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Abstract: In engineering applications, many models are a set of polynomial constraints. In 
order to automate and improve the diagnosis of these models, we propose a new approach 
for the integration of both FDI and DX approaches. It allows us to achieve a synergy that 
produces results that could not be obtained if each one was operating individually. 
 
This paper uses Gröbner bases to generate a more single model of the systems. First, it 
eliminates the non-observable variables of the constraints of the model and afterwards, we 
construct a context network with the minimal possible conflicts and polynomial constraints 
in the nodes of this network. Our methodology proposes an algorithm that uses different as-
pects of FDI and DX approaches to obtain the minimal diagnosis. This novel approach may 
be very useful for on-boarding diagnosis.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

The faults produced in components and processes 
can cause undesirable stops and damage in the sys-
tems, with the consequent cost increase and produc-
tion decrease. It is also necessary to take into account 
that these faults can produce a considerably negative 
impact in the environment, which has to be avoided. 
Therefore, in order to keep the systems within the 
desired security, production and reliability levels, 
some methods which allow the detection and diagno-
sis of the faults produced in the systems have to be 
developed. The fulfillment of these economic and 
environmental demands will allow the companies to 
remain in a more and more competitive market. 

Diagnosis allows to identify the parts which fail in a 
system. It generally integrates the monitorization (sen-
sors are supposed to work correctly) and the diagnosis 
(fault detection and identification). A diagnosis task 
determines why a correctly designed system does not 
work as it was expected. The explanation of such a 
wrong behavior from a determined observation is the 
main task of diagnosis. Most approaches produced in 
the last decade to carry out diagnosis have been based 
on the use of models (FDI and DX approaches). These 
models are based on the knowledge of the system to 
diagnose, which can be formally well structured and in 

agreement with well-known theories, or can be known 
by means of an expert’s experience and data of the 
system or process. Sometimes, a combination of both 
types of information can also be presented. 

In the area of Artificial Intelligence, the first work 
related to diagnosis was presented with the objective 
of identifying faults in the component systems, based 
on the structure and its behavior [4]. The first imple-
mentations to perform diagnosis were DART [10] and 
GDE [6], which used different inference mechanisms 
to detect possible faults. Diagnosis formalization was 
presented in [17] [7], where a general theory was pro-
posed for the problem of explaining the discrepancies 
between the observed and correct behaviors that the 
mechanisms subject to the diagnosis process (logical-
based diagnosis) have. Based on this, most DX ap-
proaches for components characterise the diagnosis of 
a system as a collection of minimal sets of failing 
components which would explain the observed behav-
iors (symptoms). The importance of having a good 
model in DX can be deduced from this. This kind of 
diagnosis can correctly diagnose the important parts of 
the component systems that are failing. 

The diagnosis in DX examines the models to deter-
mine the cause of the fault. The models centered on 
mechanisms describe the systems by means of input-



     

output relations. Many diagnosis methods use mod-
els centered on mechanisms which require engineers 
to develop models and thus avoid the building of 
fault models, besides the normal operation model. 
Building fault models in a system is useful when the 
faults are well-known and easy to model. However, 
this limits the diagnosis of the system to well-known 
faults. An exhaustive revision of the approaches 
about diagnosis task automation can be found in [8], 
and for a discussion of model-based diagnosis appli-
cations [2] can be consulted.  

Another research community dealing with diagnosis of 
systems is the fault detection and Isolation one (FDI), 
and there are different surveys about it [15] [12]. Re-
dundant relations within the behavior model (redun-
dancy-based diagnosis) are used in this approach. In 
large scale process models, sometimes these relations 
are not found or relations of different kinds coexist. 
Then, an approach consisting in a structural analysis 
which uses the graph theory is proposed [16]. The 
integration of FDI theories with the DX community 
ones and their equivalence proofs have been shown for 
several hypothesis in a recent work [3].  

Our work presents a new approach which integrates 
both approaches with the main idea of improving and 
automating the diagnosis process in systems whose 
models consist of polynomial equality constraints. For 
this, symbolic processing algorithms (Gröbner bases) of 
the initial model are used, and they generate the mini-
mal possible conflict sets of the model according to its 
structure and behavior. This new model will be treated 
by the corresponding algorithms with the object of 
promoting the advantages presented by each one of the 
FDI and DX approaches. The DX approach allows us to 
calculate the minimal possible conflict context (MPCC) 
and multiple minimal diagnosis and FDI approach finds 
out the single faults using previous MPCCs.   

A proposition in DX [16] related to our work about 
the objectives, although not to the method, presents 
the concept of a possible conflict as an alternative to 
the use of pre-compiled dependency-recording. A 
method is developed to calculate the minimal chains 
which can be evaluated, and the minimal models 
which can also be evaluated. The previous use of 
Gröbner bases in the FDI community is proposed in 
previous works [9] and [11]. Our work differs from 
other works because it proposes the integration of both 
kinds of approaches, in order to achieve a synergy that 
produces results that could not be obtained if each one 
were operating individually. Therefore, our approach 
uses concepts from  both communities (DX and FDI), 
such as context network, analytical redundancy con-
straint, possible conflicts and hitting set. Several im-
portant advantages are achieved with  this integration: 
(1) reduction of the model of the system to diagnose, 
(2) hierarchy and more high level of abstraction of the 
model and (3) knowledge of the separable compo-
nents. The result is an automatic and very efficient 
method to diagnose systems with polynomial models. 

Our paper has been organised as follows: first, an 
example to carry out the diagnosis process is pre-

sented; next, the necessary definitions and notations 
which allow to formalize the subsequent operations 
that will be carried out are exposed. Sections 4 and 5 
show the way of obtaining the new model from the 
original by means of Gröbner bases, the data structures 
and algorithms which lead to an efficient minimal 
diagnosis for a defined observation. Finally, the results 
for a more complex example, our conclusions and the 
future works in this research line are presented. 

2. A WELL-KNOWN EXAMPLE 

A very often used example in the bibliography con-
cerning model-based diagnosis [4], [10], [7], [2] and 
[16] is the one formed by three multipliers and two 
adders, as it is presented in figure 1. 

The multipliers are represented in figure 1 as M1, M2 
and M3, and the adders as A1 and A2. In this system, 
the component or components that are failing have to 
be identified, taking into account that the only ob-
servable values are the ones represented as a, b, c, d, 
e, f and g. 

3. DEFINITIONS AND NOTATION 

The definitions and notation used are based on the 
concepts developed in the diagnosis community, 
based itself on the logic (DX) and on redundancies 
(FDI). The objective is that the synergy of both ap-
proaches will produce diagnosis results which are as 
representative as possible of what is happening in the 
system in the shortest time. 

As it has already been mentioned, model-based diag-
nosis requires a system model. In our case, we will 
only deal with the case which has a model of system 
constraints that derives from its own structure, and 
which has links between components (structural 
model) and the behavior of each model component. 
With this model and with the idea of formalizing the 
diagnosis process, the definitions and notation used 
in the development of this work need to be exposed. 

Definition 1. The System Polynomial Model (SPM):  
It can be defined as a finite set of polynomial equal-
ity constraints P which determine the system behav-
ior. This is done by means of the relations between 
the system non-observable variables (Vnob) and the 
input-output observable variables (Vio) which are 
directly obtained from sensors that are supposed to 
work correctly. Then, the following tuple for a sys-
tem polynomial model is obtained SPM (P,Vio,Vnob). 
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Fig. 1. Circuit formed by three multipliers and two 
adders 



     

For the example presented in Section 2, the SPM 
represented in Table I will be obtained. 

Table I. System Polynomial Model of the system of 
three multipliers and two adders 

 
Polynomial 
Constraints Vio Vnob 

M1: x=a*c 
M2: y=b*d 
M3: z=c*e 
A1: f=x+y 
A2: g=y+z 

a = aob 
b = bob 
c = cob 
d = dob 
e = eob 
f = fob 
g = gob 

x 
y 
z 

Definition 2. Observational Model (OM): A tuple 
which assigns values to the observable variables. In 
the example proposed in Section 2, an observation 
set may be: 

MO≡{aob=2,bob,=2,cob=3,dob=3,eob=2,fob=10,gob=12} 

Definition 3. Context Set (CS): A context set of a 
SPM is a collection of component sets which com-
pose the system. In the case of the circuit represented 
in figure 1, it will be: 

    CS ≡ {A1, A2, M1, M2, M3, {A1,A2}, {A1, M1}, ...} 

and, thus, the possible context set will be 2comp, 
where comp is the number of components which 
represent the behaviour model of the system. 

Definition 4. Diagnosis Problem (DP): It can be de-
fined by means of a tuple formed by a System Poly-
nomial Model and an Observational Model. The result 
of this problem will be a set of elements that belong to 
the set of the system faults which reflect in a minimal 
way the information of the possible failing compo-
nents DP(SPM,OM). To obtain these components, it is 
necessary to define the following concepts: 

Definition 5. Context Network: A graph formed by 
all the elements of the context set of the system 
according to the way proposed by ATMS [5]. Figure 
2 represents the context network for the problem 
presented in Section 2. In our work this context 
network will be enriched with the Context Analytical 
Redundancy Constraints. 

Definition 6. Context Analytical Redundancy Con-
straint (CARC): Set of constraints derived from SPM 
and in such a way that only the observed variables 
are related. In this work, we are only dealing with the 
models in which it is defined by polynomial equality 
constraints. In these constraints, their truth value can 
be evaluated from the system observed variables 
through the corresponding monitorization. 

Definition 7. Minimal Possible Conflict Context 
(MPCC): The conflict contexts are those contexts of 
the context network which have an inconsistent result 
when the verification of the CARCs is carried out. A 
context is minimal possible context when its sub-
contexts are not conflict context. 

The use of these minimal conflict contexts allows to 
establish a proposition for the minimal diagnosis as 
in [17]. Considering a system model, an observation 
and the system component set, a diagnosis is minimal 
if and only if it is a set affected in a minimal way 
(hitting set) for the collection of minimal conflict 
contexts. A “hitting set” for a collection of sets is the 
one which intersects any set of the collection of 
minimal conflict sets. Some of the previous opera-
tions can be carried out off-line, although they are 
generally carried out on-line. 

4. THE CONTEXT ANALYTICAL REDUN-
DANCY CONSTRAINTS OF THE MODEL 

The model which reflects the system structure and 
behavior presents the constraints that link the system 
inputs and outputs, but many times some intermedi-
ate variables appear which are not observable and 
which do not allow to determine whether there are 
faults in the components in a direct way. The intui-
tive idea of getting the system constraints is trying to 
reflect in it the structural aspects, in such a way that 
the component sets that are not interrelated will not 
be verified.  

Therefore, in our work, this system constraint set will 
be submitted to a set of symbolic algorithms which 
will transform these constraints in order to get what 
has been defined as context constraints. For this rea-
son, Gröbner bases will be used, since the model 
constraints are polynomial equality constraints. 

4.1. Gröbner Bases 

Gröbner bases theory is the origin of many symbolic 
algorithms used to manipulate multiple variable 
polynomies. For an introduction to Gröbner bases [1] 
and [13] can be consulted. The algorithm used for the 
system polynomial equations is based on the ideas 
proposed by Buchberger [2]. This algorithm is a gen-
eralization of Gauss’ elimination for multivariable 
lineal equations and of Euclides’ algorithm for one-
variable polynomial equations. One of Gröbner bases 
has better computational properties than the original 

M1M2M3A1A2

M1M2M3A1 M1M2M3A2 M1M2A1A2 M1M3A1A2  M2M3A1A2

M1M2M3 M1M2A1 M1M3A2 M1M2A2 M1M3A1 M2M3A1 M2M3A2 M1A1A2 M2A1A2 M3A1A2

M1M2 M1M3 M2M3 M1A1 M1A2 M2A1 M2A2 M3A1 M3A2 A1A2

M1                          M2                          M3                          A1                          A2

[]
 

  

 

Fig. 2. Context network for the problem of  three 
multipliers and two adders 



     

system. It can be said that it is very easy to determine 
if the system can be solved. 

The main idea is to transform the polynomial con-
straint set into a standard form for the resolution of 
problems. Having the set of equality polynomial 
constraints of the form P=0, Gröbner bases produce 
an equivalent system G=0, which has the same solu-
tion as the original, but it is generally easier to solve. 

Concerning the advantages that the use of Gröbner 
bases has for the system models subject to diagnosis, 
it can be said that: 

•  If the model is over-restricted and has redundant 
equations, these redundancies will disappear 
when a reduced Gröbner base is calculated. 

•  If the model is over-restricted and inconsistent, 
one of the constraints which provides the algo-
rithm will be 1=0, that is obviously inconsistent. 

•  If the model is infra-restricted, the new model 
also provides useful information for its subse-
quent resolution. 

For our work, there is a function, which has been 
called GröbnerBase. It calculates Gröbner bases in 
such a way that if there is a system to diagnose, rep-
resented by an SPM formed by a finite set of poly-
nomial equations, a set of observable variables and a 
set of non-observable variables, the constraint set of 
the different contexts is obtained. 

Let us consider, for instance, the context represented 
by the components M1M2M3A1A2. Then, the Gröb-
nerBase function receives the three previous sets. 
Thus, for the function GröbnerBase 
({M1M2M3A1A2}, {a,b,c,d,e,f,g}, {x,y,z}), the result 
would be the following system of polynomial con-
straints {b*d+c*e-g=0, a*c-c*e-f+g=0}. 

The application of this function to the different con-
texts of a particular model will allow the building of 
the context network directed by constraints. 

4.2. Building our Reduced Context Network 

The reduced context network is obtained by means of 
a search algorithm directed by symbolic constraints. 
For the problem in Section 2, a new constraint net-
work like the one represented in figure 3 is obtained 
by applying the corresponding GröbnerBase function 
to each context of the context network presented in 
figure 2. 
 
This outline of the context constraints shows the con-
straints that must be satisfied for each node of the 
context network. Moreover, it shows that most three 
component nodes and all the two component nodes of 
the context network will not be catalogued as MPCC. 
Therefore, the search algorithm will avoid the compu-
tational treatment of them. This will improve the effi-
ciency in the search of possible conflicts. 

5. OUR APPROACH FOR THE DIAGNOSIS 

The method to carry out the diagnosis applies a 
search algorithm directed by the symbolic constraints 
previously obtained, with the idea of obtaining the 
possible minimal possible conflict contexts. The 
minimal diagnosis is obtained by means of the appli-
cation of compiled rules using the fault signature 
from FDI for single faults and the hitting sets from 
DX for multiple faults. 

5.1. Determination of minimal possible conflict contexts 

The search of conflict sets is carried out through a 
search algorithm directed by the symbolic constraints 
of the minimal possible conflict contexts. In order to 
apply this search we use the MPCCs obtained in sec-
tion 4.2. These MPCCs have associated an index to 
carry out a more efficient search process: {b*d+c*e-
g=0, 1}, {a*c-c*e-f+g=0, 2}, {a*c+b*d-f =0, 3}. 

The context network for the search of minimal possi-
ble conflict contexts is represented in figure 4. The 
numbers at the bottom of each context are the con-
straint indexes which correspond to this context. In 
order to determine the minimal conflict contexts, only 
the graph has to be traversed from the leaf nodes to the 
root node, in such a way that, if any of the upper con-
texts has the same constraint numbers of the previous 
ones, these are not considered as a MPCC. 

{1}{3}

M1M2M3A1A2

M1M2M3A1 M1M2M3A2 M1M2A1A2  M1M3A1A2   M2M3A1A2

M1M2A1 M2M3A2

{1, 2}

{3} {1} {2}{3} {1}

 
Fig. 4. Reduced context network.  

Thus, it can be observed that when the graph is trav-
ersed from the context M1M2A1, the preceding con-
texts M1M2M3A1 and M1M2A1A2 will not have to be 
considered, since they have the same constraint index 
Therefore, the context M1M2A1 is a minimal possible 
conflict context. The same happens with the contexts 
M2M3A2 and M1M3A1A2, in which the upper contexts 
have the same constraint index associated and, there-
fore, they will not be minimal possible conflict con-

{b*d+c*e-g=0}{a*c-b*d-f=0} { } { } { } { } { } { }{ } { }

M1M2M3A1A2

M1M2M3A1 M1M2M3A2 M1M2A1A2 M1M3A1A2  M2M3A1A2

M1M2M3 M1M2A1 M1M3A2 M1M2A2 M1M3A1 M2M3A1  M2M3A2 M1A1A2 M2A1A2 M3A1A2

M1M2 M1M3 M2M3 M1A1 M1A2 M2A1 M2A2 M3A1 M3A2 A1A2

M1                          M2                          M3                          A1                          A2

{b*d+c*e-g=0, a*c-c*e-f+g=0}

{a*c-b*d-f=0} {b*d+c*e-g=0} {a*c-c*e-f+g=0}{a*c-b*d-f=0} {b*d+c*e-g=0}

{ } { }

{ }

{ } { }{ } { } { } { } { } { }

{ }{ } { } { }
 

  

 

Fig. 3. Context network with symbolic constraints 



     

texts. Therefore, the number of minimal possible 
conflict contexts in this model has been reduced to 
the contexts M1M2A1, M1M3A1A2, M2M3A2. These 
results have also been obtained in a recent work [16], 
but it uses a different methodology. 

5.2. Determination of  Minimal Diagnosis 

To study two particular cases of diagnosis, there are 
two observational models: 

MO1≡{aob=3,bob=2,cob=2,dob=3,eob=3, fob=10,gob=12} 
MO2≡{aob=3,bob=2,cob=2,dob=3,eob=3, fob=10,gob=10} 
 
If we want to find the single faults we will use the 
signature matrix (FDI) for the MPCCs of this system: 
 

 FA1 FA2 FM1 FM2 FM3 
MPCC1 0 1 0 1 1 
MPCC2 1 1 1 0 1 
MPCC3 1 0 1 1 0 

 
The minimal diagnosis consists of comparing the 
observation signature and the faults signature. If we 
want to find the multiple faults we will use the  men-
tioned MPCCs.  For the two observational models, 
we verify the satisfaction of the constraints described 
in the MPCCs. According to the DX approach, we 
obtain the minimal conflicts sets shown in Table III.  

Table III. Minimal Conflicts Contexts and Multiple 
Minimal Diagnosis in two observational models 

 
Observational 

Model MPCCs
Multiple Minimal Di-

agnosis  

MO1 2,3 {A2,M2},{M2,M3} 

MO2 1,3 {A1A2},{A1,M3},{A2,
M1},{M1,M3} 

The diagnosis of multiple faults has an off-line part that 
uses the minimal context network in order to compile a 
set of rules from a combination of the single faults’ 
rules. The on-line part matches the observational 
model with the left side of these rules, and the corre-
sponding consequent will be the multiple minimal 
diagnosis. For the observational models previously 
shown, the obtained results are presented in Table III. 
Most part of the process is performed in an off-line, 
automatic and very efficient way. Thus, by using 
Gröbner bases, a reduced context network is produced.  

6. A MORE COMPLEX EXAMPLE: A SYSTEM 
OF HEAT EXCHANGERS 

The methodology has been applied to more complex 
systems, like the one shown in figure 6 from [13]. In 
this system, consisting of six heat exchangers, three 
flows fi come in at different temperatures ti. 

The normal functioning of the system can be de-
scribed by means of polynomial constraints, coming 
from three kinds of balances: 

0i
i

f =∑ : mass balance at each node, 

0i i
i

f t⋅ =∑ : thermal balance at each node, 

0i i j jin out
f t f t⋅ − ⋅ =∑ ∑ : enthalpic balance for 

each heat exchanger. 

The resulting system, thus, consists of 34 equations 
and 54 variables, from which 28 are observable: f11, 
f12, f13, f16, f17, f18, f19, f112, f21, f26, f27, f212, f31, f33, t11, t12, 
t13, t16, t17, t18, t19, t112, t21, t26, t27, t212, t31 and t33. There 
is no direct measure of the rest of the variables. This 
defines three different subsystems, each one formed by 
two exchangers: {E1, E2}, {E3, E4} and {E5, E6}. 
Each of the six exchangers and each of the eight nodes 
of the system are considered as components to verify 
their correct functioning. Therefore, the resulting con-
text network has a total of 214 context sets. 

112

E1

E2

E4

E3

E5

E6

11 16 17

12 14 18 110

111191513

21 212

22 23

24 25

26 27

28 29

211210
33

32

31

N11 N12 N13 N14

N21

N22 N23

N24

 
Fig. 6: System of heat exchangers 

The Gröbner bases obtained for the complete system 
is composed by 14 polynomials (see Table V). These 
will be measured to detect the correct functioning of 
the system. If any of the CARCs is violated, the sys-
tem fails, and it will determine which of the compo-
nents could be the cause of the fault. 

Table V. Minimal conflict constraints for the system 
 

CARCs 
1 f11 - f12 - f13 = 0 
2 -(f11 t11) + f12 t12 + f11 t13 - f12 t13 = 0 
3 f17 - f18 - f19 = 0 
4 -(f17 t17) + f18 t18 + f17 t19 - f18 t19 = 0 
5 f26 – f27 = 0 
6 f16 – f17 = 0 
7 f31 – f33 = 0 
8 f16 t16 - f16 t17 + f26 t26 - f26 t27 + f31 t31 - f31 t33 = 0 
9 -f12 - f13 + f16 = 0 

10 -f18 - f19 + f112 = 0 
11 f21 - f26 = 0 
12 f27 – f212 = 0 
13 f12 t12 + f13 t13 - f12 t16 - f13 t16 + f21 t21 - f21 t26 = 0 
14 f18 t18 + f19 t19 - f18 t112 - f19 t112 + f27 t27 - f27 t212 = 0 



     

In figure 7, the context network is shown, where only 
the CARCs appear, together with their corresponding 
contexts. It can be observed how the previously men-
tioned subsystems are included in accordance with 
the observable variables. This separation is obtained 
automatically by our system. 

N11
{1,2}

N12E1E2
{9}

N12N21N22E1E2
{9,11,13}

N21N22E1E2
{11}

N13
{3,4}

N14E5E6
{10}

N14N23N24E5E6
{10,12,14}

N23N24E5E6
{12}

E3
{5}

E4
{6}

E3 E4
{5,6,7,8}

 
Fig. 7. Minimal Context Network for the system 
 
Each CARC is related to one rule for the diagnosis, 
corresponding to a single fault in one of the compo-
nents of the associated context that it appears first, 
starting from the leaves. So, if CARC 9 is violated, 
the corresponding rule indicates that there is a simple 
fault in N12, E1 or E2. If several CARCs are violated, 
the minimal diagnosis is found by the hitting sets. 
But notice that this is done off-line, and only the 
combinations of the contexts in the same subtree, and 
without a precedence relation, must be considered. 
For this example, we obtain the following rules:  
 
(9 and 11) → E1 or E2 or (N12 and N21) or (N12 and N22) 
(10 and 12) → E5 or E6 or (N14 and N23) or (N14 and N24) 
 
If the CARCs belong to different subtrees, the rules are 
obtained as conjunctions of the left and right side of the 
single fault rules. If a CARC is predecessor of another 
one, the first will not be considered.   

7. CONCLUSIONS AND FUTURE WORKS 

This work defines a new framework for the integra-
tion of FDI and DX approaches using Gröbner 
Bases. These symbolic techniques have been applied 
in order to obtain a more reduced and compiled 
knowledge of the system model subject to diagnosis.  

We consider that it can be a reason for future re-
search to take into account different truth qualitative 
values between 0 and 1 to point out the degree of the 
constraint satisfaction, and thus showing, in a certain 
way, the preferences of some minimal diagnosis. The 
extension of all this to the dynamic systems can be 
considered as the final objective of this research line. 

 REFERENCES 
 

[1] Buchberger B. Gröbner bases: An algorithmic 
method in polynomial ideal theory. Multidimen-
sional Systems Theory, N. K. Bose, ed., D. Rei-
del Publishing Co., pp 184-232, 1985. 

[2] Console L. and O. Dressler. Model-based diagno-
sis in the real world: Lessons learned and chal-

lenges remaining. Proc. IJCAI’99, pp. 1393-
1400, 1999. 

[3] Cordier M. O., P. Dague, M. Dumas, F. Lévy, J. 
Montmain, M. Staroswiecki and L. Travé-
Massuyès. A comparative analysis of AI and 
control theory approaches to madel-based diag-
nosis. Proc. ECAI 2000, pp. 136-140, 2000. 

[4] Davis R. Diagnostic reasoning based on structure 
and behavior. Artificial Intelligence, 24 pp 347-
410, 1984. 

[5] De Kleer J. An Assumption-based Truth Mainte-
nance System. Artificial Intelligence 28(2) pp 
127-161, 1986. 

[6] De Kleer J. and B.C. Williams. Diagnosing mul-
tiple faults. Artificial Intelligence, 1987. 

[7] De Kleer J., A. Mackworth and R. Reiter. Charac-
terizing diagnoses and systems. Artificial Intelli-
gence, 56(2-3), 197-222, 1992. 

[8] Dressler O. and P. Struss. The Consistency-based 
approach to automated diagnosis of devices. 
Brewka (ed). Principles of Knowledge Represen-
tation, CSLI, 1996. 

[9] Frisk E. Residual Generator Design for Non-
linear, Polynomial Systems - A Gröbner Basis                         
Approach. Proc. IFAC Safeprocess 2000, Buda-
pest Hungary pp. 979-984, 2000. 

[10] Genesereth M. The use of design descriptions in 
automated diagnosis. Artificial Intelligence: Vol 
24 pp 411-436, 1984. 

[11] Guernez C. et al. Fault detection and isolation 
on non linear polynomial systems. 15th IMACS 
World Congress on Scientific, Computation, 
Modelling and Applied Mathematics, 1997.  

[12] Iserman R. Supervision, fault detection and 
fault-diagnosis–an introduction. Control Engi-
neering Practice 5(5), pp. 639-652, 1997. 

[13] Kapur D. and Y. N. Lakshman. Elimination 
Methods: An Introduction, en Symbolic and 
Numerical Computation for Artificial Intelli-
gence, D. Kapur and Mundy (eds.), Academic 
Press, 1992. 

[14] Kapur, D. An Approach for Solving Systems of 
parametric Polynomial Equations. Principles and 
Practice of Constraint Programming, pp. 218-
243, 1995. 

[15] Patton R. J. and J. Chen. A review of parity 
space approaches to fault diagnosis IFAC-
SAFEPROCESS Symposium 1991. 

[16] Pulido J. B. Posibles conflictos como alternativa 
al registro de dependencias en línea para el dia-
gnóstico de sistemas continuos. Tesis Doctoral, 
Universidad de Valladolid, 2000. 

[17] Reiter R. A theory of diagnosis from first prin-
ciples. Artificial Intelligence, 32(1), pp. 57-96, 
1987. 

 


