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Abstract

This paper describes Discover, a program for learning and teaching geometry with the help of a com-
puter. The program is a dynamic geometry environment that can communicate with Mathematica, using
its symbolic capabilities to perform geometric discovery or rediscovery. Discover is specially suited to be
used as a learning tool for geometry from the ages of 12 up to University. It permits the replacement of the
traditional ruler and compass by electronic substitutes, as in standard dynamic geometry environments.
Through its link with the computer algebra software, it enhances the process of conjecturing and proving.
The results can be expressed in natural language or through the use of equations. The mathematical
methods that Discover uses are sound, although not complete. Despite this last fact, almost all parts of the
school curricula in plane geometry can be adequately treated with the program. © 2002 Elsevier Science
Ltd. All rights reserved.

Keywords: Human—computer interface; Interactive learning environments; Media in education; Dynamic geometry;
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1. Introduction

Since the 1990s dynamic geometry systems (DGS) have been increasingly used for teaching,
mainly in secondary schools. As the logarithmic tables and the slide rules had been universally
replaced by pocket calculators and computers, the traditional Euclidean tools, the ruler and the
compass, are still being substituted by virtual tools in computers. Although there is a wide variety
of programs for computer drawing, most of them are not suitable in the study of geometry or
geometric-based disciplines. Simple interactive illustration systems such as Paint or MacDraw or
sophisticated CAD software work fine when producing single static pictures, but they are inadequate
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tools for studying the geometric invariants. You can test, for example, the ratio 1:2 defined by the
centroid in a median of a triangle. While you drag a vertex the triangle is continuously deforming,
but DGS lets the centroid and the median remain well defined. This fact is certainly essential for
feeling that this ratio is constant in any triangle.

A DGS provides certain primitive objects (e.g. points, lines, circles) and basic tools (e.g. parallel
to a line through a point, circle with its centre in a point passing through another point) for
assembling these objects into the constructions. The main contribution of DGS is the dragging
feature. Once a construction is completed, the user drags certain elements of it and the whole
construction behaves in such a way that specified constraints are maintained. Besides the dragging
feature, automatic loci generation and some mechanisms to record the history of the constructions
are standard options in most DGS.

Current implementations of DGS include The Geometer’s Sketchpad (Jackiw, 1995), Cabri
Geometry (Baulac, Bellemain, & Laborde, 1994), Cinderella (Richter-Gebert & Kortenkamp,
1999) and Geometry Expert (Gao, Zhu, & Chou, 1998). The program, Discover is a standard
DGS that can communicate with a computer algebra system (CAS), Mathematica. In this way,
common numerical approaches to dynamic geometry can be complemented with the symbolic
capabilities of CAS, allowing a step forward for discovery and proof in geometry.

2. Proof and discovery in dynamic geometry systems

Although proof is a central concept in mathematics, some attempts to relegate it to a lesser role
in the secondary curricula have been reported (Hanna, 1997; Tall, 1995). It can also be argued
that visual evidence will replace proof of theorems, but empirical findings support the opposite
situation (Jiang & McClintock, 1997). The accuracy of constructions done with any DGS easily
allows to reject statements based in erroneous figures. A paradigmatic illustration is the century-old
fallacious theorem stating that all triangles are isosceles (Maxwell, 1959), that exhibits a correct
reasoning over an impossible figure: D, the intersection of the angle bisector m of 4 and the
perpendicular bisector n of BC, is never inside A4ABC (Fig. 1).

Another proof-related issue in DGS has been highlighted in Goldenberg and Cuoco (1998). It
deals with the difference between Euclidean theorems and DGS design properties and it can be

=

Fig. 1. (a) A malicious figure for proving that all triangles are isosceles. (b) The construction in a dynamic geometry
system (DGS).
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illustrated through a ratio invariance. Construct (Fig. 2, left) a segment 4B, a point C on it and
measure the ratio AC:BC. Moving an endpoint, say A, this ratio remains constant in the majority
of DGS. Now construct (Fig. 2, right) a triangle ABC, a point D on segment 4B, the segment DE
parallel to AC and measure the ratios BD:BE and BA:BC. They are equal and they so remain
when moving D along line 4B. Although this last result is an Euclidean theorem about similar
triangles, the first one is due to a developer decision. And they cannot be distinguished by a stu-
dent using the standard calculator tool within current DGS.

A common approach to proof in DGS consists of giving the students a linguistic description of
a construction and asking them to investigate some property. An archetypal example is the Simson
theorem. The construction can be described by the following sentences: “Inscribe a triangle in a
circle. Select a point on the circle and draw perpendiculars from the point to each side of the
triangle. Draw a line through two of the three feet of the perpendiculars”, and the proposed
investigation is making a conjecture about the foot of the third perpendicular with respect to the
line segment (Fig. 3, left). Any DGS (in fact, all of those that we have tested) will convince the
student that the three feet are collinear, for any possible position of the vertices of the triangle.
This kind of conviction, generically referred to as a visual proof, can be even gone farther with
some of the cited DGS. Cinderella, using randomized theorem checking, shows the message “The

B E C
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Fig. 2. (a) The ratio AC:BC is constant due to the dynamic geometry system (DGS) design. (b) The equality of ratios
BD:BE and BA:BC is an Euclidean theorem.

Fig. 3. (a) A visual proof of Simson theorem. (b) Finding the locus of X for which M,N and P are collinear is a hard
task in dynamic geometry system (DGS).
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third_foot lies on line first_foot-second_foot” when drawing the line through two of the three feet
of the perpendiculars. Also Cabri detects this alignment if using its property checker on the three
feet. Finally, Geometry Expert can give a formal proof of the statement. But let us consider this
situation with a light difference. Without knowing in advance the Simson theorem, investigate the
position of a point for which the feet of the perpendiculars to each side of a triangle are collinear
(Fig. 3, right).

None of the three programs, or the others, will allow an ordinary student to discover that the
locus is the circumcircle of the triangle. Worst of all, the property checker of Cabri will refute the
visual evidence that the three feet are collinear if the point lies on the circumcircle (at least until
the user redefines the point to be on the circle; Fig. 4).

We think that a capital enhancement for a DGS would be a method allowing not only theorem
proving but mainly theorem discovery. With respect to the Simson theorem, a DGS capable of
finding a fact like ““A necessary condition for the collinearity of the feet of the perpendiculars is
that the vertices of the triangle and the point are on a circle’” would be, without doubt, an interesting
and profitable program. It could be used according recent tendencies that emphasize cognitive
processes and heuristic reasoning over axiomatic reasoning in geometry (Clemens & Battista,
1992; Tall, 1995).

3. A symbolic approach to geometric discovery

Considerable attention and efforts had been addressed to automatic proving theorems in elementary
geometry. Most of the earlier systems were based on purely logical or axiomatic approaches
(Gelernter, 1963; Nevins, 1975) until the 1980s when the use of constructive methods in computer
algebra was proposed (Buchberger, 1985; Chou, 1987; Wu, 1994). Comparatively much less work
has been done in the area of automatic discovery in geometry. A landmark in mathematical
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Fig. 4. Cabri refutes visual evidence in Simson theorem.
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automatic discovery was the AM program (Lenat, 1984) but the use of algebraic geometric
methods for discovery in geometry can be traced back to Kapur and Mundy (1989). Recently,
Recio and Vélez (1999) have systematically addressed this issue using Groebner basis tools.

In order to describe the use of the Groebner method by Discover we discuss a simple example.
A more mathematical development of the subject can be found in Botana and Valcarce (2001).
The task consists of discovering the necessary conditions, if any, for which two vertices 4,B of a
triangle A BC and its circumcenter O are collinear (Fig. 5). Although the problem is almost trivial
and can be easily done with any DGS, we just propose it for illustration.

The first step consists of making the construction. The user constructs three points 4, B and C,
and the perpendicular bisectors of sides 4B and BC (some elements are hidden in the figure).
Their meet is O, the center of the circumcircle, which is also drawn. The construction is internally
described as follows:

A =FreePoint(U;,U,)

B = FreePoint(U;,Uy)
C=FreePoint(Us,Us)
S4=Segment(A,B)
Ss=Segment(B,C)
S¢=Segment(A,C)
A7=MidPoint(Sy)

Sg = Perpendicular(A-;, Sy)
Ag=MidPoint(Ss)
S10=Perpendicular(Ag, Ss)
o= Meet(Sg, SIO)
C,,=_Circle(O,A)

Once we get this geometric information, it is an easy task to translate it into an algebraic form.
On one side we have six points (some of them are hidden). Three of them, 4,B,C, are arbitrarily
placed by the user on the screen, so their coordinates can have any value. No restriction will be
made if the user or the system selects two of them as origin (4) and unit (B) of a reference, so
simplifying the algebraic expressions. The coordinates of the other points are then completely
known. Lets call them, for example, 47(X{,X5), 4A9(X3,Xy) and O(X5,Xe).

Fig. 5. When are 4,B and O collinear?
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On the other side, the constraints introduced by the user are translated into the following
polynomial equations:

X =1

X, =0 ; A5 is the midpoint of AB
X3 =(1+Us)/2

X4 = Ug/2 ; Ag is the midpoint of BC
X5 = X ; A5O is perpendicular to AB
Ue(X4—Xg) = (Us—1)(X5—X3) ; AgO is perpendicular to BC

Finally, the user graphically imposes the condition of collinearity of points 4,8 and O, and its
equation

Xo(1=X5) = —XeXs

is added to the polynomial system. The new system can be seen as a set of constraints satisfied by
any triangle where two of its vertices and its circumcenter are collinear. Because the Xs coordi-
nates values are known from any assignment for the Us coordinates, we look for an equivalent
system without Xs, i.e. we try to eliminate them. This task, easy in this case but usually very hard,
is accomplished with the CAS implementation of the Groebner basis method. The elimination
returns

U2 =Us (1-Us)

meaning that the segments AC and BC are perpendicular.

4. The Discover system

Discover is designed to run under Windows 9x in any 486 machine or greater. It uses Mathe-
matica 3.0 or greater, although due to the high cost of this program for many institutions we are
planning to employ a free CAS, such as CoCoA (Capani, Niesi, & Robbiano, 2001). Discover has
evolved from a standard DGS developed by the authors, mathematics teachers at University and
secondary level, for use in the classroom and at home by our students and ourselves to become a
DGS specialized in geometric discovery, used in teaching but also in our investigation. Currently
we are planning to develop a study of its effectiveness and a comparison with Cabri and The
Geometer’s Sketchpad for classroom uses with 16 year students. The results of this work will be
reported in a later work.

There are two main modules in Discover (Fig. 6): a DGS, written in Visual Prolog, and a
Mathematica package. They intercommunicate via file reading and writing.

As already mentioned the DGS is a standard one, offering dragging capability, macro opera-
tions, loci and the general characteristics of this software. In addition, it can export the user-made
constructions as a parametric code (a possibility that will probably also be offered by the release
4.0 of The Geometer’s Sketchpad). The points and the constraints in a construction can be
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recorded in Mathematica or Maple algebraic format. Note that the system has enough knowledge
to detect which type the coordinates of a point are (where U stands for a free coordinate and X
for a bounded one).

When trying to discover geometric properties about a construction the user imposes conditions
on it (Fig. 7a). Through the Discover dialog window, (Fig. 7b) he/she adds the relevant properties
for the discovery (it is possible that a construction property would not be relevant: just imagine a
new segment, without relation to the main figure, and its perpendicular bisector). Some of the
points can also be added if a natural language statement of the discovered facts is wanted. With
the chosen points a database of equations and linguistic sentences is made. All these data are
passed to a package of Mathematica (Fig. 7¢), which, acting as a black box for the case of ele-
mentary use, accomplishes symbolic tasks such as eliminating bounded variables, factoring the
obtained equivalent system, matching each factor with the database, if it exists, and taking into
account degenerated conditions, if any has been detected. Finally, the linguistic sentences that
match some factor or the equations are returned to the DGS, where all the discovery findings are
shown in a window (Fig. 7d).

DGS CAS
(Visual Prolog) (Mathematica)
" Standard DGS uses —P —» " Groebner basis method
— N Blackboard . )
Discovery conditions —— —— Factoring
speciicetion " Equation matching
" Facts and equations

database generation

Parametric code export

Fig. 6. The architecture and main tasks of Discover modules.
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Fig. 7. An example illustrating discovery of Simson theorem.
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5. Examples

Discover can (re)discover an impressive set of well-known Euclidean theorems and a lot of new
geometric facts. We briefly mention some old and new theorems previously published, and a
couple of, as far as we know, new results. We indicate in each of the following results the time
used by Mathematica 3.0 in a Pentium II, that is, the elapsed time since we close the Discover
window until the result is shown.

Theorem 1. The diagonals of a quadrilateral meet at their midpoint if it is a parallelogram.

We draw a quadrilateral A BCD, its diagonals AC and BD, and their intersection point M (Fig. 8 a).

Via menu Discover (Fig. 7a), we impose M to be the midpoint of diagonals AC and BD. In the
Discover dialog window, we add both construction properties (Fig. 8b; note that the quadrilateral
sides are merely graphic traces, not properties of the construction), and the discovered facts are
two equations, meaning the parallelism of sides AB—CD and 4AD—BC (Fig. 8c). The time used by
Mathematica is less than a second.

In order to get the parallelism statements, it would just be necessary to add the quadrilateral
vertices also (Fig. 9). In this case the Mathematica time is about 4 s.

Theorem 2. Given a triangle ABC and a point X on its plane, the necessary conditions for the colli-
nearity of the symmetrical images of X with respect to the three sides of the triangle are: i) X lies on
the circumcircle of ABC, or ii) the triangle ABC collapses to a line.

Pl Result: Discovery

} If there is a construction with these properties:
) Aligned(M.B.D]
then the necessary [ies) condition (s) for
Midpoint(M.D.B),
Midpaint{M.4.C)

is fare).

A U2==U4+U6-US
B U3==U1-U5+U7

b.
Discover 19 1=l B3
Points of construction  Properties of construction

Aligned(M,A,C)
B(u[3].u[4]) Aligned(M,8,0) Add all |
D{u[S]u[6]) —

Add to target | Clu[7L.u[B]) = Add condition I

Points of target Conditions

Remove from targﬂ

Remove condition I

Advanced searehl
F‘ Cancel I Help |

Fig. 8. The diagonals of a parallelogram meet at their midpoint: equations.
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Once the construction has been made (Fig. 10a), the user imposes the alignment of the sym-
metrical points X;, X> andX3. Apart from adding the construction properties, the user also adds
points A, B, C and X, and declares A as origin and B as unit (Fig. 10b). The program returns two
linguistic conditions as necessary for the imposed alignment (Fig. 10c), with a Mathematica time
of 5 s. Note that the first one is a degenerated condition, whereas the last one just states the
cocircularity of 4, B, C and X. In its current version, Discover has no semantic knowledge about
facts like that the circle passing through the vertices of a triangle is called circumcircle.

Theorem 3. Pythagoras. Given a triangle ABC, the area of the square drawn on BC is equal to the
sum of those drawn on AC and AB if the angle BAC is a right angle or, equivalently, AC is per-
pendicular to AB.

Just draw a triangle and impose the equality of the areas as metric condition (see the option in
Fig. 7a). Since there are no properties and just three points, the settings in the Discover dialog
window lead us to rediscover this well-known theorem, with less than 3 s of Mathematica time
(Fig. 11).

Theorem 4 (Guzman, 1999). Given a triangle ABC, an arbitrary point X on its plane, and three
projection directions, not all three equal, nor parallel to the sides of the triangle, let M, N, P be the
projections along these directions on the sides. The locus of all points X such that the oriented triangle
MNP has constant area is a conic.

The construction in Fig. 12a shows the triangle ABC, the point X, three directions given by four
unlabeled points near the left top, and the projections M, N and P. The construction properties

Discover =
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Add all |
Add condition I

" P, i
L

Add to target |
Points of target Conditions

Remove from largﬂ Midpoint(M,A,C)
B(u[3}u[4]) Midpoint(M,D,8)
D(u[5Lule]) Aligned(M,A,C) Remove condition |

C(u[7],ul8]) Aligned(M,B,0)

Advanced search |

OK | Cancel | Help I

Result: Discovery

.'i' If there is a construction with these properties:
\) AlignedMALC],
Abgned(M.8.D)
then the necessary (ies] condition [s] for
Midpaint[M A.C
Midpoint(M.D B)
is [are).

"CB is parallel to DA™
"CD is paraliel to BA"

Fig. 9. The diagonals of a parallelogram meet at their midpoint: linguistic statements.



30 F. Botana, J.L. Valcarce | Computers & Education 38 (2002) 21-35

are listed in Table 1. Selecting 4 as origin and B as unit, and imposing as condition that the area
of triangle MPN is 1, the program returns, after 9 s, as necessary condition an equation which
would have 154 terms if expanded, and is reproduced in Table 2 as a curiosity.

In order to conclude that the locus of points X is a conic, the user must select X as the locus point
in the Advanced search window (Fig. 12b). The discovered fact is then returned as shown in Fig. 12c.

New 1. Given a quadrilateral ABCD, and the intersection point of its diagonals, M, a necessary
condition for the equality of areas of the triangles AMD and BCM is the parallelism of sides AB and CD.
Fig. 13 shows the construction (a) and the discovered condition (b). Here the time is about 3 s.

Table 1
Geometric properties in Guzman theorem

Aligned(M,B,C)
Parallel(A8A9,MX)
Aligned(N,A,C)
Parallel(A10A8,NX)
Aligned(P,A,B)
Parallel(A11A8,PX)

[<Wl Result: Discovery

a. ) If there is a constiuction with these properties:
Aligned(A9.4.C).

PerpendicularfAC A%X),

Symmetrical [X349X),

Alignedm12,8.C),

o x3 ¢ PerpendicularBC.m12x),
o X Symmetrical (X2.m12.%].

il

e x1 5 then the necessany fies) candition (s) for
edX1.X2X3]

< Aligned(<1
/ " \ T
“The points C,B A are aligned”
b

""The points ¥.C.B.A ate on a circle”

Discover =0 x|
Points of construction  Properties of construction

Add to target | X2[x[7].xI8]) | Add condition |

Points of target Conditions
Remove from targﬂ
Aligned(A9,A,C)
C(u[5],ul6]) Perpendicular(AC,A9X) Remove condition |
X(u[7],ul8]) Symmetrical (X3,A9,X)
Alinnedim12.8.C) I |
Advanced search
ok | Cancel | Help |

Fig. 10. Discovering conditions for the alignment of a point and its symmetrical images.
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Table 2
The conic in Guzman theorem

31

—2*¥UL0A3*US+ 2*U10A2*¥U12*¥US + 2*¥U10A2*U14*U5-2*U10*U12*U14*US +
2*U10A2*¥U16*US-2*U10*U12*U16*U5-2*U10*U14*U16*US + 2*U12*U14*U16*US +
2*¥UL0A3*USA2-2*¥UL0A2*¥U12*¥USA2—-2*¥U10A2*¥U14*USA2 + 2¥U10*U12*U14*USA2-
2*¥U10A2*¥U16*¥*USA2 +2*¥U10*U12*¥U16*¥*USA2 + 2*¥U10*U14*U16*¥*USA2-
2*U12*¥U14*U16*USA2-2*¥U10A2*U13*U6 + 2*U10*U12*U13*U6 + 2*U10*U13*U16*U6-
2*¥U12*¥U13*U16*U6 +2*U10A2*U13*US*U6—2*U10*U12*U13*US5*U6-
2*U10*U13*U16*US*U6 + 2*U12*U13*U16*US*U6—-U10A2*U13*¥*U6A2*UT7 +
U10*U12*U13*U6A2*U7+ U10*U13*U16*U6A2*U7-U12*U13*U16*U6A2*UT +
UL0A2*¥U13*U6A2*¥UTA2—-U10*¥U12*¥U13*¥*U6A2*UTA2—U10*U13*U16*U6A2*¥UTA2 +
U12*¥U13*U16*¥U6A2*¥UTA2+ U10A2*¥U13*US*U6*U8—U10*U12*U13*US*U6*US-
U10A2*¥U15*US*U6*U8 + U10*U12*U15*Us*U6*U8 + U10*U14*U15*US*U6*U8S-
U12*¥U14*U15*US*U6*US—-U10*U13*Ul6*USs*U6*U8 + U12*U13*U16*US5*U6*U8-
U10*U13*U15*U6A2*¥U8 + U12*U13*U15*U6A2* U + U10A2*U15*U6*U7*US-
U10*U12*U15*U6*U7*U8-U10*U14*U15*U6*U7*U8 + U12*U14*U15*U6*UT*U8-
U10A2*¥U13*US*U6*U7*U8 + U10*U12*U13*US*U6*U7*U8 + U10*U13*U16*US*U6*U7*US-
U12*¥U13*U16*¥*US*U6*U7*U8 + U10*U13*U15*U6A2*UT*US—-U12*U13*U15*U6A2*UT*U8 +
U10*U13*U15*U6*USA2—-U12*U13*U15*U6*USA2—U10*U13*U15*US*U6*USA2 +
U12*¥U13*UL5*US*U6*USA2 + 2*U10A2*U6*U9—-2*U10*U12*U6*U9-

2*U10*U16*U6*U9 +2*¥U12*U16*U6*U9—-4*U10A2*US*U6*U9 + 2*U10*U12*US*U6*U9 +
2*U10*U14*US*U6*U9 + 4*U10*U16*US*U6*U9—-2*U12*U16*US*U6*U9-
2*¥U14*U16*US*U6*U9—-2*U10*U13*U6A2*¥U9 + 2*¥U13*U16*U6A2*U9-
U10*U12*¥U6A2*U7*¥U9 + U10*U14*U6A2*UT*U9 + U12*U16*U6A2*UT*U9-
U14*U16*U6A2*U7*U9 + U10*U12*¥U6A2*UTA2*U9I-U10*U14*U6A2*UTA2*U9-
U12*¥U16*¥U6A2*¥UTA2*¥U9 + U14*U16*U6A2*UTA2*¥UI—-U10*U14*US*U6*U8*U9 +
U12*¥U14*Us*U6*U8*U9 + U10*U16*US*U6*U*UI—-U12*U16*US*U6*U8*U9-
U12*U13*U6A2*U8*U9+ U10*U15*U6A2*U8*U9I—-U12*U15*U6A2*U*U9 +
U13*U16*¥*U6A2*¥U8*U9 + U10*U12*U6*U7*U8*U9—-U12*U14*U6*U7T*U8*U9-
U10*U16*U6*U7T*U8*U9 + U14*U16*U6*U7*U*U9—-U10*U12*US*U6*U7*U8*U9 +
U10*U14*Us*U6*U7*U8*U9 + U12*U16*U5*U6*U7*U8*U9—-U14*U16*US5*U6*U7*U8*U9-
U10*¥U13*U6A2*UT*U8*U9 + U12*U13*UbA2*¥U7*U8*U9 + U12*U15*U6A2*U7*U8*U9-
Ul4*U15*U6A2*U7*U8*U9 + U12*¥U13*U6*USA2*UI—-U10*U15*U6*USA2*U9 +
U12*U15*U6*USA2*U9I—-U13*U16*U6*U8A2* U9+ U10*U13*US5*U6*U8A2*U9-
U12*¥U13*US*U6*USA2*U9—-U12*U15*US*U6*U8A2*¥U9 + U14*U15*US*U6*UBA2*¥U9 +
2¥U10*¥*U6A2*¥UIA2-2*%U16¥U6A2*¥UIA2 + U12*U6A2*UB*UIA2—-U16*¥*U6A2*¥US*UIA2-
UI2*¥U6A2*UT*US*UIA2+ U14*U6A2*UT*UB*UIA2—U12*¥U6*USA2*UIA2 +
U16*¥U6*UBA2*¥*UIA2 + U12*¥US*U6*USA2*UIA2—-U14*¥US*U6*USA2*¥UIA2 = =
Ul1*¥U6*(-2*U10A2*US5 +2*U10*U14*US + 2*U10*U16*US—-2*U14*U16*US-
2#U10*U13*U6+ 2*U13*U16*U6—-U10A2*¥U6*U7+ U10*U14*U6*U7 +
U10*U16*U6*U7-U14*U16*U6*U7 + U10A2*¥U6*UTA2—-U10*U14*¥*U6*UTA2-
U10*U16*U6*UTA2 + U14*U16*U6*U7A2—-U10*U13*U6*U8 + U13*U16*U6*US +
U10A2*U7*U8-U10*U14*U7*U8—-U10*U16*U7*U8 + U14*U16*U7*U8-
U10A2*¥US*U7*U8 + U10*U14*US*U7*U8 + U10*U16*¥*US*U7*U8—-U14*U16*¥*US*U7*US +
U10*U15*U6*UT*U8—-U14*U15*U6*U7*U8 + U10*U13*U8A2—-U13*U16*UA2-
U10*U15*US*USA2+ U14*U15*US5*U8A2 + 2*U10*U6*U9—-2*U16*U6*U9 +
U10*U6*U8*U9—-U16*U6*U8*U9I—-U10*¥*U6*U7*U*U9 + U14*U6*U7*U*U9-
U10*U8A2*¥U9+ U16*¥*USA2*¥U9 + U10*US*UBA2*U9I—-U14*US5*USA2*U9)
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New 2. Given a quadrilateral ABCD, let R be the intersection point of the lines AB and CD, let S be
the intersection point of the lines BC and DA, and M, N and P the midpoints of AC, BD and RS,
respectively (The Gauss line theorem states that M, N and P are collinear). A necessary condition
for P to be the midpoint of MN is that C lies on a conic passing through B and D.

Metric conditions N [=] E3

Result: Discovery

|distance(A,B)"2 +distance(A,C)"2=distanc

@ [ies) condition [s]

distance(4.8 +cis|mce{A£]‘2-d:lane[B,C]"2
is [are):

| | “C4 is perpendicular to BA"

Cancel | Help
— 1
Discover !H
Points of construction  Properties of construction
Add to target I Add condition

Points of target Conditions
Remove from 1argﬂ
B(u[3],ul4])
C(u[5],u[6]) Remove condition I

Advanced search

OK I Cancel I Help |

Fig. 11. Pythagoras theorem rediscovered.

|s W Advanced seaich

Add criteri | Add to locus. |

Clu[SLul6ll
AB[u[9].u[10])
A9(u[11],u[12])

A1nea1 s o =

Search criteria Paint of locus

circle {center+point] = X(u[TLul8])
conic (6 points) -
equal length
v\E-.E‘nlnvng!l-Gnnnln ;’
Remove criterium | Remove from locus |
concel | _en_|

g Result: Discovery

@é If there is a construction with these properties:
) M.B.CL.

ParalelAB&3 MX),

HlignedN AC).

ParallellA1048.NX).

Aligned(P A.8).

PaialelA1148 PX)

then the locus of point X(u{7Lu[B]) such that

atealM PNJ=1 is:
the conic: <£mm too long>

[ Accept ]

Fig. 12. A recent result generalizing Simson theorem.
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Setting 4 as origin and B as unit in the construction in Fig. 14a, and imposing P to be the
midpoint of MN, the program returns, within a second, as necessary condition the equation in
Fig. 14b. No linguistic statement is produced in the actual version of Discovery.

So, this time some extra work must be done by the (advanced) student. The equation has four
variables. They can be identified through a program option that lists the coordinates of the con-
struction points (Fig. 14c¢).

The equation has degree two in the coordinates of C, that is, is a conic. Furthermore, the
equation is satisfied when substituting the C coordinates by those of B or D, proving that the
conic passes through these points. In fact, a similar analysis can be carried out changing C by D

a2 b. A
c
( ) Ilthelelsa truction with these properti
fs) Aigned{M B D]
W then the necessary (ies) condition (5] for
arealty M D)=area(B.C M)

i [are):

"CD is parallel to BA™

e
:) oo
(1) gy
Dlu(5] )
Cl7LuE]L
RI142])
SI3104])
Ml

N(#{7].x(8])
Px{3]4(10)

Wl Result: Discovery

Midpaint [MA.CL

Midpaint (N.D B),

Midpaint (P.5.R]

then the necessary [ies) condition (5] for
Midpoint(P.b M)

is [are):

UB"2 - UB*U8 + US"UB"UB + US"UB"2 == UB*U7{UE + U8)

Fig. 14. A new property related to the Gauss line theorem.
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In this case the necessary condition for P to be the midpoint of MN is that D lies on a conic
passing through 4 and C.

Although the results obtained by Discover are sound, sometimes the program will not discover
a quasi evident fact. Properties involving relations such as between cannot be described, in general,
by equations, so prohibiting their study.

6. Conclusions

We have developed an interface between a dynamic geometry environment and a computer
algebra system. Besides the standard uses of dynamic geometry, the program offers an interactive,
direct, and graphical way for investigating and conjecturing in geometry. It is based in solid
algebraic methods here used for geometric discovery. Dynamic geometry systems had been com-
monly based in numerical methods. The integration of this approach with a symbolic one (a trend
also announced by other dynamic geometry software developers) had provided a learning envir-
onment where novice users can explore open geometric situations.
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