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Along two different proofs of a double-sum identity involving binomial coefficients this
paper raises some questions of general character concerning computer-assisted treatment
of the given double sum and of identities of similar type.

1. Introduction

In a lecture on his holonomic systems approach to special function identities at the 24th

Séminaire Lotharingien de Combinatoire (Liebfrauenberg, May 1990) D. Zeilberger asked
for a ”computer-generated” proof of the following identity:

n∑

i=0

n∑

j=0

(
i + j

j

)2(4n− 2i− 2j

2n− 2j

)
= (2n + 1)

(
2n

n

)2

(1.1)

for all nonnegative integers n (Problem E3376 of Amer. Math. Monthly 97, March 1990,
proposed by R. J. Blodgelt). Up to now not too much is known concerning structure
and symbolic manipulation of binomial multiple-sum identities. Thus the interest in a
”computer-generated” proof of (1.1) or, more general, of identities of similar type basi-
cally arises from the question whether similar algorithmic tools as those recently deve-
loped in the frame of Zeilberger’s approach could be applied. If the answer is positive it
is to expect that these methods will stimulate and assist further thorough investigations
in this area.

In a more adequate frame that is closer to canonical form representation, the problem
can be viewed as one concerning manipulation of hypergeometric multiple-sum identi-
ties. The great relevance of hypergeometric series to binomial coefficient identities was
first pointed out by G. Andrews (1974), and by R. Askey. For further references see
also Hayden and Lamagna (1986), Roy (1987), Graham, Knuth and Patashnik (1989), or
Koornwinder (1991). Consequently, from hypergeometric theory point-of-view the single-
sum case can be considered as well-studied, see for instance the books by Bailey (1935),
Slater (1966), or Gasper and Rahman (1990). With respect to algorithmic treatment,
recently a break-through has been achieved by D. Zeilberger in the frame of the holono-
mic systems approach (1990a). His ”fast algorithm” (1990b), which is based on Gosper’s
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summation algorithm (see Gosper (1978) or Graham, Knuth and Patashnik (1989)), pro-
vides an excellent algorithmic tool for finding and proving binomial single-sum identities
(see also Zeilberger (1991a), (1991a), and the joint paper with H. Wilf (1990)). For in-
stance, it succeeds in proving almost all identities listed by H. Gould (1972). Its wide
range of applicability also is documented by manifold and interesting new applications
it has found up to now (see for instance the corresp. references above, or, as another
striking example, the application for enumerating totally symmetric, self-complementary
plane partitions by G. Andrews(1991)).

Sometimes a multiple sum can be reduced to a single sum by applying some single-sum
techniques iteratively, see for example eq. (3.1) in section 3. But it should be emphasized
that this is not possible in general, at least not in an obvious way. The reason simply
might be that no inner sum is representable in closed form, which, for instance, applies
to the inner sum of the left hand side of (1.1). This e.g. is immediate by looking at
the corresponding linear recurrences, both being of order 3 instead of order 1 in case of
hypergeometric term evaluation. The recurrences, in i or n respectively, can be obtained
automatically by applying Zeilberger’s algorithm. For example, that one in i is obtained
by the Zeilberger-package by P. Paule and M. Schorn (1993), written in Mathematica,
as follows. (The package is available via email from Peter.Paule@risc.uni-linz.ac.at.) Let

SUM [i] =
n∑

j=0

(
i + j

j

)2(4n− 2i− 2j

2n− 2j

)
, (1.2)

then:

In[1]:= Zb[Binomial[i+j,j]^2 * Binomial[4n-2i-2j,2n-2j],j,i,3]

Out[1]= {-((1 + i) (-i + n) (-1 - 2 i + 2 n) SUM[i]) + (18 +

2 3 2 2 2
> 32 i + 22 i + 6 i + 11 n - 4 i n - 8 i n + 30 n + 20 i n )

2 2
> SUM[1 + i] - (2 + i) (27 + 23 i + 6 i + 9 n - 4 i n + 18 n )

2
> SUM[2 + i] + 2 (2 + i) (3 + i) SUM[3 + i] == 0}

In section 2 we present two different proofs of (1.1), both involving the application of
computer algebra. Despite this fact both proofs still rely on ideas of a human as essential
ingredients. Along a discussion of the concrete example (1.1), in section 3 we conclude
by introducing some questions of general character concerning computer-assisted treat-
ment of multiple sums to researchers interested in algorithmic problems in connection
with symbolic manipulation of combinatorial formulae. One may expect that appropriate
answers will provide substantial additional insight concerning the new developments in
this subarea of symbolic computation initiated recently by D. Zeilberger.
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2. The Proofs

We present two different proofs of (1.1). The human part of the first proof consists in
using a somehow tricky generating function argument. The second proof is by observing
that a generalization of the left hand side of (1.1) satisfies a simple structured recurrence
relation. Here the part of the human consists in clever guessing on base of the data
delivered by the computer. We want to remark that hypergeometric methods (see the
references above) seemingly do not succeed applied in various standard ways.

Equipped with the Zeilberger-package by Paule and Schorn (1993), or that one written
by Zeilberger (1991b), one has to do a - so far human - preprocessing step. One rewrites
the double sum as a single sum, i.e. in a form, which is ready to serve as input for the
proving-procedure. The left side of (1.1) is equal to the coefficient of xnyn in

(1 + x)2n(1 + y)2n (1 + xy)
n∑

i=0

n∑

j=0

n∑

k=0

(
i + j

j

)2
xi+kyj+k

(1 + x)i+j (1 + y)i+j
,

which is immediate from the binomial theorem and the Vandermonde-identity applied in
the form

(
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2n− 2j

)
=

n∑

k=−n

(
2n− i− j

n− i− k

)(
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)

=
n∑

k=0

{
(

2n− i− j

n− i− k

)(
2n− i− j

n− j − k

)
+

(
2n− i− j

n− 1− i− k

)(
2n− i− j

n− 1− j − k

)
}.

Considering the triple sum without upper summation bounds, for any of the parameters
i, j, k being greater than n, no contribution to the coefficient of xnyn arises. Thus all
sums can be taken as infinite ones. It is well known that

∞∑

i=0

∞∑

j=0

(
i + j

j

)2

uivj = ((1− u− v)2 − 4uv)−1/2

(e.g. Riordan (1968), Sec. 4.4). Hence the left side of (1.1) turns out to be the coefficient
of xnyn in

(1 + x)2n+1(1 + y)2n+1 (1 + xy)
(1− xy)2

,

which reads after expansion according to the binomial theorem as
n∑

k=0

(2k + 1)
(

2n + 1
n− k

)2

= l(n). (2.1)

Now, arriving at a single sum, the rest is done by Zeilberger’s algorithm. After 3.25
CPU seconds (on an Apollo DN4500) one obtains with his Maple-program (1991b) (or
with the Zeilberger-package by Paule and Schorn (1993) written in Mathematica) that
(−2n − 1)F (n, k) = G(n, k) − G(n, k − 1), with input F (n, k) = (2k + 1)

(
2n+1
n−k

)2
, and

where G(n, k) = (n−k)2

(2k+1) F (n, k). It follows that

(−2n− 1)l(n) =
n∑

k=0

(−2n− 1)F (n, k) = G(n, n + 1)−G(n,−1)
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= −(n + 1)2
(

2n + 1
n + 1

)2

,

which proves the identity in question. One should note that what is needed from Zeilber-
ger’s machinery in this special application is just the part played by Gosper’s algorithm
as observed by V. Strehl (1990).

Remark: The part of the computer in this proof certainly is simpler than the human one:
identity (2.1) can be proved by any of the standard methods, either hypergeometric (see
the references above) or those described in the books by Graham, Knuth and Patashnik
(1989), or Wilf (1990).

The second proof is by proving more generally
bm/2c∑

i=0

bn/2c∑

j=0

(
i + j

j

)2(
m + n− 2i− 2j

n− 2j

)
=

(bm+n+1
2 c)!(bm+n+2

2 c)!(bm
2 c

)
!
(bm+1

2 c)!(bn
2 c

)
!
(bn+1

2 c)! , (2.2)

where bxc is the largest integer ≤ x. Let’s denote the left hand side as L(m,n). This
generalization of the double sum identity above can be obtained by an heuristic process
using any computer algebra package. In this two-parameter form the resemblance to a
certain representation of the Brock-Numbers (e.g. Riordan (1968), p. 145) is apparent.
Now the proof follows immediately from the fact that each side satisfies the following
initial conditions and ”Brock-like” recurrence:

f(0, n) = f(n, 0) = bn/2c+ 1, (2.3)

f(m,n)− f(m− 1, n)− f(m,n− 1) =

{ (m+n
2
m
2

)2

if m and n are even
0 otherwise.

(2.4)

To prove that L(m,n) satisfies (2.4) is easily done by applying
(
a+b

a

)
=

(
a+b−1

a

)
+

(
a+b−1

a−1

)
and collecting together those terms which pairwise add up to zero. When both m and
n are even the term corresponding to (i, j) = (m/2, n/2) is the only one left. All other
verifications are simple college algebra exercises.

Remark: We want to note that the technique applied in the first proof can be easily
adapted to prove also the generalized double-sum evaluation. For that the reduction step
to a single sum is done again by the Vandermonde-identity, now in the form:

(
m + n− 2i− 2j

n− 2j

)
=

∑

k≥0

{
(bm+n

2 c − i− j

bm
2 c − i− k

)(bm+n+1
2 c − i− j

bn
2 c − j − k

)
+

( bm+n+1
2 c − i− j

bm+n+1
2 c − bn

2 c − 1− i− k

)( bm+n
2 c − i− j

bm+n
2 c − bn

2 c − 1− j − k

)
}.

This equation holds in all cases except m even and n odd. But this is all one needs,
because the evaluation of L(m,n) for arbitrary m, n follows from the symmetry L(m,n) =
L(n,m).

3. Discussion and Open Questions

Several possible ways to come up with a computer-generated proof of a multiple-sum
evaluation were opened by D. Zeilberger’s ”holonomic systems approach” (1990a). In
the single-sum case, due to the possible use of Gosper’s summation algorithm, the cor-
responding procedures work very efficiently. In the multiple-sum case, since nothing like
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Gosper’s algorithm is available, one has to introduce for instance some elimination pro-
cedure. Zeilberger (1990a) described a method (”Sylvester’s dialytic elimination”) which
extends to the multiple-sum case. As indicated in the same paper there is another pos-
sibility, i.e. to do the elimination by using non-commutative Groebner bases methods.
Zeilberger claimed that this method is far superior to ”Sylvester’s dialytic elimination”.
It is true that both methods can be applied successfully, for example in the case of a
simpler double-sum evaluation problem:

n1∑

k1=0

n2∑

k2=0

(−1)k1+k2

(
n1

k1

)(
n2

k2

)(
k1 + k2

k1

)
= δ(n1, n2), (3.1)

where δ(n1, n2) is defined to be 1, for nonnegative integers n1 = n2, and to be 0, otherwise.
Remark: This identity reflects the orthogonality relations for the case α = 0 of the

Laguerre polynomials

Ln
(α)(x) =

∑

k

(
n + α

n− k

)
n!
k!

(−x)k

with respect to the inner product

< p1, p2 >= L
1

(1−D)α+1
p1(x)p2(x),

where L is the evaluation at the origin (Lp)(x) = p(0), and D the differentiation operator.
We want to point out that we have chosen the double-sum evaluation (3.1) only for

illustrating the elimination problem according an elementary instance. As already men-
tioned in the introduction chapter, it is not a generic example, because it can be solved by
iterating single-sum techniques. For instance, applying the Zeilberger package by Paule
and Schorn (1993) to

SUM [n2] =
n2∑

k2=0

(−1)k2

(
n2

k2

)(
k1 + k2

k1

)
(3.2)

one gets back a first-order linear recurrence:

In[2]:= Zb[(-1)^k2 * Binomial[n2,k2] * Binomial[k1+k2,k1],k2,n2,1]

Out[2]= {(-k1 + n2) SUM[n2] + (-1 - n2) SUM[1 + n2] == 0}

Consequently, the inner sum (3.2) of the left side of (3.1) has closed form representation(
n2−k1−1

n2

)
. This reduces the original double sum to

S(n1, n2) =
n1∑

k1=0

(−1)k1

(
n1

k1

)(
n2 − k1 − 1

n2

)
. (3.3)

By running Zeilberger’s algorithm again, one obtains the recurrence

(n1 − n2)S(n1, n2) = 0, (3.4)

i.e. S(n1, n2) = 0 if n1 6= n2. Finally, if n1 = n2, Zeilberger’s algorithm delivers the
recurrence

3S(n1, n1)− 3S(n1 + 1, n1 + 1) = 0 (3.5)
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whose solution S(n1, n1) = 1 is determined uniquely by the boundary value S(0, 0) = 1.
Applying elimination techniques for proving (3.1) leads to the following observations.

As shown by Paule (1990), here ”Sylvester’s dialytic elimination” is equivalent to the
computation of the determinant of a 10 by 10 matrix in order to derive the desired
annihilating operator. Concerning the use of non-commutative Groebner bases methods,
Apel (1990) (see also Apel and Lassner (1988)) succeeded to obtain the same operator
by using a program written for the algorithmic treatment of more general types of non-
commutative algebras. For further references see e.g. Galligo (1985), Mora (1986), Kandri-
Rody and Weispfenning (1990), or Takayama (1992).

But in the case of the double sum (2.2) in question the situation seems to be somewhat
different, despite the fact that L(m,n) is solution of a simple structured difference equa-
tion (see (2.3), (2.4)). Here, using ”Sylvester’s dialytic elimination” leads to a tremendous
increase in the size of the corresponding square-matrix, a fact which suggests that this
method is of almost no practical use in multiple-sum problems of more complicated
structure. But also the application of non-commutative Groebner bases methods seems
to meet several serious difficulties (Apel (1990)). From these observations the following
questions arise:

Is it possible to evaluate L(m, n) (or L(2n, 2n), resp.) by following Zeilberger’s
”holonomic systems approach” using non-commutative Groebner bases methods?

Is it possible to evaluate L(m, n) (or L(2n, 2n), resp.) by following Zeilberger’s
”holonomic systems approach” using any elimination method?

Finally we raise an additional question, which is motivated by the strategy of the first
proof presented above:

Is it possible to provide any algorithmic device for reducing multiple sums to single
sums?

Only recently, Wilf and Zeilberger (1992) showed that every ’proper-hypergeometric’
multisum/integral identity, or q-identity, with a fixed number of summations and/or
integration signs, indeed possesses a computer-constructable proof. Despite proceeding
along the lines of the ’holonomic’ paper of Zeilberger (1990a), the method, by which the
authors succeed to prove a variety of interesting examples, does not involve elimination
in the operator algebra.

In connection with the third question, Paule (1992) found a way to apply Zeilberger’s
”fast algorithm” not only for proving (1.1), but also for finding the closed form evaluation
starting out given only the double sum on the left hand side.

We also want to point out that meanwhile sketches of our proofs of the Monthly
Problem (1.1) appeared, see Problem E3376 Solution, Amer. Math. Monthly 99 (1992),
63-65. There, a number of additional issues are referred to, also indicating that it is a
problem of wider interest.

The first named author was partially supported by National Science Foundation Grant
DMS 87002695-03. The work of the second author was partially supported by grants
P6763, P7220 of the Austrian FWF.
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