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Abstract. The objective here is to underscore recent usage of the algorithmic theory of Gröbner bases in

multidimensional systems since that possibility was highlighted about fifteen years back. The main contribution

here focuses on the constructive aspects of the solution, known to exist, of the two-band multidimensional IIR

perfect reconstruction problem using Gröbner bases. Other recent research results on the subject with future

prospects are also briefly cited.
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1. Introduction

The topic of Gröbner bases provides an algorithmic method for solving a number of

computability and decidability problems concerning the ideal; for example, given a

multivariate polynomial f (z) and an ideal I specified by a finite number of generators,

one can perform computations in the original polynomial coefficient field to decide

constructively whether or not f (z) belongs to I. Many computational problems that are

extremely difficult for polynomial ideals generated by arbitrary bases are very easy for

polynomial ideals generated by Gröbner bases. One instance of particular interest in

multidimensional systems theory is a formula expressing the greatest common divisor of a

set of polynomials of several variables in terms of a Gröbner basis of the ideal generated

by them [1].

The appropriateness of Gröbner bases over polynomial rings and modules for tackling

problems in multidimensional systems, substantiated in 1985 by J. P. Guiver and N. K.

Bose [2], continues to be exploited in the development of computational methods for

output feedback stabilizability and stabilization of 2-D systems [3], matrix-fraction

descriptions of multidimensional systems (when such descriptions exist) with tests for
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various primeness or coprimeness issues [4], construction of strong stabilizers of multi-

dimensional systems and related problems [5]. The current status of the extent to which

multidimensional multiband filter banks incorporating constraints of perfect reconstruction

and linear phase can actually be constructed using algorithmic algebra is provided in [6].

Potential applications of interest involves the analysis, processing, coding and compres-

sion for transmission and reconstruction of multidimensional multimedia signals over

bandwidth constrained communication channels. Scopes for further applications of the

developed theory of multivariate polynomial matrix factorization and the constructive

techniques in the theory of Gröbner bases over polynomial rings and modules, when the

coefficients belong to a finite field, include multidimensional convolutional code con-

struction [7] with intriguing possibilities for influencing compression and transmission of

image, video, and multimedia signals over bandlimited channels, wired as well as wireless.

The two-band multidimensional infinite impulse response (IIR) perfect reconstruction

filter bank problem by using the constructive theory of Gröbner bases is considered in the

next Section. Subsequently, a recent result on the use of Gröbner bases in the classical

problems of multidimensional filter stability test and stability margin determination is

highlighted. This paper concludes with an open research problem of interest to multi-

dimensional system theorists, on the concept of determinantal left and right joint

factorization introduced in this paper.

2. Perfect Reconstruction n-D IIR Filter Bank Design

The problem of multidimensional (n-D), perfect reconstruction (PR), FIR filter bank

design using Gröbner bases has been discussed in detail in [6]. In this section, its

counterpart, the n-D PR, IIR filter bank design problem is tackled by using Gröbner bases.

The final design method in this section is universally applicable to all sampling schemes

(separable as well as nonseparable).

Let S be the set of all (structurally) stable proper rational functions (in reduced form i.e.

relatively prime numerator and denominator polynomials) in n variables z1, z2,. . ., zn,
having real coefficients. Structural stability requires that the denominator polynomial of

the rational function be devoid of zeros in the closed unit polydisc Ū n. Therefore,

structural stability implies bounded-input bounded-output (BIBO) stability but not vice

versa [8]. This set S is known to form a commutative ring [9].

Definition 1. Two or more elements of S are said to be zero-coprime, if they are devoid of

any common zero in the closed unit polydisc Ū n.

Definition 2. A minimum-phase rational function is a stable rational function with a

stable inverse.

Definition 3. A square matrix with elements in S is said to be unimodular if its

determinant is a minimum-phase rational function. The determinant of a unimodular

matrix is a unit of the ring S.
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Similar to the FIR case, an m-band n-D PR IIR analysis (synthesis) filter bank can be

described by an m�m polyphase matrix whose elements belong to the ring S. For a pair of
synthesis and analysis filter banks to satisfy a perfect reconstruction property, the

polyphase matrix associated with the synthesis and thus, also analysis filter banks must

be unimodular, or in more general algebraic terms, their determinants must be units in the

ring. In the context of PR subband coding, the framework of IIR filter bank design then

reduces to the construction of a polyphase matrix, associated with the analysis filter bank,

whose determinant is a minimum-phase rational function.

Consider the two-band, two-dimensional case when the sampling matrix M is of the

quincunx type.

M ¼
1 1

1 �1

2
4

3
5

The reason for considering the quincunx case is because it is the simplest nonseparable

multidimensional sampling structure. Since the magnitude of the determinant ofM is 2, the

two-channel filter bank is critically sampled.

Let H0(z1, z2) be a stable proper transfer function of one of the two filters in the

analysis filter bank, which can be designed by using various 2-D IIR filter design

techniques such as Prony’s method [10]. By applying the polyphase decomposition

[9], [11, pp. 577–589], this prototype filter can be expressed in the polyphase form,

using the technique demonstrated in Example 1 below for the needed clarification,

as

H0ðz1; z2Þ ¼ H00ðz1z2; z1z�1
2 Þ þ z1H01ðz1z2; z1z�1

2 Þ; ð1Þ

where H00(z1, z2) and H01(z1, z2) are the polyphase components of H0(z1, z2) with respect to

the quincunx sampling raster. Assume that the necessarily stable polyphase components

H00(z1, z2) and H01(z1, z2) are also zero-coprime on S i.e. by Definition 1 are devoid of

zeros in the closed unit bidisc Ū2. This assumption is imposed so that the existence of the

other filter H1(z1, z2) is guaranteed. It is necessary to point out that choosing the prototype

filter H0(z1, z2) to be minimum-phase is not enough to ensure the satisfaction of the above

assumption.

Example 1. Polyphase decomposition of 2-D IIR filter with respect to the quincunx

sampling raster.

Consider a 2-D lowpass filter whose transfer function is given by

H0ðz1; z2Þ ¼
4
5
þ 2

5
z1 þ 1

2
z2 þ 1

8
z1z2

1þ 1
5
z1 þ 1

3
z2 þ 1

4
z1z2

: ð2Þ
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Multiply the right-hand side of Eq. (2) by the identity,

1þ 1
4
z1z2

� �
� 1

5
z1 þ 1

3
z2

� �
1þ 1

4
z1z2

� �
� 1

5
z1 þ 1

3
z2

� � ;

involving the conjugate factor of the denominator polynomial to obtain,

H0ðz1; z2Þ ¼
4
5
þ 6

25
z1 þ 7

30
z2 þ 11

120
z1z2 � 2

25
z21 þ 3

40
z21z2 � 1

6
z22 þ 1

12
z1z

2
2 þ 1

32
z21z

2
2

1þ 11
30
z1z2 � 1

25
z21 � 1

9
z22 þ 1

16
z21z

2
2

:

ð3Þ

Observe that each monomial in the denominator of H0(z1, z2) in Eq. (3) can be expressed

as (z1z2)
a(z1z2

-1)b, where a and b are integers. Similarly, each monomial in the numerator

can be expressed as either (z1z2)
a(z1z2

-1)b, or z1(z1z2)
a(z1z2

-1)b, where a and b are again

integers. Then, by inspection,

H00ðz1; z2Þ ¼
4
5
þ 11

120
z1 � 2

25
z1z2 � 1

6
z1z

�1
2 þ 1

32
z21

1þ 11
30
z1 � 1

25
z1z2 � 1

9
z1z

�1
2 þ 1

16
z21

H01ðz1; z2Þ ¼
6
25
þ 7

30
z�1
2 þ 3

40
z1 þ 1

12
z1z

�1
2

1þ 11
30
z1 � 1

25
z1z2 � 1

9
z1z

�1
2 þ 1

16
z21

:

It can be verified that

H0ðz1; z2Þ ¼ H00ðz1z2; z1z�1
2 Þ þ z1H01ðz1z2; z1z�1

2 Þ:

The goal here is to determine the other filter H1(z1, z2) such that its polyphase

components H10(z1, z2) and H11(z1, z2) along with those of H0(z1, z2) can be used to form

a unimodular matrix

Hðz1; z2Þ ¼
H00ðz1; z2Þ H01ðz1; z2Þ

H10ðz1; z2Þ H11ðz1; z2Þ

2
4

3
5:

Since the determinant of a unimodular matrix whose elements are in S, must be a

minimum-phase rational function, therefore

H00ðz1; z2ÞH11ðz1; z2Þ � H01ðz1; z2ÞH10ðz1; z2Þ ¼
nðz1; z2Þ
rðz1; z2Þ

; ð4Þ

where both polynomials n(z1, z2) and r(z1, z2) have no zeros in the closed unit bidisc.
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Let the components of the first row of the polyphase matrix H(z1, z2) be H0iðz1; z2Þ
=

n0iðz1; z2Þ
d0iðz1; z2Þ, i = 0, 1. Eq. (4) can then be expressed as

n00ðz1; z2Þ
d00ðz1; z2Þ

H11ðz1; z2Þ �
n01ðz1; z2Þ
d01ðz1; z2Þ

H10ðz1; z2Þ ¼
nðz1; z2Þ
rðz1; z2Þ

; ð5Þ

Since n00(z1, z2) and n01(z1, z2) are zero-coprime in Ū2 and d00(z1, z2), d01(z1, z2) are each

devoid of zero in Ū2, consider the possibility of finding a polynomial h(z1, z2) that

vanishes when n00(z1, z2)d01(z1, z2) and n01(z1, z2)d00(z1, z2) do. Since the number of

common zeros of the relatively prime polynomials n00(z1, z2)d01(z1, z2) and

n01(z1, z2)d00(z1, z2) is necessarily finite, the desired h(z1, z2) can be constructed by the

procedure of J.P. Guiver and N.K. Bose [2, pp. 64–66]. It is noted that h(z1, z2) can be

constructed without finding all the common zeros of polynomials n00(z1, z2)d01(z1, z2) and

n01(z1, z2)d00(z1, z2) [3]. By Hilbert’s Nullstellensatz, it follows that there exists an integer

N and polynomials p(z1, z2) and q(z1, z2) such that Eq. (6) below holds.

pðz1; z2Þn00ðz1; z2Þd01ðz1; z2Þ þ qðz1; z2Þn01ðz1; z2Þd00ðz1; z2Þ ¼ hN ðz1; z2Þ: ð6Þ

The polynomials p(z1, z2) and q(z1, z2) can then be constructed by applying B.

Buchberger’s algorithm for construction of Gröbner basis. First, the reduced Gröbner

basis G of the ideal generated by n00(z1, z2)d01(z1, z2) and n01(z1, z2)d00(z1, z2) is

constructed (see [13, pp. 53–57] for an illustrative example). Then, the normal form

[13, pp. 57] of the polynomial hi(z1, z2) for i = 1,2,. . . (h(z1, z2) has already been

computed as in [2, pp. 64–66]) is computed with respect to G until the first time this

normal form is zero. The least value of the power i in hi(z1, z2) for which the normal

form is zero may be set to N in Eq. (6), and p(z1, z2), q(z1, z2) in Eq. (6) are obtained

by retracing the steps in the algorithm implementing the ideal membership problem. It

is noted that the standard Rabinowitsch’s trick to deal with each inequation by

introducing a slack variable may also be applied to calculate N as explicitly pointed

out in [3, pp. 48–49] by using Gröbner basis and used in several other contexts [8, pp.

88–90], besides optimization theory, that require conversion of inequalities to

equalities.

Divide both sides of Eq. (6) by m(z1, z2)d00(z1, z2)d01(z1, z2) where m(z1, z2) is an

arbitrary polynomial that does not contain any zero in the closed unit bidisc to obtain,

pðz1; z2Þ
mðz1; z2Þ

n00ðz1; z2Þ
d00ðz1; z2Þ

þ qðz1; z2Þ
mðz1; z2Þ

n01ðz1; z2Þ
d01ðz1; z2Þ

¼ hN ðz1; z2Þ
mðz1; z2Þd00ðz1; z2Þd01ðz1; z2Þ

; ð7Þ

Comparing Eq. (5) and Eq. (7) yields

H11ðz1; z2Þ ¼
pðz1; z2Þ
mðz1; z2Þ

; H10ðz1; z2Þ ¼ � qðz1; z2Þ
mðz1; z2Þ

ð8Þ

Since both hN(z1, z2) and m(z1, z2)d00(z1, z2)d01(z1, z2) do not have any zero in the closed
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unit bidisc, the matrix H(z1, z2) in Eq. (1), formed by choosing H10(z1, z2) and H11(z1, z2)

as in Eq. (8), is then unimodular. If desired, H1(z1, z2) can be designed to be FIR by

choosing m(z1, z2) to be a nonzero constant.

Consequently, the corresponding synthesis polyphase matrix F(z1, z2) can be computed

by

Fðz1; z2Þ ¼ ½Hðz1; z2Þ	�1:

Comment: The fact that the number of common zeros of two relatively prime bivariate

polynomials is finite plays a decisive role in the construction of h(z1, z2) in Eq. (6). This

procedure to do this, described in [2, pp. 64–66], generalizes, in principle, to the n-variate

(n > 2) case provided the number of common zeros of the two relatively prime n-variate

polynomials is finite. If the number of common zeros is finite, a constructive algorithm to

construct h(z1, z2, . . . , zn) has been supplied in [21]. When this is not the case, a

constructive procedure for obtaining the n-variate counterpart of the right-hand side of

Eq. (6) has not, yet, been advanced in general. Some promising special cases, however,

can be tackled using Gröbner basis. One of the approaches involves the construction of a

Gröbner basis of the ideal generated by the two generic polynomials followed by a search

for an element of the Gröbner basis for absence of zeros in Ūn. If such an element is found,

then it can be set to h(z1, z2, . . . , zn) with N =1. Other approaches are also pursued by

researchers (Lin/Lam/Galkowski/Xu).

Adetailed algorithm for constructing the class of unimodularmatrixH(z1, z2, . . . , zn) =H(z)

with a prespecified first row is then summarized next. Step 2 of the algorithm is dependent

on the comment above.

2.1. Algorithm for Designing a Two-Band n-D PR IIR Filter Bank


Step 1. Given two zero-coprime elements to form the first row of the analysis

polyphase matrix H00ðzÞ ¼ n00ðzÞ
d00ðzÞ and H01ðzÞ ¼ n01ðzÞ

d01ðzÞ, with respect to a suitable ordering,

compute a Gröbner basis of an ideal generated by the polynomials n00(z)d01(z) and

n01(z)d00(z), by using Buchberger’s algorithm [13]. Let the Gröbner basis be

G = {g1(z), g2(z), . . . , gs(z)}. Without loss of generality, H00(z) and H01(z) are assumed

to be devoid of common factor in their denominator polynomials as well as in their

numerator polynomials.
Step 2. The existence of h(z) is guaranteed because the elements of G are devoid of

common zero in Ūn [14]. Construct a polynomial h(z) that is devoid of zeros in Ū n and

which vanishes when n00(z1, z2)d01(z1, z2) and n01(z1, z2)d00(z1, z2) do.
Step 3. First find N by reducing hi(z), i = 1,2, . . .with respect to G until the normal

form with respect to G is zero for the first time. Then by retracing the steps in

Buchberger’s algorithm [13, pp. 53–57], find the polynomials p(z) and q(z) such

that

pðzÞn00ðzÞd01ðzÞ þ qðzÞn01ðzÞd00ðzÞ ¼ hN ðzÞ
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Step 4. Set

H11ðzÞ ¼
pðzÞ
mðzÞ ; H10ðzÞ ¼

qðzÞ
mðzÞ ; ð9Þ

where m(z) is an arbitrary polynomial that have no zeros in the closed unit polydisc.

3. Stability of Multidimensional Systems

Consider a multidimensional system whose input-output relationship is described by a

rational transfer function

Hðz1; z2; . . . ; znÞ ¼
Nðz1; z2; . . . ; znÞ
Dðz1; z2; . . . ; znÞ

;

where the multivariate polynomials N(z1, z2, . . . , zn) and D(z1, z2, . . . , zn) are assumed to be

mutually prime. The multidimensional system will be called robustly stable if and only if

D(z1, z2, . . . ,zn) is zero-free on the unit polydisc, Ūn = {(z1, z2, . . . ,zn)|jz1j�1,jz2j�1,

. . . ,jznj�1}.

Recently, Curtin and Saba [15] applied Gröbner basis technique for determining robust

stability as well as stability margin of a linear shifted-invariant multidimensional system.

By using Buchberger’s algorithm to generate a Gröbner basis with respect to lexicograph-

ical ordering, the triangular system of polynomial equations formed from the elements of

the reduced Gröbner basis are solved recursively by back-substitution [13],[16]. Given

D(z1, z2, . . . , zn), they compute the reduced Gröbner basis with respect to lexicographical

ordering, z1>z2> . . .> zn>r, of the ideal generated by the polynomials in z1, z2, . . . , zn and
r = |z1| = |z2| = . . .= |zn| that result following multiplication of the left-hand sides of the

system of equations

Dðz1; z2; . . . znÞ ¼ 0;

Dðz1; z2; . . . ; znÞ ¼ 0;

z1
@D

@z1
zj
@D

@zj

� �
� z1

@D

@z1

� �
zj
@D

@zj
¼ 0; for j ¼ 2; 3; . . . ; n;

by appropriate monomials. The procedure is nicely illustrated on the polynomial

D(z1, z2, z3, z4) = 5+z2+z4+z1z4+z3z4 (devoid of zeros on Ū4 because the magnitude of one

coefficient is larger than the sum of the magnitudes of the remaining coefficients). To

facilitate reading, it is pointed out that the first polynomial of the Gröbner basis should be

r6ðz4 þ 5Þ2ð2r � 5Þð2r þ 5Þð2r2 þ 2r � 5Þð2r2 � 2r � 5Þð2r2 � 5Þ

�ð2r2 þ 5Þð2r2 � 2r þ 5Þð2r2 þ 2r þ 5Þ:

GRÖBNER BASES FOR PROBLEM SOLVING IN MULTIDIMENSIONAL SYSTEMS 371



The missing factor (2r2+2r�5) in [15, pp. 308] gives the least positive root r ¼ r0 ¼
ffiffiffiffi
11

p
�1

2

of the preceding polynomial. All other calculation relevant to the example in [15] were

verified to be correct using the software package SINGULAR [17] instead of

Mathematica.

4. Determinantal Factorization and Related Issues

With the technical background and recent developments summarized above, the research

problem proposed is described below in sufficient detail so that the theoretical

challenges are simultaneously manifest with the approaches, background, tools for

solution and the present as well as emerging applications in multidimensional systems

theory that reap the benefits from such solutions. Let K[z]=K[z1, . . . , zn] denote the set of

polynomials in n variables z1, . . . , zn with coefficients in a specified field K. First the

well-known determinantal factorization (left or right) of a multivariate polynomial matrix

is defined, and then the concept of determinantal left and right joint factorization is

formally introduced.

4.1. Determinantal Factorization

Let, for brevity, D (like K[z1, z2, . . . , zn]) be a Noetherian unique factorization domain

(UFD). Consider a p�q matrix F2Dp�q, where p�q ( p�q). Let g2D be a common

divisor of the p�p minors ( q�q minors) of F. A left (right) determinantal factorization

ofFwithrespecttogisF =GF1(F = F1G),whereG2Dp�p,F12Dp�q,anddetG = g(G2Dq�q,

(G2Dq�q, F12Dp�q, and det G=g).

When D=K[z1,z2], determinantal factorization is always possible for any matrix whose

elements are in K[z1, z2] and, of course, in this case factor primeness implies minor

primeness [12]. Tests for zero primeness and minor primeness can be implemented by

algorithm for construction of Gröbner basis [4] and the greatest common divisor may also

be extracted in the determinantal factorization domain (DFD) K[z1, z2] [4]. The fact that

K[z1, z2] is DFD is of fundamental importance in analysis and synthesis problems of 2-D

systems. It is now well-known that D=K[z1, z2, . . . , zn] is not a DFD, when n�3, because

here factor primeness of a matrix does not, necessarily, implies minor primeness. The joint

left and right factorization, considered next, may be possible when left or right

determinantal factorization are not possible.

4.2. Determinantal Left and Right Joint Factorization

Let D be a Noetherian UFD that is not a DFD. Consider F2Dp�q, where p�q. Suppose

that the greatest common divisor of the p�p minors of F is not irreducible. Let g12D
and g22D be two common divisors of the p�p minors of F. A determinantal left and

right factorization of F with respect to g1 and g2 is F =G1F1G2 where G12Dp�p,

F2Dp�q, G22Dq�q, det G1 = g1, and det G2 = g2. The case when p�q can be similarly

defined.
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The determinantal left and right joint factorization problem explained below is not

only of mathematical interest but, conceivably, could be useful in multidimensional

system analysis and synthesis. For example, the resulting decomposition may

facilitate the cascade synthesis of a multi-input multi-output (MIMO or multivariable)

multivariate polynomial transfer matrix, where a block realizing a particular matrix

may be associated with a particular property not readily discernible in the composite

matrix.

It is possible that a multivariate polynomial matrix with elements in K[z] = K[z1, . . . , zn]
might not yield a left or a right determinantal factorization but a left and right joint

factorization may be possible as illustrated next. Consider the 4�5 matrix A shown below

whose elements belong to the ring K[z] = K [z1, z2, z3]. This particular matrix over a binary

field was, possibly, first used by Paul Wiener in his study of multidimensional convolu-

tional codes.

A ¼

z1 z2 z3 0 z2

z2 z1 z3 z1 0

z1 z2 0 z2 z3

z1 z1 0 0 z1 þ z3

2
666666664

3
777777775

It is easily shown by routine manipulation that the 5 reduced minors of the 5 major

determinants of A have a common zero at (0,0,0). From a recently proved result [18],

a necessary and sufficient condition for a determinantal (left) factorization to hold in

the special case of a m�(m+1) matrix (i.e. the number of columns exceed the

number of rows by exactly one) is that its reduced minors be zero coprime.

Therefore, the above matrix A does not have a determinantal (left) factorization. A

joint left and right factorization is exhibited below both when K is the finite binary

field Z2 and also when it is the field of real numbers <. The computations are easily

implemented by using the computer algebra system SINGULAR which is suitable for

calculating Gröbner bases of ideals in K[z1, z2, . . . , zn] as well as modules whose

elements belong to K[z1, z2, . . . , zn].

The factorizations in fields Z2 and < are given below.

A ¼

z1 0 0 1

z2 1 1 1

z1 1 0 1

z1 0 1 1

2
666666664

3
777777775

1 0 0 1 1

0 0 1 z2 z2 þ z3

0 z1 þ z2 1 0 z1 þ z2 þ z3

0 z2 1 z1 z1 þ z2

2
666666664

3
777777775

1 0 0 0 0

0 1 0 0 0

0 0 z3 0 0

0 0 0 1 0

0 0 0 0 1

2
6666666666664

3
7777777777775
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A ¼

z1 � z2 1 �1 1

0 1 0 0

0 0 1 0

0 0 0 1

2
666666664

3
777777775

1 �2 0 �1 �1

z2 z1 1 z1 0

z1 z2 0 z2 z3

z1 z1 0 0 z1 þ z3

2
666666664

3
777777775

1 0 0 0 0

0 1 0 0 0

0 0 z3 0 0

0 0 0 1 0

0 0 0 0 1

2
6666666666664

3
7777777777775

The problem is to investigate necessary and sufficient conditions for a left and right joint

multivariate polynomial factorization to hold and explore algorithmic approaches to

construct such a factorization. The case when the specified matrix is not of full normal

rank needs to be addressed subsequently. The limitations of Gröbner basis theory for the

purpose need to be fully delineated.

5. Summary

The multidimensional filter bank design problem considered in [6] is limited to finite

impulse response (FIR) filters. In many applications, infinite impulse response (IIR) filters

are more desirable because of their computational efficiency and lower storage require-

ment. Satisfying the perfect reconstruction (PR) condition is equivalent to having the

analysis and synthesis filter banks that are unimodular or units in the ring. For this IIR

case, the units of the ring are matrices whose determinants are minimum phase transfer

functions. The problem of designing a PR IIR filter bank is then reduced to the finding of a

polyphase matrix H(z), associated with the analysis filter bank, that is a stable proper

rational matrix with minimum phase determinant. The polyphase matrix F(z), associated

with the synthesis filter bank, can be obtained by directly computing the inverse of the

polyphase matrix of the analysis filter bank. Since the determinant of the polyphase matrix

H(z) is minimum phase, the synthesis filter bank associated with the polyphase matrix F(z)

is guaranteed to be stable. If one of the filters in the analysis IIR filter bank is specified and

its polyphase components are devoid of common zeros, then similar to the FIR case, it is

always possible to obtain the complete analysis-synthesis IIR filter bank by unimodular

completion [9]. The solution to this type of unimodular completion problem is feasible

because a set of all proper stable rational multivariate functions is known to form a type of

commutative ring for which, the Quillen-Suslin theorem holds [9, p. 1405], [19]. In the

multiband IIR PR problem, the common zeros in the elements of the first row of the

analysis polyphase matrix are permitted as long as the common zeros do not fall in Ūn.

This prevents the direct application of the constructive methods [19, 20] known for

unimodular completion of a row of zero-coprime elements belonging to a ring. This paper

shows the use of Gröbner basis theory in algorithmic algebra for unimodular completion

over the ring of stable rational multivariate functions when the elements of the first row of
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a 2�2 polyphase matrix are not necessarily zero-coprime as long as common zeros in Ūn

are absent. Other recent as well as future uses of Gröbner basis theory in multidimensional

systems are cited.
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