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Abstract

Let An(k) be the Weyl algebra, withk a field of characteristic zero. It is known that every
projective finitely generated left module is free or isomorphic to a left ideal. LetM be a left
submodule of a free module. In this paper we give an algorithm to compute the projective dimension
of M. If M is projective and rank(M) ≥ 2 we give a procedure to find a basis.
© 2003 Elsevier Ltd. All rights reserved.
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Introduction

The study of finitely generated projective modules over a ring is an interesting topic.
We know that over polynomial rings they are free, as it was shown by Quillen and
Suslin. There are several algorithmic versions of this theorem (Logar and Sturmfels, 1992;
Laubenbacher and Woodburn, 1997; Gago-Vargas, 2002) that compute a basis from a
system of generators. All of these procedures use Gr¨obner bases in polynomial rings. It is
natural to extend these results to the Weyl AlgebraAn(k), with k a field with characteristic
zero. It is known that if a left finitely generatedAn(k)-module is projective and has rank
greater or equal 2 then is free (Stafford, 1978). Our goal is to give an algorithm to find a
basis of these modules.

Projective modules inAn(k) are stably free (Stafford, 1977), so the first step is to find an
isomorphismP⊕ An(k)s � An(k)t for somes, t . We developthis procedure inSection 1,
together with an algorithm to compute the projective dimension of a module, that is valid
for a broad class of rings. We note by pdim(M) the projective dimension of a module
M. We require the computation of Gr¨obner bases in the ring and that every module has
a finite free resolution. If M is projective we find a matrix that defines an isomorphism
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M ⊕ Rs � Rt . The starting point is a leftR-moduleM defined by a system of generators
in someRm.

In Section 2we follow the proof ofStafford (1978) with algorithmic tools to find a
basis of a projective module. We develop, for completeness, the reference toSwan(1968)
used inStafford (1978, Theorem 3.6(a)), to clarify where these computations are needed.
We follow describing theminor changes toHillebrand and Schmale(2002) to obtain two
special generators of a left ideal, according toStafford (1978, Theorem 3.1). Finally, we
give an example of this procedure to build a basis of a projective module inA2(Q).

For all the computations we need an effective fieldk in the sense ofCohen(1999) to
apply the Gr¨obner bases algorithm inAn(k). We have used in the examplesk = Q.

1. Computing projective dimension

Let R be a ring where it is possible to compute a finite free resolution of a left module,
and we can determine if a right submodule ofRk is equal to Rk. Such a ring may be
k[x1, . . . , xn], An(k) or more general rings like PBW algebras (Bueso et al., 1998). We
make use of a characterization given inLogar and Sturmfels(1992), based on a finite free
resolution of a module. The existence of a finite free resolution for a projective moduleM
is equivalent forM to be stably free (McConnell and Robson, 1987). With the algorithm
described in this section we test wetherM is projective, and if theanswer is yes we compute
an isomorphismM⊕Rs � Rt for somes, t . The procedure is by induction on the length of
the resolution. We identify the homomorphisms with their matrices to simplify the notation.

Suppose

0→ F1
α1→ F0

α0→ M → 0

is a free resolution ofM, with rank(Fi ) = r i . If M is a projective module, this sequence
splits, so there existsβ1 : F0 → F1 suchthatβ1α1 = Ir1. We can compute this matrix
from the rows of the matrixα1: if we consider them as vectors ofF1, theright R-module
generated must be equal toF1. We express each vector of the canonical basis ofF1 as a
linear combination of the rows ofα1, and with these coefficients we construct the matrixβ1.
So we can give the isomorphismF1⊕ker(β1) � F0 � F1⊕M and a basis ofF1⊕ker(β1).

Let

F : 0→ Ft
αt Ft−1

αt−1
Ft−2

αt−2
Ft−3

αt−3 · · · α1 F0
α0 M → 0

be a finite free resolution ofM with rank(Fi ) = r i and t ≥ 2 (we takeα−1 the null
homomorphism). Again, ifM is a projective module, then the short exact sequence

0→ ker(α0)→ F0→ M → 0

splits, so ker(α0) = im(α1) is projective. By induction, the modules im(αi ), i = 1, . . . , t
are projective. In particular, im(αt−1) is projective and the exact sequence

0→ Ft
αt Ft−1

αt−1
im(αt−1)→ 0
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splits. Then there existsβt : Ft−1 → Ft suchthat Irt = βtαt . The module ker(βt ) is
projective, isomorphic to im(αt−1) and we can compute the isomorphism ker(βt ) ⊕ Ft �
Ft−1. We consider the following sequence:

0→ Ft
α̃t Ft−1⊕ Ft

α̃t−1
Ft−2⊕ Ft

α̃t−2
Ft−3

αt−3 · · · α1 F0
α0 M → 0

where

α̃t (vt ) = (αt (vt ), 0), α̃t−1(vt−1, vt ) = (αt−1(vt−1), vt ),

α̃t−2(vt−2, vt ) = αt−2(vt−2).

Then it is an exact sequence and again the module im(̃αt−1) is projective.As before, the
sequence

0→ Ft
α̃t Ft−1⊕ Ft

α̃t−1
im(̃αt−1)→ 0 (1)

splits and there exists̃βt : Ft−1⊕ Ft → Ft suchthat Irt = β̃t α̃t . In this case,

β̃t = ( βt θ )

whereθ is the null matrix with orderrt × rt . Thenβ̃(vt−1, vt ) = βt (vt−1), so ker(β̃t ) =
ker(βt )⊕ Ft � Ft−1. Wecan compute the isomorphism

ν̃t−1 : Ft−1→ ker(β̃t ).

Let

γ̃t−1 = α̃t−1̃νt−1 : Ft−1→ Ft−2⊕ Ft . (2)

Then the sequence

0→ Ft−1
γ̃t−1

Ft−2⊕ Ft
α̃t−2

Ft−3
αt−3 · · · α1 F0

α0 M → 0

is exact. Because the sequence (1) splits, the homomorphism̃αt−1 is an isomorphism
between ker(β̃t ) and im(̃αt−1), so γ̃t−1 is an isomorphism betweenFt−1 and im(̃αt−1) =
ker(̃αt−2), and wehave the exactness of the sequence (2). We apply again the process to
γ̃t−1 to check the projectiveness of the moduleM.

We need the following result:

Theorem 1.1. Let R be a ring and

F : · · · → Fd → Fd−1→ · · · → F1→ F0→ M → 0

a projective resolution. Let d be the smallest number such that{imFd → Fd−1} is
projective. Then d does not depend on the resolution andpdim(M) = d.

Proof. Eisenbud(1995, Exercise A.3.13). �
Theorem 1.2. The previous algorithm allows us to compute the projective dimension of a
module.

Proof. Let

0→ Fn
αn Fn−1

αn-1 · · · → F1
α1 F0

α0 M → 0
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be a finite free resolution given by the procedure. Then im(αn−1) is not projective, because
the matrixαn has no left inverse. We can suppose thatM is not projective, otherwise we
have shortened the resolution. Then the sequence

0→ ker(α0)→ F0→ M → 0

does not split, so im(α1) = ker(α0) is not projective. In the same way, the short exact
sequence

0→ ker(α1)→ F1→ im(α1)→ 0

does not split and im(α2) = ker(α1) is not projective. Then the modules

im(α1), im(α2), . . . , im(αn−1)

are not projective and the module im(αn) is projective. Then the projective dimension of
M is equal ton. �

Algorithm. Projective dimension.
Input: a leftR-moduleM defined by its generators inRr .
Output: a projective dimension ofM and a minimal length free resolution. If pdim(M) = 0,
i.e. M is projective, the algorithm returns an isomorphismM ⊕ Rs � Rt .

Let F be a finite free resolution ofM:

0→ Ft
αt−→ Ft−1

αt−1−→ Ft−2
αt−2−→ Ft−3

αt−3−→ · · · α1−→ F0
α0−→ M → 0

START:

if αt has no left inversethen
pdim(M) = t . STOP.

else
let βt be a left inverse ofαt .

end if
if t = 1 then

pdim(M) = 0 andM ⊕ F1 � ker(β1)⊕ F1 � F0. STOP.
else

compute the exact sequence

0→ Ft
α̃t−→ Ft−1⊕ Ft

α̃t−1−→ Ft−2⊕ Ft
α̃t−2−→ Ft−3

αt−3−→ · · · α1−→ F0
α0−→ M → 0

and the matrix̃νt−1 that gives the isomorphism ker(βt )⊕ Ft � Ft−1.
end if
Let γ̃t−1 = α̃t−1̃νt−1.
Let F be the finite free resolution

0→ Ft−1
γ̃t−1−→ Ft−2⊕ Ft

α̃t−2−→ Ft−3
αt−3−→ · · · α1−→ F0

α0−→ M → 0.

go to START.

This algorithm has been programmed withMacaulay 2(Grayson and Stillman, 2000),
using the routines forD-modules developed byLeykin and Tsai(2002).
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Example. Let W = A2(Q) and I = W〈x∂x − 1, x∂y, ∂
2
x , ∂2

y〉. We found a resolution ofI
of the form

0← I
α̃0← W4 γ̃1← W3← 0

where

γ̃1 =



−∂2

x −x∂x + 1 0
∂y 0 −x
0 ∂y ∂x

−∂x −x 0


 .

The rows of the matrix̃γ1 do not generateW3, because a Gr¨obner basis is given by the
columns of the matrix

 0 0 ∂y ∂x

1 0 0 0
0 1 0 0


 .

Then the idealI is not projective, and its projective dimension is 1.

2. Computing a basis

Let k be a field of characteristic zero. Given a projective module overAn(k) with rank
greater than 1, we are going to describe a procedure to compute a basis. We will need the
standard Gröbner basis theory onAn(k) to perform the computations. See, for example,
Castro(1987) for a description of this algorithm. InHillebrand and Schmale(2002) we
found the following theorem.

Theorem 2.1. Let R = k(x1, . . . , xn)[∂1, . . . , ∂n] and I = R〈a, b, c〉. Then we can
computẽa, b̃ ∈ R such that I = R〈a+ ãc, b+ b̃c〉.

As pointed out inHillebrand and Schmale(2002, Remark 3.15), the algorithm can be
extended toW = An(k) = k[x1, . . . , xn][∂1, . . . , ∂n]. We need the following stronger
result (Stafford, 1978, Theorem 3.1):

Theorem 2.2. Let I = W〈a, b, c〉 be a left W-ideal, and let d1, d2 ∈ W−{0} be arbitrary
elements. Then we can find f1, f2 ∈ W such that

I = W〈a+ d1 f1c, b+ d2 f2c〉.
This can be accomplished with some minor changes to the proof ofHillebrand and

Schmale(2002, Lemma 3.10). Following their notation, it is enough to takeg1, g2 ∈ W
suchthath1d1g1+ h2d2g2 = 0, and to apply (Hillebrand and Schmale, 2002, Lemma 3.9)
to v = td2g2. These changes appear in the proof ofStafford (1978, Theorem 3.1). The
procedure is analogous for right ideals.

Definition. Let M be a leftW-module andv ∈ M. We saythatv is unimodular inM if
there existsϕ ∈ HomW(M, W) suchthatϕ(v) = 1.
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Remark. If v is a column vector in someWm thenv is unimodular if and only if the
right ideal generated byits entries is equal toW. Through Gröbner bases, we can give the
homomorphism that applyv in 1.

The following Lemma is a direct consequence ofTheorem 2.2, and it will allow a
‘cancellation’ in some direct sums.

Lemma 2.1 (Stafford, 1978, Lemma 3.5).Let M ⊂ Wm be a left W-module with
rank(M) ≥ 2 and a ⊕ t ∈ M ⊕ W unimodular. Then there is an algorithm to find
Φ ∈ HomW(W, M) suchthata+ Φ(t) is unimodular in M.

Proof. Let a1 ∈ M ⊂ Wm be a non-zero element and considerΦ1 : Wm → W a
projection such thatΦ1(a1) �= 0. Let M1 = M ∩ker(Φ1), that wecan compute by Gr¨obner
bases. Then rank(M1) = rank(M)−1 ≥ 1, so there existsa2 ∈ M1−0. LetΦ2 : Wm→ W
be a projection such thatΦ2(a2) �= 0. If Φ2(a1) �= 0 we can compute syzygies to get
r1, r2 ∈ W suchthat Φ1(a1)r1 + Φ2(a2)r2 = 0 and replaceΦ2 by the homomorphism
Φ1r1+Φ2r2. ThenΦ1(a2) = Φ2(a1) = 0. Letd1 = Φ1(a1), d2 = Φ2(a2) and consider the
right ideal

I = 〈Φ1(a),Φ2(a), t〉W.

Then there existf1, f2 ∈ W suchthat

I = 〈Φ1(a)+ t f1d1,Φ2(a)+ t f2d2〉W.

Let Φ : W → M be the homomorphism defined byΦ(1) = f1a1 + f2a2. Then, as
shown in Stafford (1978, Lemma 3.5),a + Φ(t) is unimodular, and we can compute
j ∈ HomW(M, W) suchthat j (a+ Φ(t)) = 1. �

Remark. The casea �= 0 is of special interest. In this case we can takea1 = a and obtain
Φ2(a) = 0, d1 = Φ1(a). We have to findf1, f2 suchthat

I = 〈d1, 0, t〉W = 〈d1+ t f1d1, t f2d2〉W.

Note that the problem is not to find two generators for the idealI . We are looking for two
special generators.

Proposition 2.1 (Swan, 1968, Corollary 12.6). Let M ⊂ Wm be a left W-module with
rank(M) ≥ 2 and h : W ⊕ N → W ⊕ M be an isomorphism with N a left W-module.
Then M� N.

Proof. Let h(1, 0) = (t0, a0) ∈ W ⊕ M. The vector(1, 0) is unimodular so(t0, a0) too.
Then we computeΦ : W → M suchthat a′0 = a0 + Φ(t0) is unimodular inM and
we get the homomorphismj : M → W with j (a′0) = 1. We consider the following
homomorphisms:

g : W⊕ M → W ⊕ M, g(t, a) = (t, a+ Φ(t))
k : W→ W, k(1) = t0
l : W⊕ M → W⊕ M, l (t, a) = (t − (k ◦ j )(a), a),

i : W⊕ N → W ⊕ M, i = l ◦ g ◦ h.
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Then i is isomorphism andi (1, 0) = (0, a′0). We have M = Wa′0⊕ ker( j ) and the
following chain of isomorphisms:

N � (W⊕ N)/We1
i→ (W⊕ M)/Wa′0 = (W⊕ ker( j )⊕Wa′0)/Wa′0

� W⊕ ker( j ) � Wa′0⊕ ker( j ) = M.

The isomorphism is defined as follows. Takev1, . . . , vr a set ofgenerators ofN. Let
i (0, vi ) = (αi , ui ), whereαi ∈ W, ui ∈ M. The map(W ⊕ M)/Wa′0 → W ⊕ ker( j )
works taking an element of W⊕M, decomposes the component inM as a sumv+w with
v ∈ Wa′0, w ∈ ker( j ) and takesw. For this stepnote that ifu ∈ M andλ = j (u) then
u = (λa′0)+ (u− λa′0) is the desired decomposition.�

Remark. When the moduleN is of the formWs, thenM is isomorphic to a free module,
so it has a basis. Such a basis is the image ofei , i = 1, . . . , s.

Algorithm. Computing a basis.

Input: an isomorphismWt h� Ws ⊕ M, with t − s ≥ 2.

Output: a basis of the moduleM.

START:

if s= 0 then
{h(e1, ), . . . , h(et )} is a basis.

STOP.
end if

Let h(1, 0) = (t0, a0), with t0 ∈ W, a0 ∈ Ws−1⊕ M.

Compute	 : W→ Ws−1⊕ M suchthata′0 = a0+	(t0) is unimodular.

Compute j : Ws−1⊕ M → W suchthat j (a′0) = 1.

Let i : W⊕Wt−1→ W⊕ (Ws−1⊕ M) as defined in Proposition 2.1.

Let h : Wt−1→ Ws−1⊕ M the isomorphism defined by

h(ei ) = αi a′0+ ui − λi a′0
wherei (0, ei ) = (αi , ui ), αi ∈ W, ui ∈ Ws−1⊕ M, λi = j (ui ).

go to START

As in the previous section, thisalgorithm has been programmed withMacaulay 2.

Example. Let W = A2(Q), andf = ( x∂y xy ∂x ). Then P = kerf is a projective
module, becausef is aunimodular row. Let

β =

−y∂x

∂x∂y

−x


 .
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Thenf · β = 1, and imβ ⊕ P = W3. The isomorphismh : W ⊕W2 → W ⊕ P is given
by the matrix

h =




x∂y xy ∂x

xy∂x∂y + x∂x + 1 xy2∂x y∂2
x

−x∂x∂
2
y −xy∂x∂y + 1 −∂2

x∂y

x2∂y x2y x∂x + 2


 .

Then

t0 = x∂y, a0 =

 xy∂x∂y + x∂x + 1

−x∂x∂
2
y

x2∂y


 .

We must findΦ : W→ P suchthata′0 = a0+ Φ(t0) is unimodular. LetΦ1 : P→ W
be the projection over the first component anda2 ∈ P ∩ ker(Φ1) not null. For example,

a2 =

 0

∂2
x∂y

−xy∂x∂y − x∂x − 2y∂y − 2




and letΦ2 : W → P be the projection over the second component. BecauseΦ2(a0) �= 0,
we have tocomputer1, r2 ∈ W suchthatΦ1(a0)r1 + Φ2(a2)r2 = 0. In this case, we get

r1 = −∂2
x∂y, r2 = xy∂x∂y − 2y∂y + 1,

and following the notation of the proof ofLemma 2.1

d1 = xy∂x∂y + x∂x + 1, d2 = xy∂3
x∂2

y + x∂3
x∂y + ∂2

xdy.

We have to findf1, f2 ∈ W suchthat〈d1, t0〉W = 〈d1 + t0 f1d1, t0 f2d2〉W. Applying the
modified procedure ofHillebrand and Schmale(2002), we find

f1 = 0, f2 = x + y.

Let Φ : W → P be the morphism defined byΦ(1) = (x + y)a2. Thena′0 = a0 + Φ(t0)
is unimodular and we can compute the morphismj : P → W suchthat j (a′0) = 1. The
output is too large to be included here, but has the form

j =
(
− 2

63x2y7∂4
x∂5

y − 2
63xy8∂4

x∂5
y + 5

126x3y6∂3
x∂6

y + · · · − 433
9 x∂x + 17x∂y + 1,

2
63xy8∂3

x∂4
y − 5

126x2y7∂2
x∂5

y + 10
63xy8∂2

x∂5
y ++ · · · + 5

3xy− 137
6 y2, 0

)
.

Also we can build the matrices associated to the other morphisms

g =
(

1 0
Φ I3

)
, k = (x∂y), l =

(
1 −k · j
0 I3

)
,

i = l · g · h =
(

0 α2 α3

a′0 u2 u3

)
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where

u2 = (xy2∂x, x2y∂2
x∂y + xy2∂2

x∂y − xy∂x∂y + 1,

−x3y2∂x∂y − x2y3∂x∂y − x3y∂x − x2y2∂x

−2x2y2∂y − 2xy3∂y − x2y− 2xy2)t ,

u3 = (y∂2
x , x∂3

x∂y + y∂3
x∂y,

−x2y∂2
x∂y − xy2∂2

x∂y − x2∂2
x − xy∂2

x − 4xy∂x∂y

−3y2∂x∂y − 3x∂x − 3y∂x − 2y∂y)
t .

Then

w1 = (α2− λ2)a′0+ u2, w2 = (α3 − λ3)a′0+ u3

is a basis ofP, whereλi = j (ui ), i = 2, 3.
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