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The displacement analysis problem for planar and spatial mechanisms can be writt
a system of multivariate polynomial equations. Elimination theory based on resul
and polynomial continuation are some of the methods that have been used to solv
problem. This paper presents a new approach to displacement analysis using the re
Gröbner basis form of a system of equations under degree lexicographic (dlex)
ordering of its monomials and Sylvester’s Dialytic elimination method. Using
Gröbner-Sylvester hybrid approach, a finitely solvable system of equations F is tr
formed into its reduced Gro¨bner basis G using dlex term ordering. Next, using the en
or a subset of the set of generators in G, the Sylvester’s matrix is assembled. The
ishing of the resultant, given as the determinant of Sylvester’s matrix, yields the nece
condition for polynomials in G (as well as F) to have a common factor. The propo
approach appears to provide a systematic and rational procedure to the problem
cussed by Roth, dealing with the generation of (additional) equations for constructin
Sylvester’s matrix. Three examples illustrating the applicability of the proposed appr
to displacement analysis of planar and spatial mechanisms are presented. The firs
second examples address the forward displacement analysis of the general 6-6 S
mechanism and the 6-6 Stewart platform, whereas the third example deals with th
termination of the I/O polynomial of an 8-link 1-DOF mechanism that does not con
any 4-link loop.@S1050-0472~00!01204-6#
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1 Introduction

Kinematic motion analysis and design of mechanical syste
lead naturally to system of nonlinear algebraic and/or transc
dental equations. One of the most frequently occurring proble
in kinematics is to find solutions to this system of equations. T
solution approaches for such equations can be broadly div
into two classes: numerical~iterative! methods and closed-form
~analytical! techniques. Numerical techniques rely heavily on n
merical iteration while closed-form techniques are based on a
lytical expressions and often require massive algebraic manip
tions. Using numerical methods, a kinematics problem
considered solved if a tight upper bound on the number of s
tions can be established, and an efficient algorithm for compu
all solutions can be implemented. The commonly used itera
methods are variants of either the Newton or conjugate grad
methods. These methods require an initial guess at the solutio
the initial guess is not close enough to a solution, the iterati
may converge slowly, converge to an unacceptable solution
may diverge altogether. However, the Newton’s method is a v
able tool and is used as the building block for numerical conti
ation methods.

Numerical continuation~homotopy! methods have been used
solving kinematic equations of motion for planar as well as spa
mechanisms. They are based on the concept that a system of
nomial equations can undergo small changes in the system pa
eters producing small changes in the solutions. If the system
equations to be solved can be cast in a polynomial form, num
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cal continuation methods are capable of finding all possible s
tions and eliminate the need for a good initial estimate to
solution @1#.

Analytical or closed-form solutions to kinematic equations c
be obtained using elimination theories based on resultants@2# or
Gröbner bases@3#. In general, there are two types of eliminant
The first is concerned with the elimination of one variable in tw
polynomials. The commonly used resultant matrices for su
problems are those of Sylvester and Be´zout. These resultants ar
particularly effective in eliminations involving non-homogeneo
polynomials. For a system ofn polynomials in two or more vari-
ables, the resultant is defined as the greatest common divisor
set of determinants~resultants!. Hence, through successive or r
peated application of resultants it may be ‘‘possible’’ to reduc
multivariate system of polynomials to one or more univaria
polynomials.

For resultants of the second type,n21 variables are eliminated
simultaneously from a system ofn polynomials. The eliminant is
a matrix whose columns are indexed by the monomials in
polynomial ring and whose rows are indexed by monomial pr
ucts of then polynomials. The resultant is a polynomial in th
remaining variable. For a system of three or more equations
general conditions exist which express the resultant as a dete
nant, except for special class of systems of equations. Howeve
may be possible to express the resultant as a quotient of
determinant divided by another. The divisor is the extraneous
tor. Since it is difficult to identify whether or not extraneous fa
tors exist, it is not possible to insure that a resultant is devoid
extraneous solutions. For certain equation structures, it may
possible to derive the resultant using Sylvester’s dialytic elimi
tion method. In other cases, extraneous factors can be ident
and eliminated as demonstrated by Macaulay@4# for homoge-
neous systems. However, problems arising in synthesis and a
sis of mechanisms often result in a system of non-homogene

.
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polynomials. Hence, Macaulay’s approach is not suitable for s
problems because the system of equations has extraneous
tions including solutions at infinity, and thus the eliminant mat
is degenerate.

Elimination theories for solving multivariate polynomial equ
tions such as Gro¨bner bases are related in their basic form
Gaussian elimination’s for linear equations and Euclid’s algorit
for solving nonlinear univariate polynomials@5#. Just as Gaussian
elimination triangulates a system of linear equations, eliminat
based on Gro¨bner basis under lexicographic term ordering of va
ables, i.e.,xn, . . . ,x1 produces a triangular set of nonline
polynomials. Generally, the resulting Gro¨bner basis can be parti
tioned into sets of nonlinear polynomials where the last set
volves only one polynomial inxn with minimal degree, the se
before the last involves only the last two variables,xn21 andxn ,
etc. The complete solution set for the original multivariate syst
of equations can then be obtained by first solving the last univ
ate polynomial inxn , next substitute each solution ofxn in the set
of polynomials immediately preceding it, which are now univa
ate polynomials in the variablexn21 , and so on,@5#. However, for
kinematics problems of ‘‘reasonable’’ complexity, the Gro¨bner
basis method under lex term ordering has been quite ineffic
because of exploding intermediate results and excessive com
tion times@6#. For a comprehensive review of the state-of-art
solving polynomial systems arising in kinematics, see Ragha
and Roth@7#.

To overcome the difficulties of existing approaches, this pa
presents a new method for solving algebraic system of equat
which utilizes the reduced Gro¨bner basis form of the system o
equations under total degree term ordering of its monomials
Sylvester’s Dialytic elimination method. Using the proposed h
brid approach, the system of equationsF is first transformed into
its reduced Gro¨bner basis representationG. Next, using the entire
or a subset of the set of generators inG, the Sylvester’s matrix is
assembled. The vanishing of the Sylvester’s determinant yi
the necessary condition for the polynomials inG as well asF to
have a common factor.

The proposed method provides a systematic approach for
structing Sylvester’s matrix. Normally, the construction
Sylvester’s matrix requires an exhaustive search involving mu
plication of the polynomials inF by appropriate monomials
~power products! until a new system of equationsH is generated
such that the number of polynomials inH is equal to the numbe
of monomials inH. The Sylvester’s matrix can then be co
structed directly usingH. For a general system of equations,
systematic procedure exists for constructing additional equat
and setting up the Sylvester’s matrix@6#. Further, even if a result-
ant matrix can be obtained, it is not possible to conclude whe
or not extraneous factors are present in the resultant. In an att
to outline a general procedure for constructing a resultant ma
for a system ofn equations inn unknowns, Macaulay@4# pre-
sented an approach applicable strictly to homogeneous syste
equations. In addition, the proposed approach may lead to
introduction of extraneous factors as alluded to by Macaulay.
Gröbner-Sylvester hybrid approach may prove to be an impor
step towards a general approach for constructing a resultant
trix devoid of extraneous factors. In this method, the step
generating additional equations is based on a division appro
similar to theS-polynomial and normal form reductions of Gro¨b-
ner bases method rather than the common approach base
polynomial-monomial multiplications. Through three numeric
examples, it is shown that the proposed hybrid approach ca
used to perform closed-form displacement analysis of spatial
planar mechanisms devoid of any extraneous roots.

2 Gröbner Bases: Basic Concepts
If F is a system of polynomial equations, the Gro¨bner bases

method reduces the problem of solvingF to manipulating the
monomials inF. This transformsF into its Gröbner basis repre-
432 Õ Vol. 122, DECEMBER 2000
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sentationG that generates the same ideal asF but is easier to
solve. In brief, the Gro¨bner basis for idealI generated byF
Pk@x1 , . . . ,xn# over field k, is a set of generatorsG
Pk@x1 , . . . ,xn# that generate the same idealI, but are simpler in
form and easier to solve. The Buchberger’s algorithm is a sim
and effective method for computing Gro¨bner bases. Since Gro¨b-
ner bases computations involve manipulating the monomials inF,
the notion of term ordering, denoted,T , on the set of monomials
in F must first be introduced.

A polynomial equationf iPF can be viewed as a finite sum o
nonzero terms with distinct monomials with scalar coefficien
Hence, it is necessary to fix a term ordering,T on the set of
monomials in eachf iPF. Two term orderings which play an
important role in solving polynomial systems include the lexic
graphic~lex! order and degree lexicographic~dlex! order.

Lexicographic Ordering (lex): Let the term ordering on the
variablesx,y,w be fixed asw,Ty,Tx. This yields 1, lexw¯

, lexy
2w, lexy

3, lexx, lexxw¯, lexx
3. In lex order, a variable

dominates any monomial involving only smaller variables, rega
less of its total degree.

Degree Lexicographic Ordering (dlex): Let the term ordering
on the variablesx,y,w be fixed asw,Ty,Tx. Using dlex order,
the terms are first ordered by total degree and within a gi
degree lexicographically. This yields 1,dlexw,dlexy,dlexx
,dlexw

2,dlexyw¯,dlexx
2y,dlexx

3.
Since a polynomial is uniquely expressible as a finite sum

nonzero terms involving distinct monomials, a term ordering p
mits a comparison between every pair of monomials in the po
nomial to establish their relative positions. Thus every polynom
f PF must be arranged such that its monomials are ordered
descending sequence under the term ordering,T .

2.1 Computation of Gröbner Basis. The computation of
Gröbner basis is based on the following properties of polynom
ideals:

Property 1:
If FPk@x1 , . . . ,xn#, then for any f PF, constantc and u

Pk@x1 , . . . ,xn#, f,cu fPI 5Ideal(F).
Property 2:
If f i , f jPF and r is the division remainder off i , f j , then r

PI 5Ideal(F).
Based on properties 1 and 2, Buchberger@3# introduced the

notion of aS-polynomial for eliminating leading monomials, an
the concept of normal form as a reduction algorithm for a
eliminating monomials. The Buchberger’s algorithm consists
two steps: the computation ofS-polynomials and their norma
form reduction.

The S-polynomial, designed to produce cancellation of leadi
terms, is defined as follows: letFPk@x1 , . . . ,xn# a system of
polynomial equations andI 5Ideal(F). If f i , f jPF, then their
S-polynomial, denotedSpoly( f i , f j ), is given as

h5Spoly~ f i , f j !52Spoly~ f j , f i !5ui f i2cjuj f j (1)

where cj5Lc( f i)/Lc( f j ), ua5 l i j /ma5Lcm(Lm$ f i , f j%)/
Lm( f a). HereLc(•), Lcm(•) andLm(•) denote leading coeffi-
cient, least common multiple and leading monomial, respectiv

The definition ofSpoly( f i , f j ) in Eq. ~1! makes use of both
properties 1 and 2. SincecjPk, ui ,ujPk@x1 , . . . ,xn# and f i , f j
PI ui f i ,cjuj f jPI and therefore the division remainderhPI .
Note thatui f i and cjuj f j have the same leading termLc( f i) l i j
Pk@x1 , . . . ,xn# which is eliminated usingSpoly( f i , f j ). Hence,
Spoly( f i , f j ) may be viewed as one step in a generalized divis
andh is the division remainder.

The normal form reduction algorithm is designed to elimina
monomials such that no leading monomial of one polynomial
vides the monomials of another. For instance, letf ,g
Pk@x1 , . . . ,xn# andLm( f )<Lm(g), theng is said to be reduc-
ible to h if and only if a monomialmiP^m(g)& is divisible by
Lm( f ). Here^m(g)& denotes the monomial ideal ofg. Hence,
Transactions of the ASME
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whereci5coefficient ofmi in g/Lc( f ), ui5mi /Lm( f ), and the
term involving the monomialmi in g has been deleted, i.e
^m(h)&5^m(g)2mi&. If there exists an appropriateciPk and
uiPk@x1 , . . . ,xn# such that

g2c1u1f→¯h82ciui f¯→h

and no further reductions ofh are possible w.r.t.f, thenh is said to
be the normal form ofg modulo f. Thus no monomial inh is
divisible by Lm( f ). In general, if there exists an appropriateci
Pk, uiPk@x1 , . . . ,xn# and f jPF such that

g2c1u1f a→¯h82ciui f j¯→h

and no further reductions ofh are possible w.r.t.f jPF, thenh is
said to be the normal form ofg modulo F, denoted h
5NForm(g,F), and no monomial in h is divisible by
^Lm( f j )u f jPF&, the leading monomial ideal ofF. With the
S-polynomial computation and the normal form algorithm pro
erly defined, the algorithmic criterion for Gro¨bner bases is formu
lated next.

Let F5$ f 1 , . . . ,f s%Pk@x1 , . . . ,xn# be a system of polynomia
equations, thenF is a Gröbner basis if and only if for 1< i , j
<s, NForm(Spoly( f i , f j ),F)50. SinceF is a finite set of poly-
nomials, one has to consider finitely many pairsf i , f jPF and
compute the Spoly( f i , f j ) polynomial to see whethe
NForm(Spoly( f i , f j ),F)50. This is done as follows. LetF
5$ f 1 , . . . ,f m%Pk@x1 , . . . ,xn# and for 1< i , j <m, computeh
5NForm(Spoly( f i , f j ),F). If hÞ0, thenhPIdeal(F) and can
be adjoined to the list of polynomials in the generating seF
without changing the ideal generated byF. Hence,

m5m11

F5Fø$h%

Repeat this step until for all 1< i , j <m,
NForm(Spoly( f i , f j ),F)50. Upon termination of this algorithm
yields the Gro¨bner basis.

A system of polynomial equations may have many Gro¨bner
basis representations w.r.t. a fixed term order,T . For instance,
the number and form of generators inG is sensitive to the order in
which f i , f jPF pairs are selected for the computation of ea
Spoly( f i , f j ). Further, using theS-polynomial and the norma
form algorithm outlined previously, the resulting Gro¨bner basisG
for a system of polynomial equationsF may contain more genera
tors than necessary. Therefore, some generators inG may be
eliminated without changing the ideal generated byF. However,
for any system of polynomial equationsF, there exists a unique
Gröbner basis, calledreduced Gro¨bner basis, defined as:G is a
reduced Gro¨bner basis if and only if for eachgiPG, Lc(gi)51
and no monomial ofgi lies in ^Lm(G2$gi%)&, i.e., no monomial
of gi is divisible by the leading monomial of anygjP$G
2$gi%%.

3 Gröbner-Sylvester Hybrid Method
If FPk@x1 , . . . ,xn# is a finitely solvable system of equation

the corresponding reduced Gro¨bner basisG under lex term order-
ing of the monomials withxn,T¯,Tx1 contains a univariate
polynomial gpPk@xn# with minimal degree@3#. However, the
computation of the reduced Gro¨bner basis under lex term orderin
is very sensitive to permutation of the variables whereas the
duced Gro¨bner basis computation using dlex ordering is mo
stable. Further, the computation of the reduced Gro¨bner basis un-
der dlex ordering has the advantage of being more efficient w
computation times and memory requirements. In fact, for th
example problems considered herein, a univariate polynomial
obtained using the Gro¨bner-Sylvester hybrid approach whe
other methods such as the Gro¨bner bases under lex term orderin
have failed.
Journal of Mechanical Design
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The Gröbner-Sylvester hybrid approachfor solving polynomial
systems arising in kinematics problemsis outlined as follows. Let
F be a finitely solvable system of equations given asF
5$ f 1 , . . . ,f m%Pk@x1 , . . . ,xn# wherek is an arbitrary field. Us-
ing the Buchberger’s algorithm and dlex term ordering withxn
,T¯,Tx1 , the reduced Gro¨bner basis is given asG
5$g1 , . . . ,gp%Pk@x1 , . . . ,xn#. With G known, it may be pos-
sible to the construct Sylvester’s matrix usingG or a subset ofG.

If the entire set of polynomials inG is used to setup the
Sylvester’s matrix, then there may exist a variablexi such that
eachgiPG can be expressed as

gi5(
j

ai j mj , ai j Pk@xi #,

mjPk@x1 , . . . ,xi 21 ,xi 11 , . . . ,xn# (3)

and the number of monomialsmj in G ~including 1! may equalp
~the number of polynomials inG!. For such a case,G can be
viewed as a system of linear polynomials in the unknown mo
mials m151,m2 , . . . ,mp . In matrix form, this linear system is
given as

F g1

]

gp

G5F p3p
ai j Pk@xi #

GF mp

]

m2

m151
G (4)

Theorem: Let F be a finitely solvable system of equations a
G5$g1 , . . . ,gp% is the corresponding reduced Gro¨bner basis un-
der dlex term order. Then the vanishing of the determinant of t
coefficient matrix given by Eq.~4! gives necessary condition fo
polynomials inF andG to have common solutions.

Proof: Since G5$g1 , . . . ,gp%50, Eq. ~4! reduces toSX50
whereSPk@xi # is the p3p Sylvester’s~coefficient! matrix and
XPk@x1 , . . . ,xi 21 ,xi 11 , . . .xn# is the p31 column matrix of
the unknown monomials. For this homogeneous system of eq
tions to admit a non-trivial solution,S must be singular, i.e.,R
5uSu50.1 ThusR50 yields the necessary condition for the pol
nomials in G to have common solutions. Sinceideal(G)
5 ideal(F), the vanishing of the resultantR yields the necessary
condition for the polynomials inF to have common solutions.

It may be noted that the sufficiency of the above condition
not guaranteed because the possibility of extraneous solution
infinity cannot be ruled out fromG. However, for polynomial
systems arising in our work on kinematics of mechanisms, it w
seen that the proposed approach, in every instance, yields an
polynomial of correct degree devoid of any extraneous roots.

With xi known from R, the other variables are solved as fo
lows. Since Sylvester’s matrix is singular,rank(S)<p21.2 If
rank (S)5p21, by deleting the last row and column of Sylves
er’s matrixSand the last row of the monomials column matrixX,
Eq. ~4! yields

F ~p21!3~p21!

ai j Pk@xi #
GF mp

]

m3

m2

G5F 2a1,p

]

2ap22,p

2ap21,p

G (5)

or simply S8X852Sp where Sp5@a1,p , . . . ,ap22,p ,ap21,p#T is
the last column of Sylvester’s matrixS with the last row deleted.
SinceS8,SpPk@xi #, andX8Pk@x1 , . . . ,xi 21 ,xi 11 , . . . ,xn#, Eq.
~5! can be explicitly solved forx1 , . . . ,xi 21 ,xi 11 , . . .xn in terms
of xi .

1The determinant is called the resultantR of the system of equations inG.
2If rank(S)5r ,p21, a system of nonlinear equations needs to be solved

determinemi , i 52, . . . ,p. By elementary row operations, matrixS can be reduced
to an upper triangular form where all matrix entries in rowsr 11 throughp are
identically zero. The first monomial to be solved will correspond to therth row and
the remaining monomials can be solved using back-substitution.
DECEMBER 2000, Vol. 122 Õ 433
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On the other hand, if a subset ofG is used to setup the Sylves
er’s matrix, then there may existq polynomialsgiPG defined in
terms of $xa , . . . ,xb%,$x1 , . . . ,xn%. If each hi5gi
Pk@xa , . . . ,xb# is expressed as

hi5(
j

ai j8 mj8 , ai j8 Pk@xi #,

mj8Pk@xa , . . . ,xi 21 ,xi 11 , . . . ,xb# (6)

and the number of monomialsmj8 in H5$h1 , . . . ,hq% including 1
is equal toq ~the number of polynomials inH!, then H can be
viewed as a system of linear polynomials in the unknown mo
mials m1851,m28 , . . . ,mq8 . In matrix form, this linear system is
given as

F h1

]

hq

G5F q3q
ai j8 Pk@xi #

GF mq8

]

m28

m1851
G (7)

Here too, H5$h1 , . . . ,hq%50 and Eq.~7! reduces toSX50
where SPk@xi # is the q3q Sylvester’s matrix and X
Pk@xa , . . . ,xi 21 ,xi 11 , . . .xb# is theq31 column matrix of the
unknown monomials. From Eq.~7!, the resultant~R! is given as
the determinant of the Sylvester’s matrixS. The vanishing of this
resultant yields the necessary condition for the polynomials inG
as well asF to have common solutions sinceG generates the sam
ideal asF. With xi known from R, the solution for the other
variables xa , . . . ,xi 21 ,xi 11 , . . .xb is obtained as follows. If
rank (S)5q21, upon deletion of the last row and last column
S and the last row of columnX, Eq. ~7! leads to

F ~q21!3~q21!

ai j8 Pk@xi #
GF mq8

]

m38

m28

G5F 2a1,q8

]

2aq22,q8

2aq21,q8

G (8)

or simply S8X852Sq where Sq5@a1,q8 , . . . ,aq22,q8 ,aq21,q8 #T is
the qth column of S with the qth row deleted. SinceS8,Sq

Pk@xi # and X8Pk@xa , . . . ,xi 21 ,xi 11 , . . . ,xb#, Eq. ~8! yields
expressions forxa , . . . ,xi 21 ,xi 11 , . . .xb explicitly in terms of
xi . With xa , . . . ,xb known, the remaining polynomials inG can
be used to derive explicit expressions for the remaining unkno
variables $x1 , . . . ,xn%2$xa , . . . ,xb% in terms of xa , . . . ,xb .
The case whenrank(S),q21 is handled in a manner discusse
earlier.

It should be noted that the form and number of generators in
reduced Gro¨bner basis is quite sensitive to the term ordering,T
on the set of monomials. Even though the reduced Gro¨bner basis
G for a system of equationsF is always unique w.r.t. a single term
ordering,T , different term orderings can yield completely di
ferent G’s. Therefore, even though the system of equations p
cessed by the hybrid approach is not unique~because it depend
on the term order,T!, the resultant expressed inxi is always
unique and is independent of the term order. Further, it is wo
noting that even though the choice of hidden variable (xi) is ar-
bitrary, there may exist term orderings for which an elimina
cannot be derived fromG regardless of the choice ofxi .

The application of the Gro¨bner-Sylvester hybrid method i
demonstrated next through forward kinematic analysis of the g
eral 6-6 Stewart mechanism and platform. The forward kinem
analysis of these parallel manipulators is quite complex. Nev
theless, using the proposed approach, the univariate I/O pol
mial can be derived quite easily. In addition, the displacem
analysis of a general 8-link 1-DOF planar mechanism is also
formed using this approach leading to the closed-form I/O po
nomial for the mechanism. For all three examples presented
low, the grobner package available in Maple V~Release 3! was
used for Gro¨bner basis calculations. All computations were p
434 Õ Vol. 122, DECEMBER 2000
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formed either symbolically or using rational arithmetic. Therefo
no numerical error is incurred in calculating the reduced Gro¨bner
basisG. Once G is obtained, due to computational limitation
sometimes it was not possible to proceed further using symb
manipulations and/or rational number arithmetic. Consequently
this stage, floating-point calculations with anywhere from 30-2
digits were used to set up and expand the Sylvester’s matri
determine the univariate polynomial.

4 Forward Displacement Analysis of General Stewart
Mechanism

Consider the 6-DOF general Stewart mechanism shown in
1. The six inputs are provided at the prismatic joints in each l
which in turn controls the location and orientation of the upp
platform. For both moving and fixed platforms, the spheric join
Pi and Xi , i 51, . . . ,6, are notrestricted to lie in a plane. The
notation and the loop-closure equations used herein are ado
from Dhingra et al.@8# and are given as follows~see Fig. 2!.

Let xI j denote the vector from the origin of the global system
the grounded spheric pairXj , pI j denote the vector~expressed in
moving frame! from the origin of the coordinate frame attached
the platform atP1 to the spheric pairPj , lI j denote the vector
from the ground spheric pairXj to moving spheric pairPj ex-
pressed in the base coordinate frame withl x j , l y j and thel z j being
thex-, y- andz-components of vectorlI j , @R# is the 333 rotational
matrix ~of direction cosines! denoting the orientation of the mov

Fig. 1 A 6-DOF general Stewart mechanism

Fig. 2 A loop of general Stewart mechanism
Transactions of the ASME
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ing frame relative to the base frame, andxj , l 1 , l j andpj denote
the magnitudes of the vectorsxI j , lI1 , lI j andpI j , respectively.

Then, the loop-closure equations for the mechanism are:

lI j5 lI11@R#pI j2xI j , j 52, . . . ,6 (9)

Equating the magnitudes of the vectors on the left- and rig
hand-side of Eq.~9! as

lI j• lI j5~ lI11@R#pI j2xI j !•~ lI11@R#pI j2xI j ! (10)

leads to

l j
25 l 1

21xj
21pj

212lI1•@R#pI j22xI j•@R#pI j22lI1•xI j (11)

Expanding Eq.~11! yields

2h1~px j!12h2~py j!12h3~pz j!1pj
21 l 1

21xj
22 l j

222@~px j!r 1

1~py j!r 21~pz j!r 3#xx j22@~px j!r 41~py j!r 51~pz j!r 6#xy j

22@~px j!r 71~py j!r 81~pz j!r 9#xz j22l x1~xx j!22l y1~xy j!

22l z1~xz j!50, j 52, . . . ,6 (12)

where

h15 l x1r 11 l y1r 41 l z1r 7

h25 l x1r 21 l y1r 51 l z1r 8 (13)

h35 l x1r 31 l y1r 61 l z1r 9

and (r 1 ,r 2 ,r 3), (r 4 ,r 5 ,r 6), (r 7 ,r 8 ,r 9) represent the three row
of the rotation matrix@R#. Since@R# is orthogonal, the rows and
columns of@R# satisfy the following dot- and cross-product rel
tions

r 1
21r 4

21r 7
251

r 2
21r 5

21r 8
251

(14)
r 3

21r 6
21r 9

251

r 7
21r 8

21r 9
251

r 1r 21r 4r 51r 7r 850

r 1r 31r 4r 61r 7r 950 (15)

r 2r 31r 5r 61r 8r 950

r 75r 2r 62r 3r 5

r 85r 3r 42r 1r 6 (16)

r 95r 1r 52r 2r 4

The constant length condition of vectorlI1 is expressed as

l 1
25 l x1

2 1 l y1
2 1 l z1

2 (17)

The direct kinematics problem can now be stated as follows:
specified leg lengthsl j , for j 51, . . . ,6, determine all possible
Journal of Mechanical Design
ht-

-

for

assembly configurations~real and complex! of the mechanism in
terms of thex-, y- andz-components of the reference legl x1 , l y1 ,
l z1 and the nine elementsr 1 , . . . ,r 9 of the rotational matrix@R#.
The system of Eqs.~12!–~17! represents a system of 19 equatio
in 15 unknown variables, namelyr 1 , . . . ,r 9 , l x1 , l y1 , l z1 , h1 , h2
and h3 . Although only 15 equations~Eqs. ~12!–~13!, Eq. ~17!,
and any 6 equations from Eqs.~14!–~16!! are needed to derive th
closed-form I/O polynomial for this mechanism, the fact that a
ditional equations are used may actually improve the redu
Gröbner basis computational efficiency, provided that the giv
overconstrained system of equations is finitely solvable. In fa
11 additional relations can be derived from the dot- and cr
products of the orthogonal vectors of the rotational matrix@R# that
can be adjoined to Eqs.~12!–~17! to derive the same reduce
Gröbner basis. It should be emphasized that the reduced Gro¨bner
basis and the number of generators used to setup the Sylves
matrix is independent of the initial number equations used to
rive the reduced Gro¨bner basis provided that the initial system
equations is finitely solvable.

Using the Buchberger’s algorithm@3# and thedlex term order-
ing with r 5,Tr 4,Tr 2,Tr 9,Tr 8,Tr 7,Tr 6,Tr 3,Tr 1,Tl z1
,Tl y1,Tl x1,Th3,Th2,Th1 , yields a reduced Gro¨bner basisG
with 68 polynomials. For the numerical data given below, the
polynomials inG are not reported herein due to space limitation
but they can be found in Almadi@9#.

px150 py150 pz150 xx150 xy150 xz150 l 1512
px252 py253 pz253 xx252 xy253 xz250 l 2512
px353 py355 pz350 xx353 xy354 xz354 l 3510
px451 py450 pz454 xx455 xy451 xz452 l 4514
px554 py552 pz551 xx550 xy552 xz553 l 5512
px652 py651 pz653 xx654 xy650 xz655 l 6510

Suppressing the unknownr 5 , G can be viewed as a linear sys
tem of 68 equations in 68 unknown monomialsr 2

3, l z1r 4
2, r 1r 4

2,
r 4

2r 3 , r 4
2r 6 , r 7r 4

2, r 9r 4
2, r 4

3, l Z1
2 , r 1l z1 , r 1

2, r 3l z1 , r 1r 3 , r 3
2, l z1r 6 ,

r 1r 6 , r 3r 6 , r 6
2, l z1r 7 , r 1r 7 , r 3r 7 , r 7r 6 , r 7

2, l z1r 8 , r 1r 8 , r 3r 8 ,
r 8r 6 , r 7r 8 , r 8

2, l z1r 9 , r 1r 9 , r 3r 9 , r 9r 6 , r 7r 9 , r 8r 9 , r 9
2, r 2l z1 ,

r 1r 2 , r 2r 3 , r 2r 6 , r 2r 7 , r 2r 8 , r 2r 9 , r 2
2, l z1r 4 , r 1r 4 , r 4r 3 , r 4r 6 ,

r 7r 4 , r 8r 4 , r 9r 4 , r 2r 4 , r 4
2, h1 , h2 , h3 , l x1 , l y1 , l z1 , r 1 , r 3 , r 6 ,

r 7 , r 8 , r 9 , r 2 , r 4 and 1, with the polynomial coefficients ex
pressed in terms ofr 5 .

F g1

]

g68

G5F 68368
ai j Pk@r 5#GF r 2

3

l z1r 4
2

]

1
G (18)

SinceG5$g1 , . . . ,g68%50, Eq. ~18! reduces toSX50 where
S is the 68368 Sylvester’s~or coefficient! matrix andX is the
6831 column matrix of the unknown variables~the 68 monomi-
als!. The vanishing of the Sylvester’s matrix determinant, i.
uSu50, yields the following univariate resultant
F I/O5r 5
40240.34068436r 5

3912613.674295r 5
38148741.59612r 5

372428723.4299r 5
3624274132.197r 5

35283540302.79r 5
34

21100933043r 5
3310.1759214513e11r 5

3210.1965350860e12r 5
3110.1048048526e13r 5

3020.2345420202e14r 5
29

10.1519869349e15r 5
2820.2532142007e16r 5

2710.5763041011e16r 5
2620.1262508992e18r 5

2510.1708093186e19r 5
24

20.1280226550e20r 5
2310.1277021571e21r 5

2220.1438435067e21r 5
2110.2959635899e22r 5

2020.5268108151e23r 5
19

10.7036209479e23r 5
1820.4607232515e24r 5

1710.9532463122e25r 5
1620.1808866634e26r 5

1510.2100680317e27r 5
14

20.2058612826e28r 5
1310.6893379360e28r 5

1220.3848331827e29r 5
1110.1749687727e30r 5

1020.3684514761e30r 5
9

10.1092764420e31r 5
820.2122101006e31r 5

720.1577335438e31r 5
610.5167452234e31r 5

510.4545748611e31r 5
4

20.9804725966e31r 5
310.9522001983e31r 5

220.1610650914e32r 510.9994869958e3150 (19)
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HereF I/O is the 40th degree I/O polynomial for the forward kin
matics problem of the general Stewart mechanism and it is de
of any extraneous factors. This result is in agreement with
40th degree polynomial obtained by Husty@10# where Soma co-
ordinates were used to represent rigid-body displacements. H
ever, unlike Husty’s formulation where intermediate polynomi
of high degree~up to 320! are generated, the hybrid approa
directly yields the 40th degree I/O polynomial~Eq. ~19!!. For
some non-constructive proofs regarding I/O polynomial degr
see Mourrain@11#, Lazard@12# and Wampler@13#. These proofs
are non-constructive because the forward displacement ana
problem was not reduced to a single univariate polynomial;
stead the polynomial degree was reported using algeb
techniques.

Two items are worth mentioning at this point. First, it is n
necessary that the smallest variable in thedlex term order should
be hidden to set up the Sylvester’s matrix even though it is
case with the example above wherer 5 is suppressed. Second,
may be noted that the forty solutions could also have been
tained by solving the generalized eigenvalue problem~Eq. 18!
instead of expanding the determinant of the Sylvester’s ma
The reason for expanding the determinant ofS to derive the
univariate I/O polynomial is that this polynomial contains
wealth of other information about Stewart’s mechanism such
its singular and unstable configurations which can be determ
by analyzing discriminants of Eq.~19!.

The solution for the remaining unknowns proceeds as outli
earlier ~see Eq.~5!!. For instance, by using the first 67 equatio
in Eq. ~18!, it reduces toS8X852SP whereS8 is a 67367 matrix
formed by deleting the last row and last column ofS; X8 contains
the first 67 elements ofX; andSP contains the first 67 elements o
the last column ofS. The unknown variablesr 1 , r 2 , r 3 , r 4 , r 6 ,
r 7 , r 8 , r 9 , l x1 , l y1 , l z1 , h1 , h2 and h3 appear linearly inSP .
Since SP is given in terms ofr 5 , by solving S8X852SP , an
explicit expression for each of the 14 unknown variables can
obtained inr 5 . Hence, the Stewart mechanism has 40 poss
solutions~real and complex! since the I/O polynomial in Eq.~19!
is a 40th order polynomial and the remaining unknown variab
are linear and expressed explicitly inr 5 . It should be noted tha
since @R# is a direction cosine matrix, the elements (r i) of this
matrix must satisfy the additional constraintur i u<1. Otherwise,
the solution is considered to be complex since cos21(ri.1) or
sin21(ri.1) leads to complex values.

5 Direct Kinematic Analysis of General Stewart
Platform

Consider the general Stewart platform shown in Fig. 3 wh
all grounded spheric joints are in theXY-plane of the base frame
i.e.,xz j50 for j 52, . . . ,6.Likewise, all moving spheric joints are
assumed to lie in theXY-plane of the moving frame, i.e.pz j50,
for j 52, . . . ,6.Thus usingxz j5pz j50, Eq. ~12! reduces to

2h1~px j!12h2~py j!1pj
21 l 1

21xj
22 l j

222@~px j!r 11~py j!r 2#xx j

22@~px j!r 41~py j!r 5#xy j22l x1~xx j!22l y1~xy j!50,

j 52, . . . ,6 (20)

where

h15 l x1r 11 l y1r 41 l z1r 7 (21)

h25 l x1r 21 l y1r 51 l z1r 8

The length of the vectorlI1 is given as~Eq. ~17!!
436 Õ Vol. 122, DECEMBER 2000
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l 1
25 l x1

2 1 l y1
2 1 l z1

2 (22)

Since these equations~Eqs. ~20!–~22!! are devoid ofr 3 , r 6 and
r 9 , the following equations

r 1
21r 4

21r 7
251

r 2
21r 5

21r 8
251 (23)

r 1r 21r 4r 51r 7r 850

from the dot- and cross products of the orthogonal vectors of
rotational matrix@R# are used. The forward kinematic analysis
the Stewart platform is identical to that of the Stewart mechani
Thus given the leg lengthsl j , for j 51, . . . ,6,determine the po-
sition and orientation of the top platform,~Fig. 3!. The system of
equations, Eqs.~20!–~23! represents 11 equations in 11 unknow
r 1 , r 2 , r 4 , r 5 , r 7 , r 8 , l x1 , l y1 , l z1 , h1 andh2 . Using the method
of Gröbner basis and the dlex term orderingr 5,Tr 4,Tr 2,Tr 8
,Tr 7,Tr 1,Th2,Th1,Tl z1,Tl y1,Tl x1 , the reduced Gro¨bner
basisG is derived. The CPU time needed to computeG was 41.29
sec on a P3-600 MHz PC with 64 Mb Ram. The reduced Gro¨bner
basis for this mechanism contains 43 polynomials of which o
15 polynomials in three unknownsr 2 , r 4 andr 5 can be used to se
up the Sylvester’s matrix. Due to space limitations, these poly
mials are not included herein but for the numerical data giv
below, they can be found in Appendix G of Almadi@9#.

px150 py150 xx150 xy150 l 1512
px252 py253 xx252 xy253 l 2512
px353 py355 xx353 xy354 l 3510
px451 py450 xx455 xy451 l 4514
px554 py552 xx550 xy552 l 5512
px652 py651 xx654 xy650 l 6510

With the unknownr 5 suppressed, the 15 polynomials, given
gi for i 51, 4, 7, 9, 10, 11, 15, 16, 19, 20, 32, 34, 35, 41 and
can be viewed as a linear system of 15 polynomials in 15
knownsr 2

4, r 2
3r 4 , r 4

2r 2
2, r 4

3r 2 , r 4
4, r 2

3, r 2
2r 4 , r 4

2r 2 , r 4
3, r 2

2, r 2r 4 , r 4
2,

r 2 , r 4 and 1, with their coefficients expressed in terms ofr 5 . The
determinant of the 15315 Sylvester’s matrix leads to the follow
ing 20th degree I/O polynomial.

Fig. 3 A 6-DOF general Stewart platform
Transactions of the ASME



F I/O5r 5
201114.3340390r 5

1921979.590755r 5
182157556.6167r 5

1722598196.663r 5
161120040087.2r 5

152931649530.1r 5
14

10.6390674695e11r 5
1310.8842245138e12r 5

1220.2662428208e14r 5
1120.7236977977e13r 5

1010.1276963861e16r 5
9

20.1434754786e16r 5
810.1317590548e17r 5

720.7865134521e17r 5
610.2257516769e18r 5

520.4413968688e18r 5
4

10.5740470384e18r 5
320.4359031655e18r 5

210.1704868635e18r 520.2639182255e1750 (24)
a
n

r

r

r

c

as
ps.
r
D,

12

e

re
29
The CPU time needed to derive this polynomial is 19.737 s
For this problem, depending on the term order, the CPU tim
needed to deriveG range anywhere from 30–75 seconds with
additional 13–35 seconds needed to expand the determina
obtain the univariate resultant.

The solution for the remaining unknown variables is obtain
as follows. By deleting the last row and column of Sylveste
matrix and treating the last column of Sylvester’s matrix as
known column matrix, yields the following system of equation

F r 2
4

]

r 2

r 4

G5F 14314
ai j Pk@r 5#G21F 2s1,15

]

2s13,15

2s14,15

G (25)

The unknown variablesr 2 and r 4 appear linearly in the left-
hand side of Eq.~25!. The right-hand side of Eq.~25! only con-
tains variabler 5 . Upon expanding Eq.~25!, explicit expressions
for r 2 and r 4 can be derived in terms ofr 5 . With the unknown
variablesr 2 and r 4 uniquely defined for each of the 20 solution
of r 5 in Eq. ~24!, the polynomialsg12P@r 1 ,r 2 ,r 4 ,r 5#, g25
Pk@r 2 ,r 4 ,r 5 ,l x1#, g26Pk@r 2 ,r 4 ,r 5 ,h2#, g27Pk@r 2 ,r 4 ,r 5 ,l y1#
and g28Pk@r 2 ,r 4 ,r 5 ,h1# are linear inr 1 , l x1 , h2 , l y1 and h1
respectively. Hence, each of these polynomials yield a linear
pression forr 1 , l x1 , h2 , l y1 andh1 respectively, in terms ofr 2 ,
r 4 and r 5 . Similarly the polynomialsg18Pk@r 2 ,r 5 ,r 8#, g24
Pk@r 2 ,r 4 ,r 5 ,r 7# and g30Pk@r 2 ,r 4 ,r 5 ,l z1# are of 2nd order in
r 8 , r 7 and l z1 respectively.

g185a18r 8
21b18, a18Pk, b18Pk@r 2 ,r 5#

g245a24r 7
21b24, a24Pk, b24Pk@r 2 ,r 4 ,r 5# (26)

g305a30l z1
2 1b30, a30Pk, b30Pk@r 2 ,r 4 ,r 5#

Here any one of the above generators can be used to solve fo
unknown. For instance ifg30 is used to solve forl z1 with l z15
6A2b30/a30, we can solve forr 8 andr 7 using generatorsg14 and
g21 which are linear inr 8 and r 7 respectively.

g145r 7r 824.9167r 2
226.9167r 2r 429.75r 2r 5115.5r 21r 4r 5 ,

g215 l z1r 7232.778r 2
22107.222r 2r 42136.29167r 2r 51208.958r 2

290.444r 4
22226.2917r 4r 51322.4583r 42141.375r 5

2

1432.625r 52327.25,

Since Eqs.~24! and ~25! yield a total of 20 sets of solutions fo
r 2 , r 4 and r 5 , g12, g25, g26, g27, g28, yield unique values for
r 1 , l x1 , h2 , l y1 , h1 respectively,g30 leads to two values forl z1 ,
and g14, g21 yield unique values forr 8 and r 7 respectively, the
Stewart platform has a total of 40~real and complex! solutions.
This result is in agreement with the 40th degree I/O polynom
for the Stewart platform predicted by Raghavan@14# using poly-
nomial continuation and a closed-form solution derived by Zha
and Song@15#. However, unlike Zhang and Song’s approa
where 21 equations were used to derive the 20th degree I/O p
nomial, it is shown herein that this polynomial can be obtain
using only 15 equations. Eq.~24! can also be derived by using a
even smaller 13313 Sylvester’s matrix obtained by using th
term order h1,Th2,Tr 8,Tr 7,Tr 5,Tr 4,Tr 2,Tr 1,Tl z1,Tl y1
,Tl x1 .
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6 8-Link 1-DOF Planar Mechanism
Consider the 8-link mechanism shown in Fig. 4 with link 5

the ground. This mechanism does not contain any 4-link loo
The input is provided to link 3 and link 1 is the output link. Fo
this mechanism with three independent loops, namely OABC
OEFGCD and OEHID, the loop-closure equations are

r 3 cos~u3!1r 6 cos~u6!5r 51r 1a cos~u11b!1r 2a cos~u21d!

(27)

r 3 sin~u3!1r 6 sin~u6!5r 1a sin~u11b!1r 2a sin~u21d!

r 3a cos~u31a!1r 4 cos~u4!1r 8 cos~u8!

5r 51r 1a cos~u11b!1r 2 cos~u2!
(28)

r 3a sin~u31a!1r 4 sin~u4!1r 8 sin~u8!

5r 1a sin~u11b!1r 2 sin~u2!

r 3a cos~u31a!1r 4a cos~u41g!1r 7 cos~u7!5r 51r 1 cos~u1!

(29)

r 3a sin~u31a!1r 4a sin~u41g!1r 7 sin~u7!5r 1 sin~u1!

In Eqs.~27!–~29!, r i , u3 , a, b, g andd are known andu1 , u2 ,
u4 , u6 , u7 andu8 are unknown. If cos(uj) and sin(uj) are treated
as algebraic variables withxj5cos(uj) andyj5sin(uj), then Eqs.

~27!–~29! and the trigonometric identity cos2(uj)1sin2(uj)51 for
j 51, 2, 4, 6, 7, 8, yield a system of 12 algebraic equations in
unknowns. Using thedlex term ordering withxj,Tyj,T . . . for
j 51, 8, 7, 6, 4, 2 and the method of Gro¨bner bases, the abov
system of 12 equations leads to the reduced Gro¨bner basisG
5$g1 , . . . ,g29%. Due to space limitations, these polynomials a
not reported here, but for the numerical data given below, the
polynomials are given in Appendix G of Almadi@9#.

Fig. 4 A general 8-link 1-DOF mechanism
DECEMBER 2000, Vol. 122 Õ 437
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r 1513.00 r 256.90 r 355.50 r 457.00 r 5515.00
r 654.70 r 7523.50 r 856.00 r 1a53.50 r 2a52.50
r 3a510.00 r 4a57.50 a5p/2 b5p/2 d5p/2
g5p/2 u3521.00°

The polynomials inG can be viewed as a system of 29 equ
tions in 29 unknownsx8

3, x8
2y1 , y7

2, x7y7 , x7
2, y8y7 , x7y8 , y8

2,
y7x8 , x8x7 , y8x8 , x8

2, y7y1 , y1x7 , y1y8 , x8y1 , y1
2, y2 , x2 , y4 ,

x4 , y6 , x6 , y7 , x7 , y8 , x8 , y1 and 1, with coefficientsai j
Pk@x1#. The determinant of 29329 Sylvester’s~coefficient! ma-
trix yields the 16th order I/O polynomial inx1(5cos(u1)):

F I/O5x1
1622.300807210x1

1519.154401868x1
1410.1203191792x1

13

210.46924935x1
12131.75664714x1

11211.06912500x1
10

28.465327682x1
9150.66174232x1

8226.34720696x1
7

22.852887181x1
6130.78856558x1

5225.56451701x1
4

13.960569625x1
3110.28770088x1

227.132207031x1

11.23274744550

Here the entire set of generators~polynomials! in G are needed to
set up the Sylvester’s matrix because all links fully participate
the mechanism motion. Hence there exists no subset ofG that can
be used to derive the I/O polynomial since no decoupling in
generators ofG is possible. The solution for the remaining u
knowns proceeds as outlined for Stewart’s mechanism and
form. Since all unknown variablesy1 ,xj ,yj , for j 52, 4, 6, 7, 8,
appear linearly in the monomials column matrix, each of the
unknown variables can be expressed linearly in terms ofx1 .
Hence, this eight-link mechanism has a total of 16 possible ass
bly configurations~real and complex!. This result is in agreemen
with the 16th degree I/O polynomial obtained by Innocenti@16#
and Almadi et al.@17#. The formulation by Innocenti results in a
18th degree polynomial containing two spurious roots which
factored out giving the correct 16th degree polynomial. The s
cessive elimination approach used by Almadi et al.@17# obtains
the 16th degree I/O polynomial~directly! devoid of any spurious
roots.

7 Conclusions
For synthesis and analysis problems arising in kinematics,

Sylvester’s matrix is normally constructed by generating as m
equations as there are monomials. This is accomplished by
tiplying the polynomials in the given system of equationsF by
certain classes of monomials until the number of equations in
new system of equationsH is equal to the number of monomia
in H. This allowsH to be treated as a system of linear equations
the monomials inH. However, there is no guarantee that the m
nomial ideal ofF is uniquely defined by the system of polynom
als in H. If ideal (F)Þ ideal(H), spurious factors may be prese
in the resultant. This has been a major problem with Sylvest
method as discussed by Roth@6#.

The Gröbner-Sylvester hybrid method provides an alternate
proach for solving a system of algebraic equations, which app
to overcome this difficulty. It combines the method of Gro¨bner
bases under dlex term ordering and Sylvester’s Dialytic elimi
tion method. The method of Gro¨bner bases, through th
S-polynomial algorithm, allows one to generate new polynomi
438 Õ Vol. 122, DECEMBER 2000
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and the uniqueness of the newly generated polynomial w.r.t. to
monomial ideal~of F! is guaranteed through the normal for
reduction algorithm, i.e., whenever a new polynomial is genera
using theS-polynomial algorithm, the normal form reduction a
gorithm allows one to determine whether or not the new poly
mial is reducible to zero using other polynomials. Since id
(F)5 ideal(G) throughout the solution process, this insures th
vanishing of the resultant, given as the determinant of Sylvest
matrix, yields the necessary condition for the polynomials inG ~as
well asF! to have a common factor.

The application of the proposed method is rather straight
ward and it is demonstrated through kinematic analysis of a n
ber of mechanisms. Using the Gro¨bner-Sylvester hybrid method,
40th degree I/O polynomial is derived for the forward kinema
analysis of the general Stewart mechanism. In the case of Ste
platform, the forward kinematics problem resulted in the 20
degree~40th degree counting all solutions including mirror im
ages! I/O polynomial. The applicability of the hybrid approach
also demonstrated through the derivation of the 16th degree
polynomial for an 8-link 1-DOF mechanism that does not cont
any 4-link loop. These three examples demonstrate that the
posed approach can be successfully used to perform closed-
displacement analysis of planar and spatial mechanisms devo
any extraneous roots.
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