A Grobner-Sylvester Hybrid
Method for Closed-Form
Displacement Analysis of
Mechanisms

The displacement analysis problem for planar and spatial mechanisms can be written as

A. K. Dhingra

A. N Almadi1 a system of multivariate polynomial equations. Elimination theory based on resultants
T and polynomial continuation are some of the methods that have been used to solve this
D. Kohli problem. This paper presents a new approach to displacement analysis using the reduced

Grobner basis form of a system of equations under degree lexicographic (dlex) term
. — ordering of its monomials and Sylvester's Dialytic elimination method. Using the
Depjrt.mem. of Mec.hamca.l Eng.mee”ng' Grobner-Sylvester hybrid approach, a finitely solvable system of equations F is trans-
niversity of Wisconsin-Milwaukee, - A : ; - ; ; .
Milwaukee. W1 53201 formed into its reduced Ghmer basis G using dlex term orderlng. Next, using the entire
' or a subset of the set of generators in G, the Sylvester’'s matrix is assembled. The van-
ishing of the resultant, given as the determinant of Sylvester's matrix, yields the necessary
condition for polynomials in G (as well as F) to have a common factor. The proposed
approach appears to provide a systematic and rational procedure to the problem dis-
cussed by Roth, dealing with the generation of (additional) equations for constructing the
Sylvester’s matrix. Three examples illustrating the applicability of the proposed approach
to displacement analysis of planar and spatial mechanisms are presented. The first and
second examples address the forward displacement analysis of the general 6-6 Stewart
mechanism and the 6-6 Stewart platform, whereas the third example deals with the de-
termination of the I/O polynomial of an 8-link 1-DOF mechanism that does not contain
any 4-link loop.[S1050-047200)01204-§

1 Introduction cal continuation methods are capable of finding all possible solu-

. . . . . . tions and eliminate the need for a good initial estimate to the
Kinematic motion analysis and design of mechanical SySte'ESIution[l]

lead naturally to system of nonlinear algebraic and/or transcen-anaytical or closed-form solutions to kinematic equations can
dental equations. One of the most frequently occurring problerg optained using elimination theories based on resulfaiitsr

in kinematics is to find solutions to this system of equations. Thgrobner base$3]. In general, there are two types of eliminants.
solution approaches for such equations can be broadly dividgHe first is concerned with the elimination of one variable in two
into two classes: numericditerative methods and closed-form polynomials. The commonly used resultant matrices for such
(analytica) techniques. Numerical techniques rely heavily on nuyproblems are those of Sylvester andzBet. These resultants are
merical iteration while closed-form techniques are based on arg@rticularly effective in eliminations involving non-homogeneous
lytical expressions and often require massive algebraic manipuRglynomials. For a system of polynomials in two or more vari-
tions. Using numerical methods, a kinematics problem @bles, the res_ultant is defined as the greatest common divisor of a
considered solved if a tight upper bound on the number of sol§t Of determinanteresultants Hence, throu“gh Successive or re-
tions can be established, and an efficient algorithm for computiR at_ed gppllcatlon of resultants It may be “possible” to rt_adut_:e a
all solutions can be implemented. The commonly used iterati ultlvarlgte system of polynomials to one or more univariate
methods are variants of either the Newton or conjugate gradié)n lynomials.

. P . or resultants of the second type;- 1 variables are eliminated
methods. These methods require an initial guess at the solutlorgi ultaneously from a system afpolynomials. The eliminant is

the initial guess is not close enough to a solution, the iteratiogsmatrix whose columns are indexed by the monomials in the
may converge slowly, converge to an unacceptable solution §6lynomial ring and whose rows are indexed by monomial prod-
may diverge altogether. However, the Newton's method is a valucts of then polynomials. The resultant is a polynomial in the
able tool and is used as the building block for numerical continuemaining variable. For a system of three or more equations, no
ation methods. general conditions exist which express the resultant as a determi-
Numerical continuatioithomotopy methods have been used innant, except for special class of systems of equations. However, it
solving kinematic equations of motion for planar as well as spatigldy be possible to express the resultant as a quotient of one
mechanisms. They are based on the concept that a system of pggterminant divided by another. The divisor is the extraneous fac-
nomial equations can undergo small changes in the system pardgh- Since it is difficult to identify whether or not extraneous fac-
eters producing small changes in the solutions. If the systemt8fs exist, it is not possible to insure that a resultant is devoid of

equations to be solved can be cast in a polynomial form, nume??ftra_neous SO'.UI'OnS' For certain equation stryctgres,_ it may be
possible to derive the resultant using Sylvester’s dialytic elimina-

pracently at S R b Institute. KAGST. Rivadh 11442, Saudi Arabi tion method. In other cases, extraneous factors can be identified
resently a pace Researcn Institute, , Rlya , 2audil Arabia. P _
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polynomials. Hence, Macaulay’s approach is not suitable for suskntationG that generates the same ideal Fadut is easier to
problems because the system of equations has extraneous s#flve. In brief, the Grbner basis for ideal generated byF
tions including solutions at infinity, and thus the eliminant matrixe K[X;, ... X,] over field k, is a set of generatorsG
is degenerate. ek[xq, ... X,] that generate the same idéabut are simpler in
Elimination theories for solving multivariate polynomial equaform and easier to solve. The Buchberger’'s algorithm is a simple
tions such as Gimer bases are related in their basic form tend effective method for computing Goer bases. Since Gyo.
Gaussian elimination’s for linear equations and Euclid’s algorithf€r bases computations involve manipulating the monomidfs in
for solving nonlinear univariate polynomidls]. Just as Gaussian the notion of term ordering, denotedr, on the set of monomials
elimination triangulates a system of linear equations, eliminatidf F must first be introduced. . -
based on Gilner basis under lexicographic term ordering of vari- #* Polynomial equatiorf; < F can be viewed as a finite sum of
ables, i.e.x,< ...<x, produces a triangular set of nonlineaonzero terms with dIStInC'[. monomials Wlt.h scalar coefficients.
polynomials. Generally, the resulting Giger basis can be parti- 1€Nce, it is necessary to fix a term orderirg: on the set of
tioned into sets of nonlinear polynomials where the last set jfponomials in eaclt;<F. Two term orderings which play an
volves only one polynomial in, with minimal degree, the set important role in solving polynoml_al systems include the lexico-
before the last involves only the last two variables, ; andx,, 9raPhic(lex) order and degree lexicographidiex) order.
etc. The complete solution set for the original multivariate system Lexicographic Ordering (lex)Let the term ordering on the
of equations can then be obtained by first solving the last univa}’i‘:"”aglesx’y’v;’ be fixed asw<ry<rX. This yields 1<jew -
ate polynomial i, , next substitute each solution xf in the set  lexY W<lexy” <iexX<1exXW " <j,X". In lex order, a variable
of polynomials immediately preceding it, which are now univarigomlna_tes any monomial involving only smaller variables, regard-
ate polynomials in the variabbe, ;, and so on[5]. However, for €8S of its total degree. . _
kinematics problems of “reasonable” complexity, the ‘Gner Degree .LeX|cograph|c Qrderlng (dlex)et the. term ordering
basis method under lex term ordering has been quite inefficiefit the variables,y,w be fixed asv<ry<rx. Using dlex order,
because of exploding intermediate results and excessive compifig- terms are first ordered by total degree and within a given
tion times[6]. For a comprehensive review of the state-of-art if€9ree Iexmographlcallg. This 3y|elds nieW<diexy <diexX
solving polynomial systems arising in kinematics, see Raghavaniiex\V"<diexy W "< djexX"Y <dlexX"- ) o
and Roth[7]. Since a polynomial is uniquely expressible as a finite sum of
To overcome the difficulties of existing approaches, this papBPnzero terms involving distinct monomials, a term ordering per-
presents a new method for solving algebraic system of equatidR¥S & comparison between every pair of monomials in the poly-
which utilizes the reduced Gboer basis form of the system of Nomial to establish their relative positions. Thus every polynomial
equations under total degree term ordering of its monomials ahg F must be arranged such that its monomials are ordered as a
Sylvester's Dialytic elimination method. Using the proposed hydeéscending sequence under the term orderirg

brid approach, the system of equatidhss first transformed into 5 4 Computation of Grobner Basis. The computation of

its reduced Grbner basis representatié Next, ”Si”‘%l the eljtir_e Grobner basis is based on the following properties of polynomial
or a subset of the set of generatorddnthe Sylvester’'s matrix is

ideals:
assembled. The vanishing of the Sylvester’'s determinant yiel SProperty 1
the necessary condition for the polynomialsGnas well asF to If Fek[Xy,...xX,], then for anyfeF, constantc and u
have a common factor. ck[Xy, ... x,], feufel=Ideal(F).

The proposed method provides a systematic approach for CONproperty 2

structing Sylvester's matrix. Normally, the construction of |t ¢ t cF andr is the division remainder of. f . thenr
Sylvester's matrix requires an exhaustive search involving multi:| | feq(F). v

plication of the po_IynomiaIs inF by appropriate monomials  gased on properties 1 and 2, Buchberf@} introduced the
(power productsuntil a new system of equationts is generated 4o of aSpolynomial for eliminating leading monomials, and

such that the number of polynomials fihis equal to the number e concept of normal form as a reduction algorithm for also

of monomials inH. The Sylvester's matrix can then be consjiminating monomials. The Buchberger's algorithm consists of

structed directly usingd. For a general system of equations, NQy, steps: the computation @ polynomials and their normal
systematic procedure exists for constructing additional equatiogs, reduction.

and setting up the Sylvester's matf&. Further, even if a result- e g nolynomial, designed to produce cancellation of leading
ant matrix can be obtained, it is not possible to conclude whether .« is defined as follows: |&f cK[Xy, ... X,] a system of

or not extraneous factors are present in the r_esultant. In an atte nomial equations ant=Ideal(F). If f,,f,eF, then their
to outline a general pro_cedu_re for constructing a resultant mat olynomial, denote®poly(f; ,f;), is given as
for a system ofn equations inn unknowns, Macaulay4| pre-
sented an approach applicable strictly to homogeneous system of
equations. In addition, the proposed approach may lead to the
introduction of extraneous factors as alluded to by Macaulay. The
Grobner-Sylvester hybrid approach may prove to be an importawhere  ¢;=Lc(f;)/Lc(f;),  u,=Il;/m,=Lcm(Lm{f;,f;})/
step towards a general approach for constructing a resultant rhan(f,). HereLc(-), Lcm(-) andLm(-) denote leading coeffi-
trix devoid of extraneous factors. In this method, the step f@ient, least common multiple and leading monomial, respectively.
generating additional equations is based on a division approachlhe definition ofSpoly(f;,f;) in Eq. (1) makes use of both
similar to theS-polynomial and normal form reductions of Gxo properties 1 and 2. Sinag ek, u;,ujek[Xy, ... x,] andf;,f;
ner bases method rather than the common approach basedednu;f;,cju;f;el and therefore the division remaindére .
polynomial-monomial multiplications. Through three numericaNote thatu;f; and c;u;f; have the same leading tertre(f;)l;;
examples, it is shown that the proposed hybrid approach can &&[ Xy, ... X,] which is eliminated usingpoly(f;,f;). Hence,
used to perform closed-form displacement analysis of spatial aB@olY(f;,f;) may be viewed as one step in a generalized division
planar mechanisms devoid of any extraneous roots. andh is the division remainder.

The normal form reduction algorithm is designed to eliminate
2 Grébner Bases: Basic Concents monomials such that no leading monomial of one polynomial di-

: p vides the monomials of another. For instance, Igfg

If Fis a system of polynomial equations, the @ner bases ek[xy, ... X,] andLm(f)<Lm(g), theng is said to be reduc-
method reduces the problem of solvilkgto manipulating the ible to h if and only if a monomialm; e (m(g)) is divisible by
monomials inF. This transforms into its Grdoner basis repre- Lm(f). Here(m(g)) denotes the monomial ideal gf Hence,

h:Spoly(f,,fJ):—Spol)(fJ,f,):u,f,—clujfl (1)
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h=g—cu;f ) The Grdoner-Sylvester hybrid approadbr solving polynomial
- . systems arising in kinematics problemsutlined as follows. Let
wherec; = coefficient ofm; in g/Lc(f), ui=m;/Lm(f), and the £ pe 5 finitely solvable system of equations given Bs

term involving the monomialm; in g has been deleted, i'e"={f1, - fmbeK[Xq, . .. X,] wherek is an arbitrary field. Us-

(m(h))=(m(g) —m;). If there exists an appropriatg ek and g the Buchberger's algorithm and dlex term ordering with

U ek[xy, ... Xp] such that <q--<qX;, the reduced Gimer basis is given asG
g—Cyusf—---h'—cu;f--—h ={01, ... Op} €KXy, ... Xy]. With G known, it may be pos-

) ) ) . sible to the construct Sylvester's matrix usiGgr a subset 06.
and no further reductions dfare possible w.r.f, thenh is said to If the entire set of polynomials irG is used to setup the
be the normal form ofy modulof. Thus no monomial irh is  sylyester's matrix, then there may exist a variakjesuch that
divisible by Lm(f). In general, if there exists an appropriate eachg; e G can be expressed as

ek, uiek[xy, ... X,] andf;eF such that
g—cyuyf,—---h'—cuifj---—h gi:E ajm;, &y ek[x],
and no further reductions ¢f are possible w.r.tf; e F, thenh is !
said to be the normal form ofgy modulo F, denoted h My ek[Xy, .o Xi—1:Xis1, - Xl (3)

=NForm(g,F), and no monomial inh is divisible by ) ) ) )

(Lm(f;)|f;eF), the leading monomial ideal oF. With the @and the number of monomiafg; in G (including J) may equap
Spolynomial computation and the normal form algorithm prop(the number of polynomials i1G). For such a caseG can be
erly defined, the algorithmic criterion for Gsoer bases is formu- viewed as a system of linear polynomials in the unknown mono-

lated next. mials my=1m,, ... ,m,. In matrix form, this linear system is
LetF={fq, ... fsfek[xq, ... X,] be a system of polynomial 9Iv€n as
equations, therfF is a Grdner basis if and only if for &i<j
<s, NForm(Spoly(f;,f;),F)=0. SinceF is a finite set of poly- 91 Mo
nomials, one has to consider finitely many paiysf; e F and _ pxp : )
compute the Spolyf;,f;) polynomial to see whether ajek[xl]| m;
NForm(Spoly(f;,f;),F)=0. This is done as follows. LeF 9p m;=1
={fy, ... foek[xy, ... x,] and for I=i<j<m, computeh o .
=NForm(Spolyf;,f;),F). If h#0, thenhe Ideal(F) and can Theorem Let F be a finitely solvable system of equations and
be adjoined to the list of polynomials in the generating Bet G={91. . .. .gp} is the corresponding reduced ®rer basis un-
without changing the ideal generated ByHence, derdlexterm order. Then the vanishing of the determinant of the
coefficient matrix given by Eq4) gives necessary condition for
m=m+1 polynomials inF and G to have common solutions.
F=Fu{h} Proof. Since G={g3, ....g,}=0, Eq. (4) reduces tosSX=0
where Sek[x;] is the pX p Sylvester's(coefficien} matrix and
Repeat  this step until for all  Li<jsm, Xek[X{,...X_1,Xi+1,-.-Xy] iS the pX1 column matrix of
NForm(Spoly(f;,f;),F)=0. Upon termination of this algorithm the unknown monomials. For this homogeneous system of equa-
yields the Grbner basis. tions to admit a non-trivial solutionS must be singular, i.eR
A system of polynomial equations may have many l@er =|S|=0.! ThusR=0 vyields the necessary condition for the poly-

basis representations w.r.t. a fixed term oreer. For instance, nomials in G to have common solutions. Sincaleal(G)

the number and form of generators@is sensitive to the order in =ideal(F), the vanishing of the resultaRyields the necessary
which f; ,f;eF pairs are selected for the computation of eacbondition for the polynomials it to have common solutions.
Spoly(f;,f;). Further, using theSpolynomial and the normal It may be noted that the sufficiency of the above condition is
form algorithm outlined previously, the resulting ®reer basiss  not guaranteed because the possibility of extraneous solutions at
for a system of polynomial equatioffsmay contain more genera- infinity cannot be ruled out fronG. However, for polynomial

tors than necessary. Therefore, some generatorG imay be systems arising in our work on kinematics of mechanisms, it was
eliminated without changing the ideal generatedFoyHowever, seen that the proposed approach, in every instance, yields an /O
for any system of polynomial equatiois there exists a unique polynomial of correct degree devoid of any extraneous roots.
Grobner basis, callededuced Grbner basis defined asG is a With x; known fromR, the other variables are solved as fol-
reduced Grbner basis if and only if for each; e G, Lc(g))=1 lows. Since Sylvester's matrix is singularank(S)<p—12 If

and no monomial of; lies in(Lm(G—{g;})), i.e., no monomial rank (S)=p—1, by deleting the last row and column of Sylvest-

of g; is divisible by the leading monomial of ang;e{G er's matrixSand the last row of the monomials column matxix

—{gi}}. Eq. (4) yields
B} my “ap

3 Grobner-Sylvester Hybrid Method (pfl)x(pfl)} :

If Fek[x,, ... X,] is a finitely solvable system of equations, aj; e k[xi] mg —ap-2p ®)
the corresponding reduced ®reer basiss under lex term order- m, —a,_1p
ing of the monomials withx, < --<1x; contains a univariate ] o T
polynomial g, e k[x,] with minimal degree[3]. However, the Of simply S'’X"=—S; whereS,=[aip, ....8p 2p,8p-1p] IS
computation of the reduced Gaoer basis under lex term orderingthe last column of Sylvester's matr&with the last row deleted.
is very sensitive to permutation of the variables whereas the 8inceS’,S,ek[x;], andX' ek[Xy, ... Xi_1,Xj+1, - . . Xn], EQ.
duced Grbner basis computation using dlex ordering is moréb) can be explicitly solved foxy, ... Xj_1,Xj+1, .. .X, in terms

stable. Further, the computation of the reducedoBes basis un- of X;.

der dlex ordering has the advantage of being more efficient w.r.t.

computation times and memory requirements. In fact, for three'The determinant is called the resultabf the system of equations i@.
example problems considered herein, a univariate polynomial was!f rank(S)=r<p—1, a system of nonlinear equations needs to be solved to
obtained using the Gtmer-Sylvester hybrid approach where it o o e s e votghp are.
other methods such as the ®rer bases under lex term Ol'de“ngdentically zero. The first monomial to be solved will correspond tortherow and

have failed. the remaining monomials can be solved using back-substitution.
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On the other hand, if a subset @fis used to setup the Sylvest-formed either symbolically or using rational arithmetic. Therefore,

er's matrix, then there may exigtpolynomialsg; e G defined in

terms  of {X,,...XgtC{Xy, ... X}. [If each hj=g
ek[X,, ... Xg] is expressed as
hizz aim;, ajeklx],
i
M e KXo, -+ Xi—1:Xit1, - - Xg] (6)

and the number of monomialmj’ inH={hy, ... hg} including 1
is equal tog (the number of polynomials i), thenH can be

no numerical error is incurred in calculating the reducedo@es
basisG. Once G is obtained, due to computational limitations,
sometimes it was not possible to proceed further using symbolic
manipulations and/or rational number arithmetic. Consequently, at
this stage, floating-point calculations with anywhere from 30-200
digits were used to set up and expand the Sylvester's matrix to
determine the univariate polynomial.

4 Forward Displacement Analysis of General Stewart

viewed as a system of linear polynomials in the unknown mondJ€chanism

R r_ !
mialsm;=1m,, ...

given as
h, mg
. 4xq .
= ’ 2 7
aj; e k[x] m; %
hq m;=1

Here too,H={h;, ... hs}=0 and Eq.(7) reduces toSX=0
where Sek[x;] is the gqXqg Sylvester's matrix andX
€KXy, o oo Xi—1,Xj41, - - - Xg] is theqX 1 column matrix of the
unknown monomials. From Eq7), the resultantR) is given as

,mé. In matrix form, this linear system is

Consider the 6-DOF general Stewart mechanism shown in Fig.
1. The six inputs are provided at the prismatic joints in each leg,
which in turn controls the location and orientation of the upper
platform. For both moving and fixed platforms, the spheric joints
P, andX;, i=1,...,6, are notestricted to lie in a plane. The
notation and the loop-closure equations used herein are adopted
from Dhingra et al[8] and are given as follow&ee Fig. 2

Let x; denote the vector from the origin of the global system to
the grounded spheric pa¥;, p; denote the vectofexpressed in
moving frame from the origin of the coordinate frame attached to
the platform atP, to the spheric pailP;, |; denote the vector
from the ground spheric paiX; to moving spheric pailP; ex-

the determinant of the Sylvester's matfxThe vanishing of this pressed in the base coordinate frame Wjth |,; and thel ,; being
resultant yields the necessary condition for the polynomials in he . y- andz-components of vectds , [R] is the 3<3 rotational

as well as= to have common solutions sinGegenerates the same matrix (of direction cosinesdenoting the orientation of the mov-
ideal asF. With x; known from R, the solution for the other

variables X, , ... Xi_1,Xi+1, . . . Xg iS obtained as follows. If
rank (S)=qg—1, upon deletion of the last row and last column of
Sand the last row of columiX, Eq. (7) leads to

!

My —aig
(q—=1)X(q-1) :
© e KX ol Y, (8)
aj € [xi] ms Ag-24
m; —ag-1g
or simply S'X’=—S, where Sq:[aivq, . ,a(’q_zyq ,ac’l_lvq]T is

the gth column of S with the gth row deleted. Sinces',S,
ek[x] and X" eKk[X,, ... Xi—1.Xi+1, - - - Xg], EQ. (8) yields
expressions fok,, ... X_1,Xi11, - . .Xg explicitly in terms of

Xi . With X, ... Xz known, the remaining polynomials i@ can

be used to derive explicit expressions for the remaining unknown
variables{xy, ... Xp} ={X4, ... Xg} in terms ofx,, ... Xg.

The case whenank(S)<q—1 is handled in a manner discussed
earlier.

It should be noted that the form and number of generators in the
reduced Grbner basis is quite sensitive to the term ordering
on the set of monomials. Even though the reducech@eo basis
G for a system of equatiorsis always unique w.r.t. a single term
ordering <y, different term orderings can yield completely dif-
ferentG’s. Therefore, even though the system of equations pro- y
cessed by the hybrid approach is not unigoecause it depends
on the term order<;), the resultant expressed i is always z
unique and is independent of the term order. Further, it is worth
noting that even though the choice of hidden variabg (s ar-
bitrary, there may exist term orderings for which an eliminant
cannot be derived fron® regardless of the choice af .

The application of the Gimer-Sylvester hybrid method is
demonstrated next through forward kinematic analysis of the gen-
eral 6-6 Stewart mechanism and platform. The forward kinematic
analysis of these parallel manipulators is quite complex. Never-
theless, using the proposed approach, the univariate 1/0O polyno-
mial can be derived quite easily. In addition, the displacement
analysis of a general 8-link 1-DOF planar mechanism is also per-
formed using this approach leading to the closed-form I/O poly-
nomial for the mechanism. For all three examples presented be- X
low, the grobner package available in Maple \Release Bwas
used for Grbner basis calculations. All computations were per-

Fig. 1 A 6-DOF general Stewart mechanism

prismatic
joint

Fig. 2 A loop of general Stewart mechanism

434 | Vol. 122, DECEMBER 2000 Transactions of the ASME



ing frame relative to the base frame, aqd ., I; andp; denote assembly configurationgeal and complexof the mechanism in

the magnitudes of the vectoxs, 11, |; andp;, respectively. terms of thex-, y- andz-components of the reference lgg, I,
Then, the loop-closure equations for the mechanism are:  |,; and the nine elements, . .. rg of the rotational matriXR].
. The system of Eq412)—(17) represents a system of 19 equations
Li=L+[RIpj—x%, j=2,...6 (®) in 15 unknown variables, namely, . . . fo, I, ly1, 171, hy, hy
Equating the magnitudes of the vectors on the left- and righnd hs. Although only 15 equation¢Egs. (12—-(13), Eq. (17),
hand-side of Eq(9) as and any 6 equations from Eqd.4)—(16)) are needed to derive the
closed-form 1/O polynomial for this mechanism, the fact that ad-
- 1= +[RIp;— %)) - (L1 +[R]pj— X)) (10)  ditional equations are used may actually improve the reduced

Grobner basis computational efficiency, provided that the given

overconstrained system of equations is finitely solvable. In fact,

IZ=13+x"+p’+2l;-[R]p;—2x;-[R]p;—2l;-x;  (11) 11 additional relations can be derived from the dot- and cross

B B products of the orthogonal vectors of the rotational mgfikthat

can be adjoined to Eqg12)—(17) to derive the same reduced

21 (pyj) + 2a(py;) + 2N pzj)+pj2+|§+X,-2—|12—2[(pxj)r1 Grb_bner basis. It should be emphasized that the reducedr@ro
basis and the number of generators used to setup the Sylvester’s

leads to

Expanding Eq(11) yields

F(Pyr2+ (P21 3]%e— 20 (Pxj) T at+ Py s+ (P21 61Xy matrix is independent of the initial number equations used to de-
5 ol o rive the reduced Gimer basis provided that the initial system of
L(Px)T 7 (Pyj)T e+ (P2))T 91Xz = 2l (X)) = 2 ya(Xy)) equations is finitely solvable.
—2l,4(x;)=0, j=2,...,6 (12) Using the Buchberger’s algorithfi3] and thedlex term order-
ing  with  rg<qr;<qr,<qro<qrg<qr,<qrg<irs<7r1<ql,
where <1ly1<7lyy<thz<th,<:h,, yields a reduced Ghmer basisz
hy=lar1+lyafat 1,0y with 68 polynomials. For the numerical data given below, the 68
polynomials inG are not reported herein due to space limitations,
ho=lara+lyirs+larg (13) but they can be found in AlmadB].

ha=lurg+lyiretlarg

and (1,r5,r3), (r4.fs.rg), (r7,rg.ro) represent the three rowsggzg Sy;:g Si;:g §§;=g iy;:g );228 :;:g
of the rotation matri{R]. Since[R] is orthogonal, the rows and p =3 p§3:5 Pi=0 X;3=3 x§3:4 Xp=4 13=10
columns of[R] satisfy the following dot- and cross-product relap,,=1 py=0 pu=4 Xu=5 Xu=1 X,=2 [,=14
tions Ps=4 Pys=2 Pr=1l Xe=0 Xi=2 Xp5=3 I5=12

Px6=2 Py=1 Pp=3 Xw=4 X,=0 Xp=5 1=10

2 2 2_
ri+ra+rs=1

2 2 27 . . .
ro+rs+rg=1 (14) Suppressing the un_knovm, G can be wewgd as a Izmearzsys-
2. 2. o tem of 68 equations in 68 unknown monomiafs |13, rqr3,
rg+rg+rg=1 2 2 2 2 .3 2 2 2
M43, Tales r72r4, Fola Tay 170, Talar, 13, rglzb rars, 13 lafse,
r2+ra+ri=1 F1fe, Mafes T lal7, Fal7, Tal7, Tolg, 7, llg, Filg, Falg,

2 2
Igfe, Mg, g, lzalg, I1lg, Tafg, rgzrey 79, Tgle, g Tala,
I‘ll’z, r2r31 r2r6, I’2r7. I’22I’3, rzrg, I’z, |er4, rlr4, I’4r3, r4r6,
Fir3+rargtrorg=0 (15) rorg, rgryg, rolg, rolg, Iy, hl_, hy, hs, Iy, Iyl., l,1, ri, s, fe,
r;, rg, rg, ro, ry and 1, with the polynomial coefficients ex-
pressed in terms afs.

Frotrgars+rorg=0

For3+rsrgtrgrg=0

r7=rolg—r3ls 91 r3
_ : 68x68 || I,,r2
rg=rars—rifg (16) = } 24 18
a; ek{rs] (18)

Fg=rils—Ioly Jes 1

The constant length condition of vectiris expressed as SinceG={g, . .. Jsat =0, Eq.(18) reduces tSX=0 where
2_12 12 42 S is the 68<68 Sylvester's(or coefficien matrix andX is the
I1_|><1'Hyl+|zl (17)

68x1 column matrix of the unknown variabléthe 68 monomi-
The direct kinematics problem can now be stated as follows: fats). The vanishing of the Sylvester's matrix determinant, i.e.,
specified leg lengths;, for j=1,...,6,determine all possible |S|=0, yields the following univariate resultant

!
Flo=ra'—40.340684363+ 2613.6742963°+ 48741.596102 — 428723.42903°— 4274132.1972°— 83540302763

—110093304833+0.175921451&11r 32+ 0.196535086812r 3+ 0.104804852613r 3°— 0.23454202081 4r 2°
+0.151986934815r 28— 0.253214200&16r 2+ 0.576304101416r 2°— 0.126250899218 2>+ 0.170809318619r 2*
—0.128022655620r 2°+ 0.127702157821r 2>~ 0.143843506@21r 2*+ 0.295963589622r 2°— 0526810815423 1°
+0.703620947623r £ 0.460723251624r 1+ 0.953246312€25 1°— 0.180886663426r 1>+ 0.210068031&27r £
—0.205861282628r £+ 0.689337936628 12— 0.384833182829r 11+ 0.174968772&30r :°— 0.368451476430r
+0.109276442631r§—0.212210100631r . — 0.157733543&31r £+ 0.516745223d31r 2+ 0.454574861431r
—0.980472596631r 3+ 0.952200198831r2— 0.161065091432r s+ 0.999486995831= 0 (19)
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HereF o is the 40th degree 1/O polynomial for the forward kine-
matics problem of the general Stewart mechanism and it is devoid
of any extraneous factors. This result is in agreement with the
40th degree polynomial obtained by Hu$i0] where Soma co- Since these equatiori&gs. (20)—(22)) are devoid ofr3, rg and
ordinates were used to represent rigid-body displacements. How- the following equations

ever, unlike Husty’'s formulation where intermediate polynomials
of high degree(up to 320 are generated, the hybrid approach
directly yields the 40th degree 1/0O polynomiétq. (19)). For
some non-constructive proofs regarding 1/0 polynomial degree,
see Mourrain11], Lazard[12] and Wample13]. These proofs

are non-constructive because the forward displacement analysis
problem was not reduced to a single univariate polynomial; in-
stead the polynomial degree was reported using algebraic
techniques.

Two items are worth mentioning at this point. First, it is not
necessary that the smallest variable in dex term order should from the dot- and cross products of the orthogonal vectors of the
be hidden to set up the Sylvester's matrix even though it is thetational matrix R] are used. The forward kinematic analysis of
case with the example above whergis suppressed. Second, itthe Stewart platform is identical to that of the Stewart mechanism.
may be noted that the forty solutions could also have been obhus given the leg lengthis, for j=1, ... 6,determine the po-
tained by solving the generalized eigenvalue probi@q. 18  sition and orientation of the top platforrtfig. 3). The system of
instead of expanding the determinant of the Sylvester's matrigquations, Eqg20)—(23) represents 11 equations in 11 unknowns
The reason for expanding the determinantSto derive the ry,r,, r,, 15, 17, rg, Ly, ly1, 1,1, hy andh,. Using the method
univariate 1/0 polynomial is that this polynomial contains af Grobner basis and the ‘dlex term ordering< r ,<{f,<qfg
wealth of other information about Stewart's mechanism such as;r, < r;<;h,<th;<ql,;<7l;<7l,;, the reduced Gimer
its singular and unstable configurations which can be determinggsisG is derived. The CPU time needed to compGteas 41.29
by analyzing discriminants of Eq19). sec on a P3-600 MHz PC with 64 Mb Ram. The reduceth@eo

The solution for the remaining unknowns proceeds as outling@sis for this mechanism contains 43 polynomials of which only
earlier (see Eq(5)). For instance, by using the first 67 equationgs polynomials in three unknownms, r, andrs can be used to set
in Eq.(18), it reduces t5' X' = — Sp whereS' is a 67<67 matrix up the Sylvester’'s matrix. Due to space limitations, these polyno-
formed by deleting the last row and last columnS¥’ contains mials are not included herein but for the numerical data given
the first 67 elements of; and S, contains the first 67 elements ofbelow, they can be found in Appendix G of AlImdd].
the last column ofS. The unknown variables;, r,, r3, r4, rg,
r7, s, g, b, ly1, 11, hy, hy @andhg appear linearly inSp.

(22)

2_ 12 2 2
Ilflxl—Hyl—Hzl
ri+ri+ra=1
ra+ri+ri=1

(23)

[fotrarg+rorg=0

Since Sp is given in terms ofrs, by solvingS'X'=-Sp, an p"l;g gyl;g ;Xl;g ;yl;g :1;3
explicit expression for each of the 14 unknown variables can X§:3 p§§:5 Xg:g x§§:4 |§:10
obtained inrs. Hence, the Stewart mechanism has 40 possibjg,=1 Pya=0 Xea=5 Xya=1 l,=14
solutions(real and complexsince the 1/0O polynomial in Eq19) p,s=4 Pys=2 Xy5=0 Xy5=2 l5=12
is a 40th order polynomial and the remaining unknown variablgse= 2 Pye=1 Xye =4 Xy6=0 l=10

are linear and expressed explicitly iig. It should be noted that

since[R] is a direction cosine matrix, the elements)(of this
matrix must satisfy the additional constraimf|<1. Otherwise,

With the unknowrr 5 suppressed, the 15 polynomials, given as
g; fori=1,4,7,9, 10, 11, 15, 16, 19, 20, 32, 34, 35, 41 and 43,

the solution is considered to be complex since ¢@s>1) or

oy can be viewed as a linear system of 15 polynomials in 15 un-
sin”*(r;>1) leads to complex values.

4 .3 2.2 .3 4 .3 .2 2 3 .2 2
knownsrs, P304, T4l o Tal2s Vay U2, T304, T4la, T, T, Tol4a, TG,
r,, r, and 1, with their coefficients expressed in termsf The
determinant of the 1815 Sylvester's matrix leads to the follow-

5 Direct Kinematic Analysis of General Stewart Ing 20th degree I/O polynomial.

Platform

Consider the general Stewart platform shown in Fig. 3 where
all grounded spheric joints are in tiéy-plane of the base frame,
i.e.,x;;=0forj=2,...,6.Likewise, all moving spheric joints are
assumed to lie in th&'Y-plane of the moving frame, i.@,;=0,
for j=2,...,6.Thus usingx,;=p,;=0, Eq.(12) reduces to

2N 1(pyj) + 2h(py;) + I 154X =12 = 2[ ()T 1+ (Pyj)T 2] Xy
= 2[(Pxj)rat (Pyj)rslXy;— 2l (Xxj) — 21y1(Xy;) =0,

i=2,...,6 (20)

where
hy=lar+lyara+1ary 21)

ho=lr+lyirs+1arg

The length of the vectalr; is given as(Eq. (17))

Fig. 3 A 6-DOF general Stewart platform

436 / Vol. 122, DECEMBER 2000 Transactions of the ASME



Fuo=r2%+114.3340396L°— 1979.590756L°— 157556.6167:'— 2598196.666:°+ 120040087.2:°— 931649530.42*
+0.639067469811r >+ 0.884224513812r 12— 0.266242820814r '~ 0.723697797&13r :°+ 0.127696386416r
—0.143475478616r 8+ 0.131759054817r . — 0.78651345241 7r $+ 0.225751676818 2 — 0.441396 868818 2
+0.574047038418r 3 — 0.435903165618r 2+ 0.170486863618" s — 0.263918225617=0 (24)

The CPU time needed to derive this polynomial is 19.737 se@. 8-Link 1-DOF Planar Mechanism
For this problem, depending on the term order, the CPU times
needed to deriv& range anywhere from 30—75 seconds with a
ég?;i'r??ﬁé ﬁﬁ&iﬁastgcr%gﬂlsta?\?eded to expand the determinan e input is provided to link 3 and link 1 is the output link. For

The solution for the remaining unknown variables is obtainethEFrg%CS Zﬂz%gg?&h{ﬁ: lg”g?gﬁ)g%?gtéoggﬁé::g]gy OABCD,
as follows. By deleting the last row and column of Sylvester’ ' P q

matrix and treating the last column of Sylvester's matrix as ar_ cog @)+ rg COS ) =5+ 15 COS 01+ )+ 3 COS O+ )
known column matrix, yields the following system of equations:

Consider the 8-link mechanism shown in Fig. 4 with link 5 as
g ground. This mechanism does not contain any 4-link loops.

rs —S115 27)
-1 : . . . .
_[ 14xa4 } (25) 5 SIN(03) + g SIN Og) = 15 SN 0, + B) + T 5 SIN B+ 5)
2 ajekrs] —S1315
r4 _814,1 r3aCOE(93+a)+r4C0304)+r800108)
The unknown variables, andr, appear linearly in the left- =rg5+rq.,C086,+B)+r,coq6,) 28)

hand side of Eq(25). The right-hand side of Eq25) only con- ) _ _
tains variablers. Upon expanding E¢(25), explicit expressions I'3a SIN( O3+ ) +1 4 SIN(04) +1'g SIN(Og)

for r, andr, can be derived in terms af;. With the unknown _ . .
variablesr, andr, uniquely defined for each of the 20 solutions =T1a SO+ B) 12 SIN(6;)

of r5 in Eq. (24), the polynomialsgi,e[ri,ro,r4,rsl, 9ss I35 COS O3+ ) +14,C08 ,+ y)+r5C0g 6;)=rc+T1, cOS 6,)
eklra,rs,rs.lal, 926e k[r21f4vr5,h2]: 927€ K[ra,r4.rs.ly1] 3 0055 . aryTh ERE
and g,geK[r;,r4,r5,h,] are linear inry, 1y, hy, 1y, andhy (29)
respectively. Hence, each of these polynomials yield a linear ex-

pression forry, |y, hy, 1y, andh; respectively, in terms of;, I 30 SIN( O3+ @)+ 45 SIN( 04+ )+ 15 SIN(6;) =T, Sin( 6;)

r, and rg. Similarly the polynomialsggeK[r5,rs5,rgl, 924

ek[r,,rs,rs.r7] and gspek[r,,r4,rs.1,1] are of 2nd order in In Egs.(27)—(29), r;, 63, a, B, y and & are known andd;, 6,,
rg, r; andl,, respectively. 04, 0, 67 and 0 are unknown. If cogf) and sing) are treated
as algebraic variables witky=cos(,) andy;=sin(¢), then Egs.

— 2
9= 31 g T D1a,  Aspk,  Digeklra ] (27)—(29) and the trigonometric identity cé®),)+sir(6,)=1 for

Uos= a24r§+ Doy,  @psek, bosek[ry,rg,rs] (26) j=1,2,4,6, 7,8, yield a system of_ 12 a_Igebraic equations in 12
unknowns. Using thellexterm ordering withx; <ty;<y ... for
Os0=asd 2+ b3, agek, byoeklry,ry,rsl j=1, 8, 7, 6, 4, 2 and the method of Ger bases, the above
sxstem of 12 equations leads to the reducedbGeo basisG
Here any one of the above generators can be used to solve for

=101, . . . ,020}. Due to space limitations, these polynomials are
not reported here, but for the numerical data given below, the 29
polynomials are given in Appendix G of Almaf®].

unknown. For instance ifi3q is used to solve fot,; with |,,=
+ J=bzp/azo, We can solve forg andr using generatorg,, and
0,1 Which are linear irrg andr, respectively.

Ju= r7r8—4.9167§— 6.9167,r,—9.75,r5+15.5,+ 1,05,
Oo1=l,1r7—32.7785—107.222 1 ,— 136.29167,r 5 + 208.958 ,
—90.4442%—226.2917,r 5+ 322.4588,— 141.3752

+432.62%5—327.25,

Since Egs(24) and (25) yield a total of 20 sets of solutions for
ro, ry andrs, 912, Uss, 926, 927, Uog, Yield unique values for
1, I, N2, ly1, hy respectivelyggg leads to two values falr,,
and g4, g4 Yield unique values forg andr respectively, the
Stewart platform has a total of 4@eal and complexsolutions.
This result is in agreement with the 40th degree 1/0 polynomial
for the Stewart platform predicted by Raghavydd] using poly-
nomial continuation and a closed-form solution derived by Zhang
and Song[15]. However, unlike Zhang and Song's approach
where 21 equations were used to derive the 20th degree I/O poly-
nomial, it is shown herein that this polynomial can be obtained
using only 15 equations. E(R4) can also be derived by usingan O
even smaller 1313 Sylvester’s matrix obtained by using the
term orderh; <th,<trg<ir7<qrs<ql s<qr <1l 1 <7l 1 <7ly;
<tly- Fig. 4 A general 8-link 1-DOF mechanism
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and the uniqueness of the newly generated polynomial w.r.t. to the

— — — — — monomial ideal(of F) is guaranteed through the normal form
;1:}137'80 rr 2__263;95(’)0 P: 288 rr4__73'05% ;5__13'(5)8 reduction algorithm, i.e., whenever a new polynomial is generated
6= 4 7= £9. 8= 0. 1a™ 9 23~ 4. ; ; ; ;
rss=10.00 r,,=7.50 a=ml2 B=ml2 S=m/2 using theS-polynomial algorlthm, the normal form reduction al-
y=l2 6;=21.00° gorithm allows one to determine whether or not the new polyno-
mial is reducible to zero using other polynomials. Since ideal
o . (F)=ideal(G) throughout the solution process, this insures that
_ The_ polynomials |n(330ar21 be V|2ewed as ‘2"" system of 29 gqua\mnishing of the resultant, given as the determinant of Sylvester's
tions in 29 unknownscg, Xgy1, Y7, X7¥7. X7, Y8¥7, X7¥s, Y&  matrix, yields the necessary condition for the polynomial§ifas
Y7Xg, XgX7, YgXg, xg, Y7¥1, Y1X7, Y1Ys: XgY1, yf, Yo, X2, Y4, Wwell asF) to have a common factor.

X4, Yo, X6 Y7: X7, Vg, Xg, Y1 and 1, with coefficientsy; The application of the proposed method is rather straightfor-
e k[x;]. The determinant of 2929 Sylvester'scoefficien} ma- ward and it is demonstrated through kinematic analysis of a num-
trix yields the 16th order 1/0O polynomial iR, (= cos(y)): ber of mechanisms. Using the Grmer-Sylvester hybrid method, a

40th degree I/O polynomial is derived for the forward kinematic

—y16__ 15 14 3
Fijo=x1°~2.300807218;°+9.154401868; "+ 0.120319179% analysis of the general Stewart mechanism. In the case of Stewart

_1046924935%2"1‘ 317566471‘%1_ 110691250@%0 platform, the forward kine.matics problem .I’esult.ed in the 20th

degree(40th degree counting all solutions including mirror im-

—8.465327682§+50.66174232?—26.347206951 ages 1/0 polynomial. The applicability of the hybrid approach is
. s . also demonstrated through the derivation of the 16th degree 1/O
—2.85288718%; + 30.78856558; — 25.5645170%; polynomial for an 8-link 1-DOF mechanism that does not contain

3 5 any 4-link loop. These three examples demonstrate that the pro-
+3.96056962%, + 10.28770088; — 7.13220703%, posed approach can be successfully used to perform closed-form
+1.232747445 0 displacement analysis of planar and spatial mechanisms devoid of

. o any extraneous roots.
Here the entire set of generatgmlynomialg in G are needed to

set up the Sylvester’'s matrix because all links fully participate in

the mechanism motion. Hence there exists no subsetthat can References
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