = 1; . . . ; � are base points ofP(s; t), equa-
tions h(si; ti) = 0 , i = 1; . . . ; � are identities. Hence h(s; t) � 0
has at least � solutions, i.e. there are at least �moving planes which
follow P(s; t).


