
Article No. sy980221
J. Symbolic Computation (1998) 26, 409–431

Strategies for Computing Minimal Free Resolutions†

ROBERTO LA SCALA‡¶ AND MICHAEL STILLMAN§‖

‡Dipartimento di Matematica, Università di Bari, Italy
§Department of Mathematics, Cornell University, U.S.A.

In the present paper we study algorithms based on the theory of Gröbner bases for
computing free resolutions of modules over polynomial rings. We propose a technique
which consists in the application of special selection strategies to the Schreyer algorithm.
The resulting algorithm is efficient and, in the graded case, allows a straightforward
minimalization algorithm. These techniques generalize to factor rings, skew commutative
rings, and some non-commutative rings. Finally, the proposed approach is compared
with other algorithms by means of an implementation developed in the new system
Macaulay2.

c© 1998 Academic Press

1. Introduction

One of the most important computations in algebraic geometry or commutative algebra
that a computer algebra system should provide is the computation of finite free reso-
lutions of ideals and modules. Resolutions are used as an aid to understand the subtle
nature of modules and are also a basis of further computations, such as computing sheaf
cohomology, local cohomology, Ext, Tor, etc. Modern methods for calculating free reso-
lutions derive from the theory of Gröbner bases. These methods were introduced at the
end of the 1970s by Richman (1974); Spear (1977); Schreyer (1980) and have survived in
computer algebra systems up to now. However, the problem with these algorithms is that
many computations of interest for researchers were out of range. This is giving impulse
to authors such as Capani et al. (1997), Siebert (1996) and ourselves to develop decisive
improvements of the resolution techniques.

Resolution algorithms based on Gröbner bases can be divided essentially into two types.
The first type is based on computing the syzygy module on a minimal set of generators.
The second type, initially used by Frank Schreyer, is based on computing the syzygy
module on a Gröbner basis. In both cases, using induced term orderings leads to a large
improvement in the sizes of the Gröbner bases involved. Which of these two methods is
best depends in part on the specific input ideal or module. However, we have found that
for problems of interest, the Schreyer technique, together with the improvements that we
suggest, on the average outperforms the other methods.

†This research was performed with the contribution of MURST, and M. Stillman would like to thank
the NSF for partial support during the preparation of this manuscript.
¶E-mail: lascala@dm.uniba.it
‖E-mail: mike@math.cornell.edu

0747–7171/98/100409 + 23 30.00/0 c© 1998 Academic Press



410 Roberto La Scala and Michael Stillman

The syzygies of the Schreyer resolution are usually computed level by level. (i.e., first
syzygies first, then second syzygies, etc.) In this way just one syzygy is obtained by any S-
polynomial reduction. Our improvement of the Schreyer algorithm is based essentially on
the remark that we can use global strategies instead for the selection of the S-polynomials
which allow the computation of couples of syzygies from single reductions. This results
not only in an optimization of the calculation of the Schreyer resolution but also of
its minimalization. It can be proved in fact that with respect to suitable strategies a
minimal resolution corresponds exactly to the syzygies traced by S-polynomial reductions
to zero. It follows that using our technique the Betti numbers are derived by the Schreyer
resolution with no additional computations.

An important feature of the proposed algorithms is that they can be easily extended.
In the present paper we explain how to generalize them to factor rings and show that
the resolution procedure can be applied to non- graded ideals and modules. We describe
an implementation, and some of the choices one has when computing a resolution. We
suggest some optimizations that we have found to be useful. Finally, we compare these
algorithms with other algorithms, using a suite of examples. These tests are performed
using an installation developed in the new system Macaulay2 (Grayson and Stillman,
1993–1998).

2. Preliminaries

In this section, we define our notation regarding Gröbner bases. Since the algorithms
we describe also work over a factor ring R of a polynomial ring S, we also describe our
notation regarding Gröbner bases in this setting. Without too much more difficulty, one
could extend these definitions to more general situations, e.g. (factor rings of) skew-
commutative polynomial rings, Weyl algebras, and non- commutative polynomial rings.
The algorithms given in this paper would work, with small modifications, in these more
general settings.

Let S = K[x1, . . . , xn] be a polynomial ring over the field K, endowed with a term
order > that we fix once and for all.

A power product (or monomial of S) is an element

t = xα1
1 · · ·xαnn ∈ S,

where α1, . . . , αn are non-negative integers.
Any non-zero element f ∈ S may be written uniquely as the sum

f = c1 ·m1 + · · ·+ ck ·mk,

where 0 6= ci ∈ K, mi monomials, and m1 > m2 > · · · > mk. We define:

lc(f) = c1, the leading coefficient ,
lm(f) = m1, the leading monomial .

For any set G ⊂ S, we let in(G) denote the K-vector space spanned by the monomials
{lm(f) : f ∈ G}. If J ⊂ S is an ideal, then in(J) ⊂ S is the monomial ideal generated
by the lead terms of J .

Let R = S/J be a factor ring of S. We may extend the above notions to this situation.
Let N ⊂ S be the K-vector space spanned by the set of standard monomials of R, that



Strategies for Computing Minimal Free Resolutions 411

is, the set of monomials of S not in in(J). Any element f ∈ R may be uniquely written
as the image of an element g ∈ N , and we set lc(f) = lc(g) and lm(f) = lm(g) ∈ N .

For any set G ⊂ R, let in(G) denote the K-vector space generated by the lead mono-
mials {lm(f) : f ∈ G}. Thus, N = in(R), and in(S) = N ⊕ in(J), as K-vector spaces.

Let F be a free module over R, and let F̂ be the free S-module with the same rank as
F and corresponding basis. A monomial of F is by definition any element

m = t · e,
where t ∈ N is a standard monomial and e is any element of the canonical basis of F̂ .

A term order on F is a total order on the monomials of F such that:

(i) if m < n, then t ·m < t · n;
(ii) if s < t, then s · e < t · e

for all m,n monomials of F , s, t power products in S, and e any basis element of F .
Fix a term order on F . Then, any element f ∈ F may be written uniquely (as the

image of an element) in the form:

f = c1 ·m1 + · · ·+ ck ·mk,

where 0 6= ci ∈ K, mi monomials, and m1 > m2 > . . . > mk. If m1 = t ·e, for the module
element f we define:

lc(f) = c1, the leading coefficient ,
lm(f) = m1, the leading monomial ,
lpp(f) = t, the leading power product .

As usual, for any G ⊂ F , we denote by in(G) ⊂ F̂ the K-vector space generated by
{lm(f) : f ∈ G}.

We say that {g1, . . . , gs} ⊂ I ⊂ F is a Gröbner basis of the R-module I, if {lm(g1), . . .,
lm(gs)} generates in(I), that is, every monomial in in(I) is divisible by some lm(gi). The
Gröbner basis is called auto-reduced if every lead monomial lm(gi) divides no monomial
occuring in any gj , other than itself. The Gröbner basis is called irredundant if in(I) is
minimally generated by {lm(g1), . . . , lm(gs)}, which in turn means that this set generates
in(I), and no lead term lm(gi) divides any lm(gj), for j 6= i.

3. The Schreyer Resolution and Its Frame

Throughout this section, R = S/J is a factor ring of the polynomial ring S, and
M = F0/I is an R-module, where F0 is a free module. If both M and R are graded, then
all of our sequences of modules, and resolutions will be graded as well.

Consider a sequence of R-homomorphisms:

Φ : · · · −→ Fl
ϕl−→ Fl−1

ϕl−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

where each Fi is a free R-module with a given (canonical) basis Ei. Let Ci = ϕi(Ei) be
the image of the given basis, and define the level of an element f in Ci to be lev(f) = i.
Note that Φ is not necessarily a complex.

Definition 3.1. Let τ = {τi} be a sequence of term orderings τi on the Fi. We call τ a
term ordering on Φ if it satisfies the following compatibility relationship:



412 Roberto La Scala and Michael Stillman

s · e1 < t · e2 whenever s · lmϕi(e1) < t · lmϕi(e2),

where e1 and e2 are elements of Ei.

Definition 3.2. Given a Φ as above, and a term ordering on Φ, define the initial terms
of Φ, in(Φ), to be the sequence of (graded) R-homomorphisms:

Ξ = in(Φ) : · · · −→ Fl
ξl−→ Fl−1

ξl−1−→ · · · ξ2−→ F1
ξ1−→ F0

where ξi(e) = lmϕi(e), for all e in Ei. That is, in(Φ) consists of the leading monomials
of the columns of (each matrix of) Φ.

Notice that a term ordering on Φ is also a term ordering for Ξ. The converse holds, if
for this order, Ξ = in(Φ).

Definition 3.3. A Schreyer resolution of an R-module M = F0/I is an exact sequence:

Φ : · · · → Fl
ϕl−→ Fl−1

ϕl−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

together with a term ordering on Φ, such that:

(i) coker(ϕ1) = M ;
(ii) ϕi(Ei) forms an irredundant Gröbner basis of image(ϕi) (for all i where Fi 6= 0);

Our plan in the next section is to give an algorithm that computes a Schreyer resolution.
A useful way of picturing this resolution is by its “frame”.

Definition 3.4. A Schreyer frame of M = F0/I is a sequence of (graded) R-homomor-
phisms:

Ξ : · · · → Fl
ξl−→ Fl−1

ξl−1−→ · · · ξ2−→ F1
ξ1−→ F0

where each column is a monomial, and a term ordering on Ξ such that:

(i) ξ1(E1) is a minimal set of generators for in(I);
(ii) ξi(Ei) is a minimal set of generators for in(ker ξi−1) (i ≥ 2).

If Φ is a Schreyer resolution, then in(Φ) is a Schreyer frame. The reason we introduce
this concept is because one can compute a Schreyer frame first, and then “fill it in” to
form a Schreyer resolution.

Let Ξ be a Schreyer frame. It is useful to introduce the following notation. Given i,
and a basis element e ∈ Ei−1, we put:

Bi = ξi(Ei);
Ei(e) = {ε ∈ Ei : ξi(ε) = s · e, for some power product s}.

Thus Ei(e) consists of those basis elements that map to multiples of e. Note that this set
can be empty.

The following lemma is the basis of our algorithm to compute a Schreyer frame. Let
ξi : Fi → Fi−1 be a map of free R-modules, such that each element ξi(ε) is a monomial,
for all ε ∈ ξi. Suppose that ξi is endowed with a term ordering.



Strategies for Computing Minimal Free Resolutions 413

Lemma 3.5. Given the above setup, we have that in(ker ξi) is minimally generated by⋃
e∈Ei−1

r⋃
j=2

mingens ((in(J), t1, . . . , tj−1) : tj) · εj

where for each e in the outer union, if Ei(e) = {ε1, . . . , εr} then ξi(εj) = tj · e, and
mingens defines the subset of the minimal generators of the considered monomial ideal
which do not lie in in(J).

Proof. Let
∑
j gj ·mj = 0 where mj are minimal generators of in(image ξi) and gj are

standard polynomials of S. Let sk·εk be the leading monomial of the corresponding syzygy
with sk = lm(gk). For cancelling sk ·mk in the sum there are exactly two possibilities:

sk ·mk = sh ·mh for some h,
sk · tk belongs to in(J),

where mk = tk · e.

This lemma immediately translates into an algorithm to compute a Schreyer frame (or
all possible frames) given in(J) and in(I).

Proposition 3.6. If Ξ is a Schreyer frame for M , then there exists a Schreyer resolution
Φ such that Ξ = in(Φ).

Proof. With respect to the term ordering assigned on the free module F0, any irredun-
dant Gröbner basis C1 of the submodule I ⊂ F0 satisfies in(C1) = B1. Note now that for
any monomial m ∈ B2, there exists an element g in C1 = ϕ1(E1) such that:

m = t · ε,
where t is a standard power product, ε ∈ E1 and ϕ1(ε) = g. By definition, the set
C2 = ϕ2(E2) is formed by the syzygies traced by the reductions to zero of the elements
t · g as m varies in B2. Since the term ordering of F1 satisfies the condition of Definition
3.1, we have:

in(ker ξ1) = in(kerϕ1).
It follows that C2 is an irredundant Gröbner basis of ker(ϕ1) and in(C2) = B2. Iterating
for all the levels i, we get a Schreyer resolution Φ such that Ξ = in(Φ).

Note that this is essentially Schreyer’s original proof that the syzygy module is con-
structed from a Gröbner basis computation. The resolution Φ produced in the above
proposition is not quite unique, given the Schreyer frame Ξ. One could make it unique
by requiring that each ϕi(Ei) forms an auto-reduced Gröbner basis.

Proposition 3.7. If Φ is a complex of free S-modules, with a term ordering, such that
in(Φ) is a Schreyer frame of M , then Φ is a free resolution of M .

Proof. Clear.

The following proposition explains how a term ordering can be assigned on a frame.



414 Roberto La Scala and Michael Stillman

Proposition 3.8. Let Ξ : · · · −→ Fl
ξl−→ Fl−1

ξl−1−→ · · · ξ2−→ F1
ξ1−→ F0 be a sequence

of homomorphisms where each column is a monomial. To give a term ordering on Ξ is
equivalent to give a term ordering on F0 and place total orders on the sets Ei(e) 6= ∅, for
every i ≥ 1 and e ∈ Ei−1.

Proof. By induction on the level i, the term ordering on the free module Fi can be
defined as follows. For any s, t power products, ε1, ε2 ∈ Ei, m = ξi(ε1), n = ξi(ε2), we put:

s · ε1 < t · ε2 iff s ·m < t · n, or
s ·m = t · n and ε1 < ε2 w.r.t. the order on Ei(e),
with m,n multiples of e ∈ Ei−1.2

Example 3.9. Let K be a field of any characteristic and let the polynomial ring S =
K[x0, . . . , x5] be endowed by the term ordering DegRevLex. Consider the graded module
M = S/I, where the monomial ideal I is the face ideal of a triangulation of the real
projective plane (first introduced by Reisner (1976)).

I = 〈 x2x4x5, x0x4x5, x2x3x5, x1x3x5, x0x1x5,
x1x3x4, x0x3x4, x1x2x4, x0x2x3, x0x1x2 〉.

Then, a Schreyer frame Ξ for M is given by the bases:

B1 = { x2x4x5, x0x4x5, x2x3x5, x1x3x5, x0x1x5, x1x3x4, x0x3x4, x1x2x4,
x0x2x3, x0x1x2 };

B2 = { x4e3, x5e6, x5e7, x5e8, x2e2, x4e5, x2e4, x5e9, x3e5, x5e10, x3e8,
x4e9, x1e7, x4e10, x3e10, x0x4e4 };

B3 = { x5e11, x5e12, x4e9, x5e13, x5e14, x5e15, x4e15, x2e16 };

B4 = { x5e7 }.

For simplifying the notation, we have used the same letters ej for indicating the elements
of the canonical bases of the free modules F1 = S10, F2 = S16, F3 = S8. The term
ordering on Ξ is defined for any level i in the usual way:

s · ej < t · ek iff s ·mj < t ·mk, or
s ·mj = t ·mk and j < k,

where s, t are power products, ej , ek are elements of Ei s.t. ξi(ej) = mj , ξi(ek) = mk.

4. The Algorithms

An algorithm for computing Schreyer resolutions has been found independently by
Richman (1974); Spear (1977); Schreyer (1980). In this section we propose a new version
of that algorithm which improves both the computation of the Schreyer resolution, and
its minimalization (in the graded case). In the graded case, minimalization can be a time-
consuming process. The algorithm presented here allows a nice, efficient algorithm for
computing a minimal resolution, and the graded Betti numbers of the minimal resolution
are produced with no extra work.



Strategies for Computing Minimal Free Resolutions 415

Let M = F0/I be an R-module, let C̄1 be an irredundant Gröbner basis of I, and let
Ξ be a Schreyer frame of M . The following algorithm takes these data and produces a
Schreyer resolution Φ ofM , such that in(Φ) = Ξ. Of course we assume these sequences are
truncated when they are infinite. The main idea here is very simple: process the s-pairs
in such a way that the higher-level elements are processed first. If an element reduces to
a non-zero value (which is possible since we do not yet have all of the elements of the
Gröbner basis), then we get two elements for the price of one: we get the syzygy, and we
get a Gröbner basis element at the previous level. We show that the Betti numbers are a
by-product of this computation and we can minimalize Φ very easily. Note that we could
modify this algorithm to compute the Gröbner basis on the fly. The difficulty is that
we need then to compute the Schreyer frame on the fly as well, and the corresponding
algorithm is somewhat harder to describe.

For this algorithm, let the variable B be the union of the sets B1, . . . ,Bl initialized
as the monomial bases of Ξ. We call the elements of B the S-polynomials. The output
consists of the Gröbner bases C1, . . . , Cl of Φ together with the sets of minimal syzygies
H1, . . . ,Hl, Hi ⊂ Ci.

Algorithm 4.1. Resolution[C̄1]

Ci,Hi:= ∅ (1 ≤ i ≤ l )
while B 6= ∅ do
m:= minB
B:= B \ {m}
i:= lev(m)
if i = 1 then
g:= the element of C̄1 s.t. lm(g) = m
C1:= C1 ∪ {g}
H1:= H1 ∪ {g}

else
(f, g):= Reduce[m, Ci−1]
Ci:= Ci ∪ {g}
if f 6= 0 then
Ci−1:= Ci−1 ∪ {f}
B:= B \ {lm(f)} removing one S-polynomial for free!!

else
Hi:= Hi ∪ {g}

return Ci,Hi (1 ≤ i ≤ l )

The function min concerns the selection strategies we use for the algorithm. By defi-
nition, a strategy of Resolution is any total ordering of the set B = B1 ∪ . . . ∪ Bl s.t. if
one of the following conditions holds:

(i) deg(m)− lev(m) ≤ deg(n)− lev(n) and lev(m) < lev(n);
(ii) deg(m) < deg(n) and lev(m) = lev(n);
(iii) deg(m) = deg(n) and lev(m) > lev(n);

then m < n, for all m,n ∈ B. Note that such strategies are easily defined. For instance,
a class of them is obtained by putting:



416 Roberto La Scala and Michael Stillman

m < n iff deg(m) < deg(n), or deg(m) = deg(n) and lev(m) > lev(n).

We call these strategies DRLv (Degree Reverse Level). Another natural class of strategies
is SDLv (Slanted Degree Level):

m < n iff deg(m)− lev(m) < deg(n)− lev(n), or
deg(m)− lev(m) = deg(n)− lev(n) and lev(m) < lev(n).

The function Reduce in the algorithm Resolution is a simplification procedure which
returns both the reductum and the corresponding syzygy. We may either reduce until
the lead term cannot be simplified, or we can reduce until all terms cannot be simplified.
(When we discuss implementations, the first variant will be algorithm A0, and the second
variant, A1):

Procedure 4.2. Reduce[t · ε, Ci−1]

f:= t · k, where ϕi−1(ε) = k
g:= t · ε
while f 6= 0 and lm(f) ∈ in〈Ci−1〉 do
choose h ∈ Ci−1 s.t. lm(h) | lm(f) (at first iteration h

not allowed to be f)

f:= f − lc(f) lpp(f)
lc(h) lpp(h) h

g:= g − lc(f) lpp(f)
lc(h) lpp(h) e, where ϕi−1(e) = h

if f 6= 0 then
g:= g − e, where ϕi−1(e) = f

return f, g

Procedure 4.3. ReduceAll[t · ε, Ci−1]

f:= t · k, where ϕi−1(ε) = k
g:= t · ε
r:= 0
while f 6= 0 do

if lm(f) ∈ in〈Ci−1〉 then
choose h ∈ Ci−1 s.t. lm(h) | lm(f) (at first iteration h

not allowed to be f)

f:= f − lc(f) lpp(f)
lc(h) lpp(h) h

g:= g − lc(f) lpp(f)
lc(h) lpp(h) e, where ϕi−1(e) = h

else
r:= r + lm(f)
f:= f − lm(f)

if r 6= 0 then
g:= g − e, where ϕi−1(e) = r

return r, g

To prove the correctness of the proposed algorithm, we start with the following:



Strategies for Computing Minimal Free Resolutions 417

Proposition 4.4. The resolution Φ computed by Resolution is a Schreyer one.

Proof. By induction on i, we suppose that at termination the set Ci is an irredundant
Gröbner basis of the module kerϕi−1. By the definition of Resolution we have imme-
diately that Bi+1 ⊂ in(Ci+1) i.e. Ci+1 is a Gröbner basis of kerϕi. We have to prove now
that Ci+1 is an irredundant Gröbner basis, that is:

Bi+1 = in(Ci+1).

Let f ∈ Ci+1 be an element obtained at some step of the algorithm Resolution by a
monomial m ∈ B. We claim that lm(f) ∈ Bi+1. If m ∈ Bi+1 the claim follows immediately
since lm(f) = m. Suppose now that m ∈ Bi+2, i.e. f is the reductum of an S-polynomial.
Denote by g any element of Ci+1 computed at a previous step. By definition of the
reductum we have that lm(g) does not divide lm(f). Moreover, by induction we can
suppose that lm(g) ∈ Bi+1. Therefore, lm(g) is not a proper multiple of lm(f) since Bi+1

is the minimal monomial basis of in(kerϕi). We conclude that the claim is true.

From this point on we assume that the module M is graded. Note that for any level i,
the elements of Ci \Hi are non-minimal elements of the basis Ci. By eliminating them, a
new graded free resolution of M :

Ψ : · · · → Gq
ψq−→ Gq−1

ψq−1−→ · · · ψ2−→ G1
ψ1−→ F0 → M → 0

is clearly defined with rk(Gi) ≤ rk(Fi), where possibly Gi = 0 even if Fi 6= 0. Denote
by Di the image of the basis of free module Gi through the map ψi (i ≥ 1). We have a
graded epimorphism of complexes Φ θ→ Ψ:

. . . → Fq → . . . → F1 → F0 → M
θq ↓ θ1 ↓ ↓

. . . → Gq → . . . → G1 → F0 → M

such that θi−1(Hi) = Di and H1 = D1. For i > 1, denote by Ki the subset of Ci of
the syzygies traced by S-polynomials which reduce to non-zero elements. Let g be an
element of Ki obtained at any step of the procedure Resolution and denote by f the
corresponding S-polynomial reductum. Note that the component corresponding to f is
zero for the elements of Ki computed in the previous steps, and is equal to −1 ∈ K for
the syzygy g. Therefore, Ki is a free basis of the kernel of the projection defined by θi−1

of the module ker(ϕi−1) onto ker(ψi−1).
For the algorithm Resolution we have the following important result:

Proposition 4.5. The resolution Ψ is a minimal resolution of the graded module M .

Proof. By the conditions (ii) and (iii), any element f of the basis C̄1 is added by
Resolution to H1 = D1 only if f is not reducible to zero w.r.t. to the partial Gröbner
basis of the elements of degree ≤ deg(f). Therefore, D1 is a minimal basis of the module
I = image(ϕ1).

We have to prove now that D2, . . . ,Dq define a minimal resolution of kerψ1. Initially,
we show that any element of Hi is not a linear combination over the ring S of other
elements of Ci. Then, we prove that Di = θi−1(Hi) is a minimal basis of the module
kerψi−1.



418 Roberto La Scala and Michael Stillman

Let f ∈ Ci,deg(f) = d. Suppose that f is not a minimal element of the basis Ci. Then,
there is g ∈ Ci+1 a syzygy of degree d s.t. its component corresponding to f is different
from zero. We claim that f, g are obtained in the algorithm Resolution by the same
monomial of Bi+1.

Let m,n be the monomials of the Schreyer frame which create f, g respectively. Note
that m,n have the same degree d, but lev(m) ≤ lev(n). Since the syzygy g has a non-
zero component corresponding to f , we have clearly that the monomial m cannot be
selected in the algorithm after n. On the other hand, by the strategy condition (iii) of
Resolution, we have that m cannot be selected before n. Therefore, the elements f, g
are created simultaneously by a monomial m = n of the level i+ 1. We deduce that any
element of Hi is minimal in the basis Ci.

By contradiction, we suppose now thatDi is not a minimal basis of the module kerψi−1,
i.e. there exist f ′ ∈ Di, g′ ∈ kerψi s.t. deg(f ′) = deg(g′) and g′ has the component
corresponding to f ′ different from zero. Therefore, by definition of θ, there are f ∈
Hi, g ∈ kerϕi of the same degree s.t. g has a non- zero component corresponding to f .
This contradicts the minimality of the elements of Hi.2

Note that from the above result it follows that the graded Betti numbers of M are
obtained by the algorithm Resolution with no additional computations. They are simply
the number of elements of the sets Hi in each degree. Moreover, for obtaining a minimal
resolution of the module M it is sufficient to transform each Hi, i > 1 in Di by means
of the homomorphism θi−1. The following simple algorithm implements θi−1.

Denote by K̂i the subsets of Bi of the monomials corresponding to S-polynomials which
reduce to non-zero elements in Resolution. Moreover, assume that K̂i is endowed by
the converse ordering w.r.t. the selection strategy.

Algorithm 4.6. Minimalize[Hi]

for m ∈ K̂i do
(f, g):= resp. the reductum and the syzygy obtained by m
for h ∈ Hi do
he:= the component of h corresponding to e ∈ Ei−1, ϕi−1(e) = f
h:= h+ he · g
h:= Strip[h]

return Hi

The subprocedure Strip is defined as follows:

Procedure 4.7. Strip[h]

for m ∈ K̂i−1 do
g:= the syzygy of Ci−1 obtained by m
he:= the component of h corresponding to e ∈ Ei−1, ϕi−1(e) = g
h:= h− he · e

return h

The correctness of Minimalize is based on the remark that if the syzygy g ∈ Ci is com-



Strategies for Computing Minimal Free Resolutions 419

puted at any step of the procedure Resolution, then the components of g corresponding
to the elements of Ci−1 obtained in the next steps are clearly all zero. Note that our
minimalization of the Schreyer resolution is much easier than the “classical” one since
we know a priori which syzygies give rise to a minimal resolution.

Example 4.8. Applying the algorithm Resolution for char(K) 6= 2 to the module
M = S/J of Example 3.9, we get the following Schreyer resolution:

C1 = { x2x4x5, x0x4x5, x2x3x5, x1x3x5, x0x1x5, x1x3x4, x0x3x4, x1x2x4,
x0x2x3, x0x1x2 };

C2 = { x4e3 − x3e1, x5e6 − x4e4, x5e7 − x3e2, x5e8 − x1e1, x2e2 − x0e1,
x4e5 − x1e2, x2e4 − x1e3, x5e9 − x0e3, x3e5 − x0e4, x5e10 − x2e5,
x3e8 − x2e6, x4e9 − x2e7, x1e7 − x0e6, x4e10 − x0e8, x3e10 − x1e9,
x0x4e4 − x1x3e2 };

C3 = { x5e11 − x3e4 + x2e2 + x4e7 + x1e1,
x5e12 − x4e8 + x2e3 − x0e1 + x3e5,
x4e9 − x3e6 − e16,
x5e13 − x1e3 + x0e2 − e16,
x5e14 − x4e10 + x0e4 − x2e6 − x1e5,
x5e15 − x3e10 + x1e8 − x2e9 − x0e7,
x4e15 − x3e14 + x1e12 − x0e11 + x2e13,
2 · (x2e16 + x0x4e7 + x0x1e1 − x1x3e5) };

C4 = { x5e7 − x4e6 + x3e5 − x1e2 + x0e1 − x2e4 − x2e3 − e8 }.

During the computation two monomials of the Schreyer frame:

x4e9 ∈ B2,
x5e7 ∈ B3

give rise to non-zero S-polynomial reductions. The couples of non-minimal elements of
the resolution obtained by these monomials are respectively:

x0x4e4 − x1x3e2 ∈ C1,
x4e9 − x3e6 − e16 ∈ C2;

2 · (x2e16 + x0x4e7 + x0x1e1 − x1x3e5) ∈ C2,
x5e7 − x4e6 + x3e5 − x1e2 + x0e1 − x2e4 − x2e3 − e8 ∈ C3.

By removing them by means of the algorithm Minimalize, we get a minimal resolution
Ψ of the graded module M . Clearly something changes if the characteristic of the base
field K is 2. In that case the monomials:

x2e16 ∈ B2,
x5e7 ∈ B3

hold reductions to zero, i.e. minimal syzygies.



420 Roberto La Scala and Michael Stillman

5. Implementation

In this section we examine some of the choices that need to be made by an implementa-
tion and propose some optimizations. After discussing these choices and implementation
issues, we describe four variants of our algorithm: A0, A1, A1-H, and B, as well as two
other algorithms, M and MH. In the next section, we give examples of resolution compu-
tations using these algorithms and variants, to evaluate their relative usefulness, at least
for these examples.

With the notation of Section 4, let M = F0/I be an R-module, and let

Ξ : Fl
ξl−→ Fl−1

ξl−1−→ · · · ξ2−→ F1
ξ1−→ F0

be a Schreyer frame of the module M . For all i, we have defined:

Ei = the canonical basis of Fi;
Ei(e) = {ε ∈ Ei : ξi(ε) = s · e, for some power product s};
Bi = ξi(Ei), the S-polynomials to reduce in level i;

where e is any element in Ei−1.
It is also useful to define, for ε ∈ Ei, the total monomial and total power product of ε:
If ε ∈ E0, set total(ε) := ε and totalpp(ε) := 1. If i ≥ 1, and ε ∈ Ei, set total(ε) :=

s · total(e) and totalpp(ε) := s · totalpp(e), where ξi(ε) = s · e.

5.1. implementation issues

We discuss the main issues that an implementation must address.

Compute the Gröbner basis first, or on the fly?

If the input moduleM is not graded, then a Gröbner basis must be computed first. IfM
is graded, then one can either precompute the Gröbner basis of I, or compute it during the
computation of the resolution. The advantage to computing it along with the resolution
is that one does not duplicate any effort this way. The advantages of precomputing the
Gröbner basis include: the time required is small compared to the computation of the
entire resolution; the algorithm is much easier to describe and implement; and certain
other optimizations are made possible by having the entire frame available.

Algorithms A0, A1, and A1-H all precompute the Gröbner basis, while Algorithm B
computes it on the fly.

The choice of the induced term orders

Induced term orders is the single most important optimization to use for computing
resolutions. For the algorithms presented here, it is necessary for the correctness of the
algorithm. For other algorithms (e.g. M and MH presented below), it is essential for
obtaining a reasonable performance from the algorithm.

However, there is a lot of leeway in choosing an induced term order.
This choice determines the Schreyer frame, and so it is important to choose the order so

that the frame is as small as possible. During the algorithm for construction of the frame,
the frame (and therefore the term order) is determined by the choice of total orders on



Strategies for Computing Minimal Free Resolutions 421

Table 1.
L+ Increasing lexicographic order;
L- Decreasing lexicographic order;
DL+ Increasing degree, and in each degree, increasing lex order;
DL- Increasing degree, and in each degree, decreasing lex order;
RL+ Increasing lex order w.r.t. the reversed set of variables;
RL- Decreasing lex order w.r.t. the reversed set of variables;
DRL+ Increasing degree, and in each degree, increasing lex order

w.r.t. the reversed set of variables;
DRL- Increasing degree, and in each degree, decreasing lex order

w.r.t. the reversed set of variables;
O+ Ascending in the given term ordering (e.g. same as DRL-

for deg-rev-lex order);
O- Descending in the given term ordering.

the sets Ei(e), for each i and e (Lemma 3.5 and Proposition 3.8). For each i and e, if
{ε1, . . . , εr} = Ei(e), then we need to choose a total order on the set of monomials of S,
{t1, . . . , tr}, where ξ(εi) = ti · e. Note that these need not be term orders, and in fact,
could be arbitrarily chosen. Experience indicates that this would be a bad idea. Instead,
the orders that we consider for the {t1, . . . , tr} are summarized in Table 1.

Some of these are quite bad (O- for one) and are included only for comparison purposes.
Overall, RL- and DRL+ often outperform the other possible orders. Algorithms A0, A1,
A1-H presented below allow any one of these to be used for construction of the Schreyer
frame (and therefore also the term order). Algorithm B uses a somewhat different order,
described below (essentially DL-, if the monomial order on the ring S is the degree reverse
lexicographic order).

The order to process S-polynomials

In the algorithm Resolution the choice for the selection strategy is quite free, except
for some conditions which provide the minimality of the syzygies obtained by reductions
to zero. Among the classes of orderings compatible with these conditions we choose to
use SDLv (see Section 4), (slanted degree level by level), which is well-suited for partial
computations. It appears also that SDLv provides a better partial auto-reduction of the
resolution than DRLv.

In each (degree,level), the order to perform the reductions is irrelevant to the cor-
rectness of the algorithm. However, since a reduction to a non-zero element determines
a Gröbner basis element at the previous level, the choice may affect the sizes of these
elements, and consequently the running time of the algorithm.

Our experience indicates that using the same order as that for the Ei(e) is a good
choice. More precisely, for two elements e1, e2 ∈ Ei of the same degree, process e1 before
e2 if totalpp(e1) < totalpp(e2), where this order is one of the orders above (L+, L-, etc).
The tiebreaker order (if totalpp(e) = totalpp(f)) does not seem to be very important.

For our algorithms A0, A1, A1-H below, we process the S-polynomials using the same
order as that used to determine the induced term order. This is not necessary, but our
experience is that it is a good choice.



422 Roberto La Scala and Michael Stillman

The amount of auto-reduction

While performing a single reduction, we may use the Reduce, or the ReduceAll algo-
rithm. The first stops once the lead term cannot be simplified, and the latter stops once
no term can be simplified. This second approach often leads to partially “auto-reduced”
Gröbner bases. One could also continue, making each Gröbner basis totally auto-reduced.
In some examples, this gives a dramatic improvement, since the size of the basis will of-
ten be much smaller. The difficulties include the fact that minimalization is conceivably
much more time consuming, as is modifying the elements so far obtained.

We have not yet implemented minimalization for this full auto- reduction, but initial
time tests indicate that full auto-reduction would be quite useful in certain cases. We
will report on these techniques in a later paper.

Algorithms A0 and B use no auto-reduction (i.e. Reduce), while algorithms A1 and
A1-H use ReduceAll.

Reduction strategy

While performing a single reduction, if there are several possible divisors of the lead
term, which one should we choose? Our choice (in Algorithms A0,A1,A1-H) is to choose
the element which is least, in the monomial order. This is necessary if partial auto-
reduction is desired. In general, it is often the case that only one element of the basis
divides the given monomial (especially further back in the resolution). It would be nice
to use this fact in some optimization.

Representation of monomials and the induced monomial order

Given a monomial m = t · e ∈ Fi, how should we represent m, in order to allow for the
fast computation of the induced monomial order? We have chosen to represent m as the
pair (totalpp(m), e), instead of using the pair (t, e). This complicates general arithmetic,
but speeds up the comparison times. We have not done time comparisons between the
two approaches, but we expect that the added complications of using the first technique
leads to better performance of the algorithm.

Consider a heap based approach for performing reductions

If we are reducing a very large polynomial, and in each iteration, we add in small
polynomials, then we are essentially performing an insertion sort. If we use an analog
of a heap sort, reduction times are often drastically reduced. See Yan (1998) for details.
Our algorithm A1-H uses this approach.

Allow for partial computation

This is just a reminder to implementors that allowing for partial computation (e.g.
computing to a certain (slanted) degree, or a certain level) is essential, since one often
only cares about part of the resolution, e.g. the (slanted) linear part, or, in the case
R = S/I, because the entire resolution often cannot be computed since the resolution is
infinite.



Strategies for Computing Minimal Free Resolutions 423

Miscellaneous optimizations

Before performing the reductions of the S-polynomials, one may compute the resolution
of the monomial module F0/ in(I). The regularity of F0/I is no larger than the regularity
of this monomial module. Therefore one may avoid processing all S-polynomials in high
enough (slanted) degree. Furthermore, the computation of the resolution of F0/ in(I)
involves very little extra work.

Another optimization is that, since we compute a Gröbner basis anyway, it is quite
simple to check whether we have a complete intersection. If so, simply return the Koszul
complex (or, in the module case, the Eagon–Northcott complex) of the original genera-
tors. These optimizations are not used in the algorithms A0, A1, A1-H, B, M, MH, since
this decision rightly belongs in a higher level routine.

Finally, the Schreyer frame will sometimes be longer than the minimal resolution.
One can postpone computing certain (degree,level)’s (possibly forever, if we are only
computing up to a specific slanted degree). See Example 6.4 for a specific case of this.
This speeds up some partial computations quite a lot. (Our algorithms A0, A1, A1-H
use this optimization.)

5.2. Algorithms

We now summarize the algorithms and variants that we test in the next section.

• Algorithm A0. This is the algorithm Resolution described in this paper. First
we compute a Gröbner basis of I, and then its Schreyer frame. We then process
the elements in any way s.t. in a given degree, we process elements of higher level
first. For example, processing elements by increasing slanted degree is the method
we have implemented in Macaulay2. In this algorithm, the order in which pairs
are reduced in each (degree, level) is important. Heuristically, we have found that
using the same order as that used to compute the frame (up to computing degree
by degree) is best most of the time. The reduction of an element stops once a lead
term is obtained where the corresponding Gröbner basis element at the previous
level has not been computed. This tends to not give auto-reduced Gröbner bases,
but is very effective in many examples.
• Algorithm A1. This is a variant of algorithm A0, where we use the simplification

procedure ReduceAll.
• Algorithm A1-H. We have also implemented a heap based reduction algorithm

for algorithm A1. See Yan (1998) for a description of the technique (the author
calls them “geobuckets”). This often improves performance by a modest amount,
although the improvement for computing Gröbner bases in general can be dramatic.
• Algorithm B. This is essentially algorithm A0, with the following differences. The

Gröbner basis of I is computed “on the fly”, as is the Schreyer frame. This means
that the Gröbner basis computation of I is not duplicated. On the down side, it
means that the ordering we use to construct the frame must be essentially degree
by degree based, which we have found not to be optimal in many cases. Also, the
coding of this algorithm is sufficiently more complicated that it is much harder to
change the algorithm for testing purposes. Thus, we cannot change the frame order,
we do not have heap based reduction, and we do not have the ReduceAll routine
implemented. If we did, one could expect corresponding increases in performance.



424 Roberto La Scala and Michael Stillman

The term ordering used to compute the frame, as well as process elements, is DO+
that is increasing degree, and in each degree, ascending in the given term ordering.
• Algorithm M. Compute a minimal generating set of syzygies on the minimal

generating set of the input module I, and then compute a minimal generating set
of syzygies of those elements, and continue until done. At each step, use an induced
term ordering. Also, compute minimal generators while computing the syzygies, to
not duplicate effort.

This was the method used in the original Macaulay program, except that we
did not use induced orders for the term ordering. The savings obtained from using
induced orders is dramatic.
• Algorithm MH. Same as M, except compute Hilbert functions so that at each

level, degree, one knows exactly the sum of the numbers of Gröbner basis elements
and minimal syzygies at that step. The Hilbert functions take some time to com-
pute, but the savings can be dramatic. Both algorithms M and MH are described
in more detail in Capani et al. (1997).

6. Examples and Timings

For each example, we describe the ideal I ⊂ R, and give the minimal Betti numbers
and a table of statistics for computing the resolution of R/I. In the case that random
polynomials are required, the exact same ideal is used for each algorithm variant.

For each example, the table of statistics has the following information. The column
Frame represents the size of the Schreyer frame in terms of total number of monomials
w.r.t. the different choices of the ordering. Each Res is the size of the Schreyer resolution
(total number of monomials in all the Gröbner bases) for the algorithms corresponding
to the previous columns. For any algorithm we give the computing time w.r.t. to the
different frame orderings.

All the times are reported in seconds. The tests are performed with a NEC Versa
6200MX laptop, running Linux 2.0.29, 128 MB RAM, and a 166 MHz Pentium processor.
Times run on a Pentium Pro 200 Mhz Linux box tend to run roughly 2.5 to 3 times faster
than on this Pentium processor. The version of Macaulay2 that we use is 0.8.30. All of
the examples and benchmarks used here are included in the Macaulay2 distribution.

Example 6.1. [3 × 3 commuting matrices] I ⊂ R = Z32003[xi,j , yi,j , 1 ≤ i, j ≤ 3] is
the ideal generated by the entries of the 3× 3 matrix XY − Y X, where X = (xi,j) and
Y = (yi,j). This is an ideal minimally generated by eight quadrics in 18 variables.

Although this is a simple example, we have included it since it is one of our favorites,
and it illustrates some of the pitfalls in implementing resolution algorithms.

Note that, even in this simple case, there are orders for which the algorithm has
extremely poor performance. Using the orders O- or L- for computing the Schreyer frame
leads to enormous frames, and consequently to very large resolutions. From now one, we
will not include either of these two orders in our tests.

Note also that the partially auto-reduced resolution for each choice of order is larger
than the size of the resolution when computed using Algorithm A0. The timings are only
accurate up to about 10% or 15% (the previous time that the algorithm MH was run,
the time required was 1.1 s).

This is an example where full auto-reduction gives larger resolutions, in terms of num-
bers of monomials. Almost all of the current algorithms now compute this quite rapidly.



Strategies for Computing Minimal Free Resolutions 425

Order Frame A0 Res A1 A1-H Res
L+ 674 0.99 20658 1.13 1.01 23283
RL+ 742 1.1 22753 1.68 1.44 25475
DL+ 682 0.99 20755 1.14 1. 23320
DL- 774 1.4 24175 1.69 1.5 29275
DRL+ 742 1.1 22790 1.66 1.41 25112
DRL- 650 0.97 19214 1.13 0.97 20945
O+ 650 0.97 19214 1.09 0.96 20945
RL- 1208 1.71 38762 3.29 2.7 72571
L- 1722 1.93 66493 10.72 6.48 213865
O- 2806 2.21 93842 59.19 20.67 578646

Algorithm B time 1.3
Algorithm M time 1.2
Algorithm MH time 0.92

The minimal Betti numbers of R/I:

Total 1 8 33 60 61 32 5
0: 1 - - - - - -
1: - 8 2 - - - -
2: - - 31 32 3 - -
3: - - - 28 58 32 4
4: - - - - - - 1

Example 6.2. [Gr(2,7)] I ⊂ R = Z31991[x1, . . . , x21] is the ideal of the grassmannian
of 2-planes in affine 7-space, in its Plücker embedding. I is minimally generated by 35
quadrics. I is also generated by the 4 × 4 Pfaffians of a generic 7 × 7 skew symmetric
matrix.

Order Frame A0 Res A1 A1-H Res
L+ 9402 32.47 344575 26.44 22.22 284530
RL+ 9814 37.44 390317 25.88 22.15 297173
DL+ 9402 35.15 355338 29.16 23.34 303188
DL- 9814 38.04 411158 27.32 22.71 307689
DRL+ 9814 40.96 411438 27.55 22.4 307689
DRL- 9402 36.02 355292 29.09 23.2 303188
O+ 9402 33.83 355292 27.99 22.79 303188
RL- 9402 36.08 348923 25.87 21.32 278994

Algorithm B time 34.6
Algorithm M time 471.33
Algorithm MH time 316.19



426 Roberto La Scala and Michael Stillman

All of the orders shown have comparable performance relative to each other. The
best timings are obtained using auto-reduction, and heap based reduction. The times for
algorithms M, MH are roughly a factor of 15–20 times worse. Heuristically, if the minimal
Betti numbers are very small relative to the number of Gröbner basis elements at each
level, then the algorithms M and MH will outperform A0, A1, A1-H, and B. Likewise, if
the minimal Betti numbers are relatively large, the opposite is the case.

Total 1 35 140 385 819 1080 819 385 140 35 1
0: 1 - - - - - - - - - -
1: - 35 140 189 84 - - - - - -
2: - - - 196 735 1080 735 196 - - -
3: - - - - - - 84 189 140 35 -
4: - - - - - - - - - - 1

Example 6.3. [Gr(3,6)] I ⊂ R = Z31991[x1, . . . , x20] is the ideal of the grassmannian
of 3-planes in affine 6-space, in its Plücker embedding. I is minimally generated by 35
quadrics.

Order Frame A0 Res A1 A1-H Res
L+ 7770 93.98 581327 28.98 23.47 269890
RL+ 7770 70.78 467770 25.15 21.01 260080
DL+ 7770 103.66 622576 35.13 27.98 301043
DL- 7770 81.55 524364 29.86 24.6 282836
DRL+ 7770 81.53 524408 29.6 24.15 282836
DRL- 7770 104.23 622803 36.13 27.01 301043
O+ 7770 102.69 622803 34.34 27.45 301043
RL- 7770 96.18 577457 24.62 21.1 256319

Algorithm B time 80.25
Algorithm M time *
Algorithm MH time *

This is the first algorithm that we are aware of that is able to compute this resolution,
and in a reasonable time as well! Notice that the specific choice of order (of these eight
orders, that is) does not affect the size of the Schreyer frame, and in fact, does not change
the timings very much either.

What does make a difference is the use of partial auto-reduction (Algorithm A1). Notice
that the heap based algorithm gives a modest performance boost to the A1 algorithm.
Algorithms M, MH never finished on these examples (they ran out of memory, at about
128 MB).

It is very intriguing that Gr(3, 6) and Gr(2, 7) have the same Hilbert series. We would
very much like to know an explanation of this fact.

The minimal Betti numbers:



Strategies for Computing Minimal Free Resolutions 427

Total 1 35 140 301 735 1080 735 301 140 35 1
0: 1 - - - - - - - - - -
1: - 35 140 189 - - - - - - -
2: - - - 112 735 1080 735 112 - - -
3: - - - - - - - 189 140 35 -
4: - - - - - - - - - - 1

Example 6.4. [Linear section of tangent developable of rational normal
curve of degree 13] For each integer g ≥ 6, let tan(g) be the ideal in R = Z101[x1, . . .,
xg−3] generated by the following quadrics:

(i+ j − 1)xi−2xj−2 − (ij)xi+j−3xg−3

for 2 ≤ i ≤ j ≤ g − 2, where i+ j ≤ g − 1, and the elements:

(2g − i− j − 1)xi−2xj−2 − (g − i)(g − j)xi+j−g−1xg−3

where 2 ≤ i ≤ j ≤ g − 2, and i+ j > g − 1.
These examples arise from the tangent developable of a rational normal curve of degree

g by taking special hyperplane sections. In practice, we are only interested in the 2-linear
strand of the resolution, as the rest of the graded Betti numbers can be deduced from
these.

The timings given are for computing the 1-linear part of the resolution of R/ tan(13).

Order Frame A0 Res A1 A1-H Res
DL- 20482 65.81 691230 69.59 72.84 678542
DRL+ 20482 65.73 691230 70.2 73.62 678542

Algorithm B time 95.52
Algorithm M time 554.62
Algorithm MH time 597.25

The Betti numbers of the linear strand:

Total 1 55 320 891 1408 1155
0: 1 - - - - -
1: - 55 320 891 1408 1155

The size of the frame in either case is given by:

Total 1 66 440 1485 3168 4620 4752 3465 1760 594 120 11
0: 1 - - - - - - - - - - -
1: - 55 330 990 1848 2310 1980 1155 440 99 10 -
2: - 10 100 450 1200 2100 2520 2100 1200 450 100 10
3: - 1 10 45 120 210 252 210 120 45 10 1

After processing the 2310 S-polynomials at level 5 in slanted degree 1, obtaining 1155



428 Roberto La Scala and Michael Stillman

minimal syzygies, the 1980 S-polynomials at level 6 in slanted degree 1 all give non-
minimal syzygies. Thus the remaining S-polynomials in slanted degree 1 need never be
reduced since we are only interested in the linear strand.

Example 6.5. [Gor(8,3)] Given a homogeneous polynomial f of degree d in R =
Z101[x1, . . . , xn], define the ideal:

If = {g ∈ R : g(∂/∂x1, . . . , ∂/∂xn) · f = 0}.
For a random f of degree d, in R denote the ideal If by gor(n, d).

The timings given are for computing the graded Betti numbers of R/gor(8, 3).

Order Frame A0 Res A1 A1-H Res
L+ 1794 407.94 382921 396.69 376.43 406677
RL+ 1794 591.22 413960 592.14 544.9 418950
DL+ 1794 684.32 475749 653.25 588.63 472475
DL- 1794 590.86 413960 589.8 502.71 418950
DRL+ 1794 612.36 413960 596.46 571.62 418950
DRL- 1794 695.06 475749 660.24 599.89 472475
O+ 1794 685.1 475749 666.18 578.55 472475
RL- 1794 396.66 382921 401.85 370.75 406677

Algorithm B time 617.13
Algorithm M time *
Algorithm MH time *

The issue here is auto-reduction. Full auto-reduction would be the best, compared to
these other algorithms, but we do not yet have a complete implementation. Algorithms
M, MH never finished on these examples.

The minimal Betti numbers:

Total 1 28 105 162 168 162 105 28 1
0: 1 - - - - - - - -
1: - 28 105 162 84 - - - -
2: - - - - 84 162 105 28 -
3: - - - - - - - - 1

Example 6.6. [Jac(4,5)] Given a random homogeneous polynomial f of degree 4 in
R = Z101[x1, . . . , x5], let jac(f) be the ideal in R = R/f generated by the five partial
derivatives of f .

The timings given are for computing the Betti numbers of R/jac(f) through F4.

Order Frame A0 Res A1 A1-H Res
DL- 1032 1374.95 561913 1284.13 800.12 574837
DRL+ 1032 1541.7 561913 1550.02 980.57 574837
Algorithm B time 1325.8
Algorithm M time 9.03



Strategies for Computing Minimal Free Resolutions 429

The Gröbner bases of the syzygy modules stabilize (in each case) to 203 elements each,
while the minimal Betti numbers stabilize at 8 each. This is typically the kind of situation
for which algorithms M, MH are much better. Such is the case here. Partial auto-reduction
makes little difference, but the heap reduction algorithm A1-H gives better performance,
but comes nowhere near the small amount of time that Algorithm M requires.

The minimal Betti numbers (up through level 4):

Total 1 4 7 8 8
0: 1 - - - -
1: - - - - -
2: - - - - -
3: - 4 1 - -
4: - - - - -
5: - - - - -
6: - - 6 4 1
7: - - - - -
8: - - - - -
9: - - - 4 6
10: - - - - -
11: - - - - -
12: - - - - 1

6.1. summaries of timings

Summaries of the timings of the above examples, and the Cocoa (Capani et al., 1997)
and Singular (Grassmann et al., 1995) examples is given in Table 2. Some examples
from these two sets are missing, since we were unable to duplicate the given ideals.
Particularly in the Singular group of examples, it is possible that some of these ideals are
given differently from those in Grassmann et al. (1995). For the exact examples that we
have run, please check the Macaulay2 distribution. There is one exception to the reason
for omission. The homogeneous cyclic 6 roots does not finish in reasonable time on the
algorithms A0, A1, A1-H. We were also unable to duplicate similar running times to those
in Capani et al. (1997) for the M, MH algorithms for the cocoa2 and the homogeneous
cyclic 6 roots examples.

Most of the examples here have very high running times in Macaulay classic, since the
monomial orders used there are not well suited for computing resolutions (they are not
induced term orders). We have not included timings for the systems Singular and Cocoa,
since we do not have access to their latest code. Hopefully the authors of these systems
will publish their timings for all of these examples as well.

No one choice of orders gives the best performance in every case, but a good choice
in almost all of these examples would be to use DRL+. For most of the examples of
any complexity, using partial auto-reduction (Algorithm A1) is far superior to using
Algorithm A0, and using the heap based reduction, A1-H is generally best. What appears
to be true a large part of the time is that the smaller the frame, then the faster the
algorithm, for each of algorithms A0 and A1.



430 Roberto La Scala and Michael Stillman

Table 2.
Best Example MH A0[DRL+] A1-H[DRL+] B
B cocoa1 1.11 0.43 0.45 0.28
A1 cocoa2 922.42 19.63 7.37 22.14
A1,B,A0 cocoa3 1.81 1.02 0.98 0.99
MH cocoa4 0.2 0.4 0.35 0.64
A1 cocoa5 5.56 3.34 2.96 3.09
MH,B cocoa6 1.00 1.22 1.21 1.1
B cocoa8 3.42 1.28 1.27 1.07

A1 gr27 316.19 40.96 22.71 34.6
A1 gr36 * 81.53 24.15 80.25
A1 gor83 * 612.36 571.62 617.13
A1 tandev13 597.25 65.73 73.62 95.52
MH jac45 9.03 1541.7 980.57 1325.8

A0 singular3 2.71 1.16 1.4 0.5
B singular4 19.74 8.74 9.8 4.84
B singular5 5.34 1.21 1.8 0.96
MH singular7 1.26 3.19 2.8 16.15
B singular8 1.02 0.26 0.22 0.16
MH singular9 16.12 39.68 33.35 38.3
MH singular10 0.42 1.42 1.39 1.8
MH singular11 44.66 245.02 245.69 281.93
A1 singular12 35.04 6.29 4.63 6.79
MH singular13 5.87 13.53 13.41 3.92
A1 singular14 0.98 0.27 0.24 0.41
B,A01 singular19 3.2 0.64 0.65 0.61
B singular20 126.77 101.3 98.52 94.15

Similarly, no one choice of algorithm always gives the best performance. However, we
were able to obtain resolutions (e.g. Gr(3, 6)) that we have been unable to obtain using
any other algorithm or theoretical result.

References

——Capani, A., De Dominicis, G., Niesi, G., Robbiano, L. (1997). Computing minimal finite free resolutions,
J. Pure Appl. Algebra, 117–118, 105–117.

——Grassmann, H., Greuel, G.M., Martin, B., Neumann, W., Pfister, G., Pohl, W., Schönemann, H., Siebert,
T. (1995). Standard bases, syzygies, and their implementation in SINGULAR, Preprint 251, Uni-
versity of Kaiserslautern.

——Grayson, D., Stillman, M. (1993–1998). Macaulay2: a system for computation in algebraic geometry and
commutative algebra, http://www.math.uiuc.edu/Macaulay2, computer software.

——La Scala, R. (1994). An algorithm for complexes, Proceedings of ISSAC 94, pp. 264–268. Oxford, ACM
Press.

——La Scala, R. (1996). Un approccio computazionale alle risoluzioni libere minimali, PhD Thesis, University
of Bari.

——Möller, H. M., Mora, T., Traverso, C. (1992). Gröbner bases computation using syzygies, Proceedings of
ISSAC 92, pp. 320–328, Oxford, ACM Press.

——Reisner, G. (1976). Cohen–Macaulay quotients of polynomial rings. Adv. Math., 21, 30–49.
——Richman, F. (1974). Constructive aspects of noetherian rings, Proc. Amer. Math. Soc., 44, 436–441.



Strategies for Computing Minimal Free Resolutions 431

——Schreyer, F.O. (1980). Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen Divi-
sionssatz, Diplomarbeit, Hamburg.

——Siebert, T. (1996). On strategies and implementations for computations of free resolutions, Preprint 8,
University of Kaiserslautern.

——Spear, D. (1977). A constructive approach to commutative ring theory, Proceedings of 1977 MACSYMA
Users’ Conference, pp. 369–376. NASA CP-2012.

——Yan, T. (1998). The geobucket data structure for polynomials, J. Symb. Comput., 25, 285–293.

Originally received 25 July 1997
Accepted 22 October 1997


	1. Introduction
	2. Preliminaries
	3. The Schreyer Resolution and Its Frame
	4. The Algorithms
	5. Implementation
	6. Examples and Timings
	References

