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Abstract

Let An(k) be the Weyl &ebra, withk a field of chaacteristic zero. It is known that every
projective finitely generated left module is free or isomorphic to a left ideal. Nlebe a left
submodule of a free module. In this paper we give an algorithm to compute the projective dimension
of M. If M is projective and raniM) > 2 we give a pocedure to find a basis.
© 2003 Elsevier Ltd. All rights reserved.
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Introduction

The study of finitely generated projective modules over a ring is an interesting topic.
We know that over polynomial rings they are free, as it was shown by Quillen and
Suslin. There are several algorithmic versions of this theotexgdr and Sturmfe|s1992
Laubenbacher and Woodbuyrh997 Gago-Vargas 2002 that mmpute a basis from a
system of gaerators. All of these procedures usef@mér bases in polynomial rings. It is
natural to extend thesegelts to the Weyl Algebra#\,(k), with k a field with characteristic
zero. It is known that if a left finitely generateh (k)-module is projective and has rank
greater or equal 2 then is freStaford, 1978. Our goal is to give an algorithm to find a
basis of these modules.

Projective modules ilA, (k) are stably freeStaford, 1977, so the first step is to find an
isomorphismP @ An (k) ~ An(k)! for somes, t. We develoghis pracedure inSection 1
together with an algorithm to compute the projective dimension of a module, that is valid
for a broad class of rings. We note by pdiv) the projective dimension of a module
M. We require the computation of @bner bases in the ring and that every module has
a finite free resaltion. If M is projective we find a matrix that defines an isomorphism
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M @ RS ~ R!. The stating point is a leftR-moduleM defined by a system of generators
in someR™.

In Section 2we follow the proof ofStaford (1978 with algorithmic bols to find a
basis of a projective module. We develop, for completeness, the refereBeatg1968
used inStaford (1978 Theorem 3.6(a)), to clarify where these computations are needed.
We fallow describing theminor changes télillebrand and Schmal@002 to obtain two
special generators of a left ideal, accordingStaford (1978 Theorem 3.1). Finally, we
give an example of this procedure to build a basis of a projective modie(i@).

For all the computations we need an effective fiklth the sense o€ohen(1999 to
apply the Gobner bases algorithm iA, (k). We have used in the examples= Q.

1. Computing projective dimension

Let R be a ring where it is possible to compute a finite free resolution of a left module,
and we can determine if a right submoduleRf is equal to RK. Such a mg may be
K[X1, ..., Xn], An(k) or more general rings like PBW algebrdugso et al.1998. We
make use of a characterization giverLiogar and Sturmfel§1992), based on a finite free
resolution of a module. The existence of a finite free resolution for a projective mbtule
is equivalent forM to be stably freeNicConnell and Robsqri987). With the algorithm
described in this section we test wetl\iis projective, and if thanswer is yes we compute
an isomorphisnM @ RS ~ R! for somes, t. The procedure is by induction on the length of
the resolution. We identifyhie homomorphisms with their matrices to simplify the notation.

Suppose

0->F3FR3M->0

is a free resolution oM, with rank(Fj) = r;. If M is a projective module, this sequence

splits, so there existg; : Fo — F1 suchthatfia; = Iy,. We can compute this matrix

from the rows of the matrix1: if we consider them as vectors &%, theright R-module

generated must be equal Ea. We express each vector of the canonical basis-pfas a

linear combination of the rows af;, and with these coefficients we construct the mafix

So we can give thisomaphismF; @ ker(81) ~ Fo ~ F1® M and a basis ofF; @ ker(81).
Let

o ar—1 at—2 at—3 o (o4
F0>F-SFRi1—FRo—SFi3-—D - —5F->M-=0

be a finite free resolution oM with rank(F) = r; andt > 2 (we takea_1 the null
homomorphism). Again, iM is a projective module, then the short exact sequence

0— ker(ag) > Fp— M — 0

splits, so kefug) = im(wq) is projective. By induction, the modules {m),i = 1,...,t
are projective. In particular, ity 1) is projective and the exact sequence

0 F - Frog 23 im(ag_q) — O
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splits. Then there existg; : Fr_1 — F suchthatl,, = Biat. The module ke@Bt) is
projective, isomorphic to iy 1) and we can compute the isomorphism(iéey ® F; ~
F:_1. We a@nsider the following sequence:

O F-LS R o RL,6REBR:SE... LK% M-0

where

at(vt) = (at(v), 0), ot—1(Vi—1, Vi) = (t—1(Vt—1), V),

at—2(Vi—2, Vi) = o —2(Vt—2).
Then it is an exact sequence and again the module;im) is projective.As before, the
sgjuence

05 -5 Foi® R 2 im@y) — 0 )
splits and there exisﬁ : F_1® K — F suchthatl,, = Et&’t. In this case,

Bi= (B 0)

whered is the null matrix with order; x r;. Theng(vi_1, Vi) = Bt(Vt_1), S0 ke(B;) =
ker(Bt) & Ft ~ Fi—1. We can compute the isomorphism

Vo1 Rl — kel’(ﬁt).
Let

nr=oa-1m-1:Ra1—->FR 20 F. (2)
Then the sequence

V-1 2 -3 a a
0> R 18 R0 SFR3—5 - L5 M-0

is exact. Because the sequendg gplits, the homomorphisna;_1 is an isonorphism
between ke(rﬁt) and im(a;_1), SO%;—1 is an isomophism betweerr_; and ima;_1) =
ker(a;—2), and wehave the exactness of the sequer)e\(Ve apply again the process to
yt—1 to check the projectiveness of the modivle

We reed the following result:

Theorem 1.1. Let R be aingand
F:iwos5Fg—-FRi1—> - —>F—>F—>M-=0

a projedive resoluton. Let d be the smallest number such thiatFy — Fg_1} is
projective. Then d does not depend on the resolutiongafiih(M) = d.

Proof. Eisenbud 1995 Exercise A3.13). O

Theorem 1.2. The prevous algorithm allows us to compute the projective dimension of a
module.

Proof. Let

o on=- o (07
O F A R SR ESM-0
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be a finite free resolution given by the procedure. Thefajmn;) is not projective, because
the matrixan has no left inverse. We can suppose thats not projective, otherwise we
have shortened the resolution. Then the sequence

0— ker(ag) > Fo— M = 0

does not split, so ima1) = ker(ap) is not projective. In the same way, the short exact
seguence

0 — ker(a1) - F1 — im(a1) —> 0
does not split and if2) = ker(a1) is not projective. Then the modules
Im(“l)’ Im(a2)5 ceey |m(an71)

are not projective and the module () is projective. Then the projective dimension of
M is equal ton. [

Algorithm. Projective dimension.
Input: a leftR-moduleM defined by its generators iR’ .

Output: a projective dimension &fl and a minimal length free resolution. If pdii) = 0,
i.e. M is projective, the algoritim retuns an isomorphisnvi @ RS ~ R!.

Let F be a finite free resolution d¥l:
0— Fti> Ft,]_at—_; thzat—_g thgat—_g«“ﬂ) Fog M—0

START:

if «; has no left inverséhen
pdim(M) = t. STOP.
ese
let B; be a left inverse od.
end if
ift =1then
pdim(M) = 0 andM @ F;1 ~ ker(81) ® F1 ~ Fo. STOP.
ese
compute the exact sequence

O-F-SF ok B R0 EBR:SE ... YSK2%M=0
and the matrixi;_1 that givesthe isomorphism k&p;) & F; ~ Fi_1.
end if
Letyt—1 = o¢—1Vt—1.
Let F be the firite free resolution
0— Ft,]_yl—7§ Fod R at_—g Ft73at_,§ LN Fo& M — 0.

goto START.

This algorithm has been programmed witfacaulay 2 (Grayson and Stillmar2000),
using the routines fob-modules developed Hyeykin and Tsa(2002.
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Example. LetW = A2(Q) andl = W(xdx — 1, xdy, 93, 85). We found a resolution of
of the form

01 Bwt g o

where
—32 —xdx+1 O
~ | 9y 0 —X
=1 o dy B
—dx —X 0

The rows of the matri¥1 do not generat&V3, because a Giner basis is given by the
columns of the matrix

0 0 dy o
100 of.
010 0

Then the ideal is not projective, and its projective dimension is 1.

2. Computing a basis

Letk be a field of characteristic zero. Given a projective module évgk) with rank
greater than 1, we are going to describe a procedure to compute a basis. We will need the
standard Gobner basis theory oA, (k) to peform the computations. See, for example,
Castro(1987 for a desription of this algorithm. InHillebrand and Schmalé€002 we
found the following theorem.

Theorem 2.~1. Let R = k(xl,...,xn)[al,...,§n] and | = R(a,b,c). Then ve can
computed, b € R such hat | = R{a + ac, b + bc).

As pointed out inHillebrand and Schmal@002 Remark 3.15), the algorithm can be
extended toW = An(k) = K[x1, ..., Xnl[d1, ..., dn]. We reed the following stronger
result Staford, 1978 Theorem 3.1):

Theorem 2.2. Let | = W(a, b, ¢) be a left W-ideal, and letidd> € W — {0} be arbitrary
elements. Then we can fing, f, € W sud that

| =W (a+dific, b+ dsfoc).

This can be accomplished with some minor changes to the probiliebrand and
Schmale(2002 Lemma 3.10). Following their notation, it is enough to ta@eg, € W
suchthathid;g; + hadogz = 0, and b apply Hillebrand and SchmaJ@002 Lemma 3.9)
to v = tdago. These chnges appear in the proof 8taford (1978 Theorem 3.1). The
procedure is analogous for right ideals.

Definition. Let M be a leftW-module ands € M. We saythatv is unimodular inM if
there existy € Homy (M, W) suchthate(v) = 1.
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Remark. If v is a colmn vector in som&V™ thenv is unimodular if and only if the
right ideal generated biys entries is equal t¥. Through Gobner bases, we can give the
homomorphism that apphyin 1.

The following Lemma is a direct consequenceTdfeorem 2.2 and it will allow a
‘cancellation’ in some direct sums.

Lemma?2.1 (Staford, 1978 Lemma 3.5).L.et M c W™ be a left W-module with
rankM) > 2 anda®t € M @ W unimodular. Then there is an algorithm to find
¢ € Homyw (W, M) suchthata + &(t) is unimodularin M.

Proof. Leta; €¢ M C W™ be a non-zero element and consider : W™ — W a
projection such tha®,(a;) # 0. LetM1 = M nker($1), that wecan compute by Gibiner
bass. ThenrankM1) = rankM)—1 > 1, so there exista, € M1—0. Let &, : W™ — W
be a projection such thakz(az) # 0. If $2(a;) # 0 we can compute syzygies to get
ri,ro € W suchthat ¢1(aj)r1 + 92(a2)ro = 0 and relace ¢, by the homomorphism
d1r1+ Pora. Thendi(ap) = P2(a1) = 0. Letd, = P1(ay), do = Pr(a) and consider the
rightideal

I = (91(a), P2(a), ) W.
Then there exisfy, f € W suchthat
| = (P1(Q) +tfidy, Po(a) + tfado) W.

Let  : W — M be the homomorphism defined (1) = fia; + foap. Then, as
shown in Staford (1978 Lemma 3.5),a + &(t) is unimodular, and we can compute
j € Homy (M, W) suchthatj(a+ @(t)) =1. O

Remark. The case # Qs of special interest. In this case we can take= a and obtain
dr(a) = 0,d1 = P1(a). We have to findfq, f2 suchthat

| = (d1, 0, t)W = (dy + tf1d1, tfodo) W.

Note that the problem is not to find two generators for the idesliVe ae looking for two
special generators.

Proposition 2.1 (Swan 1968 Comwllary 12.6).Let M ¢ W™ be a left W-module with
rankM) > 2andh: W& N — W & M be an isamaphism with N a left W-module.
Then M~ N.

Proof. Leth(1,0) = (tg, a9) € W @ M. The wvector(1, 0) is unimodular satg, ag) too.
Then we compute? : W — M suchthata{) = ap + P(tp) is unimodular inM and
we get he homomorphisnj : M — W with j(ag) = 1. We consider the following
homomorphisms:

g-WoeM-—->We M, g(t,a) = (t,a+ 2(t))
k:W—> W, k(1) =to
- WM —->Wa M, I(t,a) =(t — (ko j)(a),a),

i We&N->WpM, i=logoh.
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Theni is isomophism andi(1,0) = (0, ap). We have M = Wag @ ker(j) and the
following chain d isomorphisirs:

N ~ (W@ N)/Wey > (W@ M)/ Waj = (W & ker(j) & Wal)/ Way,
~ W @ ker(j) ~ Waj @ ker(j) = M.

The isomorphism is defined as follows. Take ..., v, a set ofgenerators ofN. Let
i(0,vi) = (@i, Uj), whereaj € W,uj € M. The map(W & M)/Wa, — W @ ker(j)
works taking a elemeat of W @ M, decomposes the componentihas a sunv +w with
v € Way, w e ker(j) and takeswv. For this stepnote that ifu € M andi = j(u) then
u = (Aay) + (U — Aay) is the desired decomposition[]

Remark. When the moduleN is of the formWs, thenM is isomorphic to a free module,
so it has a basis. Such a basis is the imagg,0f=1,...,s.

Algorithm. Computirg a bais.
h
Input: an isomorphistivt ~ WS @ M, witht — s > 2.
Output: a basis of the moduld.
START:

if s=0then
{h(et,), ..., h(&)}is a basis.

STOP.
end if

Leth(1, 0) = (to, ap), with tg € W, ag € WS~ 1 @ M.
Conmpute® : W — WS 1@ M suchthatag = ap + ®(to) is unimodular.
Computej : W1 @ M — W suchthat j () = 1.
Leti : W W1 » W@ (W1 @ M) as defined in Proposition 2.1.
Leth: Wt-1 - Ws~1 g M the isomaphism defined by
h(e) = ajag + Ui — 2 &

wherei (0, §) = (aj, Uj),aj € W, uj € WSl M, A = j(ui).
goto START

As in the previous section, thagorithm has been programmed wittacaulay 2

Example. Let W = Ay(Q), andf = (xdy Xy dx). ThenP = kerf is a projective
module, becauskis aunimodular row. Let

_yax
—X
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Thenf. g =1, and im8 @ P = W3. The immorphismh : W @ W? — W & P is given
by the matrix

X0y Xy Ox

Xydxdy + Xdx + 1 X Y20y yo?2
- — X832 —Xydxdy +1 —02dy
x2dy x2y Xy + 2

Then
Xyddy + Xdx + 1
to = Xdy, ag = —m&@
x2dy

We must find® : W — P suchthatay = ag + @(to) is unimodular. Letd; : P — W
be the projection over the first component @ade P N ker($1) not null. For example,

0
a = 323y
—XY0xdy — Xdx — 2ydy —

and let®, : W — P be the projection over the second component. Becayéa,) # 0,
we have taccomputerg, ro € W suchthat @1 (ag)r1 + ®2(a2)r2 = 0. In this case, we get

and following the notation of the proof demma 2.1
di = Xydxdy + Xdx + 1, dp = Xyd395 + xdg0y + 9Zdy.

We have to findf1, f € W suchthat(ds, to) W = (d1 + to f1ds, to fod2) W. Applying the
modified procedure dflillebrand and Schmal@002, we find

f=0,  fo=x+y.

Let » : W — P be the morphism defined b(1) = (x + y)az. Thenaj, = ap + 9(to)
is unimodular and we can compute the morphismP — W suchthat j (ag) = 1. The
output is too large to be included here, but has the form

j = (_ ZxPyTa%05 — ZxyPafad + 3ex3y®a308 + - — %Bxay + 17xdy + 1,
ExyPoso) — S3ex?y70200 + 83xyBaZa0 + + - + Sxy — 187y2 0 )

Also we can build the matrices assated to the other morphisms

(1 0 B (1 k-]
9‘(45 |3)’ k= (xdy). "(0 I3 )

zllg.h:(o o2 a3>
a6 Uz U3
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where
Uz = (XY2dx, X2yd2dy 4 xy?82dy — Xydxdy + 1,
—x3y28x8y — x2y38x8y — x3y8X — x2y28X
—2x2y23y — 2xy3ay — x2y — 2xy?)!,
uz = (yd2, xa3dy + ya3ay,
—x2yd20y — xy?020y — X202 — Xyd2 — Axydydy
—3y%9xdy — 3xdx — 3ydx — 2ydy)".
Then
W1 = (a2 — A2)ag + U2, W2 = (a3 — A3)ay + U3
is a basis ofP, where)r; = j(uj),i = 2, 3.
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