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The purpose of this paper is to give a complete effective solution to the problem of
computing radicals of polynomial ideals over general fields of arbitrary characteristic.

We prove that Seidenberg’s “Condition P” is both a necessary and sufficient property of

the coefficient field in order to be able to perform this computation. Since Condition P
is an expensive additional requirement on the ground field, we use derivations and ideal
quotients to recover as much of the radical as possible. If we have a basis for the vector

space of derivations on our ground field, then the problem of computing radicals can be
reduced to computing pth roots of elements in finite dimensional algebras.
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Introduction

The problem of finding efficient algorithms for computing the radical of ideals in poly-
nomial rings over fields has been investigated by many researchers (Gianni et al., 1988;
Alonso et al., 1991; Krick and Logar, 1991; Vasconcelos, 1991; Eisenbud et al., 1992;
Caboara et al., 1997; Matsumoto, 2001). Most of these results make the simplifying
assumption that the characteristic of the ground field is either zero or sufficiently large.
The papers by Krick and Logar (1991) and Matsumoto (2001) provide solutions which are
valid for any positive characteristic but assume a ground field which is finitely generated
over a perfect field. They are based on Gröbner basis computations, that require addi-
tional variables and relations. Although their condition on the coefficient field is satisfied
in the most common situations, we want to explore what is the most general context
in which one can compute radicals. Moreover, our construction is based on computing
ideal quotients of zero-dimensional ideals, which can be performed using linear algebra
(Lakshman, 1990) without the introduction of any additional variables. Also Caboara
et al. (1997) gives an algorithm which is valid for ideals over any perfect field; their
approach is based on computing projections to hypersurfaces and performing square-free
decompositions. In some cases they may require a large number of projections in order
to compute the radical.

The purpose of this paper is to give a complete effective solution to the problem
with no assumptions about the characteristic. We assume that the coefficient fields are
computable, in the sense that we are given effective algorithms to perform rational oper-
ations and to decide whether or not a given element is zero. In the case of fields of
characteristic zero, these assumptions are sufficient to be able to compute the radical of
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polynomial ideals. However, for fields of positive characteristic, additional complications
arise due to inseparability problems. In general one is no longer able to compute radicals
without making additional assumptions about the ground field. One such assumption
due to Seidenberg is that we can solve systems of homogeneous linear equations for solu-
tions which are pth powers. Seidenberg (1974) shows that this assumption, which he calls
“Condition P”, is both necessary and sufficient to be able to compute radicals of primary
ideals. We show in this paper that this is precisely the additional information we need
to compute radicals under all circumstances.

Mines et al. (1988) have shown that a field K satisfies “Condition P” if and only if
any finite dimensional K-algebra has a computable radical. Along with the reduction to
zero-dimensional construction in this paper, this would give another demonstration that
“Condition P” is necessary and sufficient to compute radicals of polynomial ideals. Their
algorithm essentially involves repeated direct use of Condition P to construct elements
in the radical. They are only interested in showing that the radical is constructible, not
necessarily giving efficient algorithms. Since in general applying Condition P can be very
expensive computationally, we try to perform as much of the radical computation as
possible without using Condition P. Only in the final stage, if there remain inseparability
problems, we may need to make use of Condition P.

We show that, over any computable field, we can reduce the radical computation to
that of zero-dimensional ideals. We compute the radical of zero-dimensional ideals by an
induction on the number of variables. Our inductive hypothesis is that we have an ideal
whose contraction to the polynomial ring in one fewer variable is radical, and we show
how to use this to compute the radical of the entire ideal. Along the way we are able
to perform a partial radical computation which presents the ideal as an intersection of
radical ideals evaluated in pth powers. This can be done over any computable field, but
to finish the process we need to use Seidenberg’s additional assumption.

Since Condition P is an expensive additional requirement on the ground field, we use
derivations and ideal quotients to recover as much of the radical as possible. If we have
a basis for the vector space of derivations on our ground field, then the problem of com-
puting radicals can be reduced to computing pth roots of elements in finite dimensional
algebras.

Throughout the paper K will denote a computable field of characteristic p ≥ 0. In
every section except for the last two we will be dealing only with zero-dimensional ideals.
Sections 1 and 2 are independent of the rest of the paper and give some constructions
which can be used to provide shortcuts for computing the radical. Section 1 investigates
projections, while Section 2 shows which portion of the radical can be computed using
the Jacobian criterion. Section 3 begins a general investigation of the use of derivatives
in computing the radical; this is used in Section 4 to give a complete algorithm for the
radical of zero-dimensional ideals over general fields satisfying Seidenberg’s Condition P.
In Section 5 we show that for finitely generated fields over perfect fields, multiple deriva-
tions can be used to replace Condition P with the ability of computing pth roots. In
Section 6 we will show how to reduce the general problem to the zero-dimensional case
and in the final section we conclude with some illustrative examples.

1. Radicals Using Projections

In this section we show that the radical of an ideal can be reconstructed from the
radicals of two suitable projections provided that at least one of them is separable.
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Definition 1.1. Let K be a field. A K-algebra A is called separable over K if, for any
finite extension K ′ of K, A⊗K K ′ is reduced (i.e. it contains no nilpotent elements). An
ideal I ⊆ K[x1, . . . , xn] is called separable if the algebra A = K[x1, . . . , xn]/I is separable
over K.

Observe that an ideal I ⊆ K[x1, . . . , xn] is separable if and only if I ⊗K K ′ is radical
for any finite extension K ′ of K.

Lemma 1.2. Let I, J be zero-dimensional ideals in a ring. If J ⊆ I, then
√

I = I +
√

J .

Proof. If
√

I =
⋂

Mi is the primary decomposition of
√

I, any Mi will be one of the
associated primes of J , so that

√
J =

√
I ∩H for a suitable ideal H such that I 6⊆ H,

which implies the thesis. 2

Proposition 1.3. Let I1 be a zero-dimensional ideal in R1 = K[x1, . . . , xk] and I2 a
zero-dimensional ideal in R2 = K[xk+1, . . . , xn]. If

√
I1 is separable, then√

I1 + I2 =
√

I1 +
√

I2.

Proof. Observe that I1 + I2 is zero-dimensional in K[x1, . . . , xn]. Since
√

I1 +
√

I2 ⊆√
I1 + I2, by Lemma 1.2 it is sufficient to prove that H =

√
I1 +

√
I2 is radical.

If we set X = (x1, . . . , xn), let us show that K[X]/H is reduced.
If we denote J1 =

√
I1 and J2 =

√
I2, we have that

K[X]/H ' (R1/J1)⊗K (R2/J2).

Since J2 is radical, R2/J2 is isomorphic to ⊕iKi, with Ki finite extensions of K, so that
(cf. Lang, 1984, Proposition 3, Chapter XVI, Section 2)

K[X]/H ' (R1/J1)⊗K (⊕iKi) ' ⊕i((R1/J1)⊗K Ki).

By hypothesis R1/J1 is separable, hence (R1/J1)⊗K Ki is reduced for all i and therefore
also their direct sum. So K[X]/H is reduced and then H is radical. 2

Remark 1.4. If an ideal I ⊆ K[x1, . . . , xn] is zero-dimensional, let f1, . . . , fn be uni-
variate polynomials such that (fi) = K[xi] ∩ I and consider the polynomials g1, . . . , gn

such that (gi) =
√

(fi) (in other words, gi is the square-free part of fi). Using Lemma 1.2
and Proposition 1.3 we see that, if at most one of the gi’s is not separable, then

√
I = I + (g1, . . . , gn).

This remark shows that, with the hypothesis of separability, it is possible to extend
Lemma 2.4 of Krick and Logar (1991) to fields of positive characteristic. This has also
been observed by Kemper (2000, Proposition 5) but our remark is somewhat stronger,
because we only require that all but one of the polynomials are separable.

2. Jacobian Criterion in Arbitrary Characteristic

The result of Lemma 1.2 can be used to reduce the problem of computing the radical of
a zero-dimensional ideal to the case of complete intersections. If I is a zero-dimensional
ideal in K[x1, . . . , xn] and G denotes a Gröbner basis for I with respect to the lexico-
graphical order with x1 > · · · > xn, then for each i = 1, . . . , n there exists a gi ∈ G such
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that the leading term lt(gi) = xi
mi . If we denote Ĩ = (g1, . . . , gn), by Lemma 1.2 we have

that
√

I = I +
√

Ĩ, so that we need only to compute the radical of Ĩ.
The following proposition shows that much of the radical of a zero-dimensional ideal

can be recovered with a single ideal quotient. If the characteristic is 0 or sufficiently large
we obtain the entire radical in one step.

Proposition 2.1. Let I be a zero-dimensional ideal in K[x1, . . . , xn] and I =
⋂

i Qi

its primary decomposition with Pi =
√

Qi. Assume that the reduced Gröbner basis G for
I with respect to the lexicographical order with x1 > · · · > xn is formed by exactly n
polynomials, say G = {f1, . . . , fn} with fi ∈ K[xi, . . . , xn]. Let F =

∏n
i=1

∂fi

∂xi
. Then

(1) (I : F ) =
⋂

F 6∈Qi
Pi

(2) if F 6∈ Qi, then Pi is separable
(3) if char(K) = 0 or char(K) > max{degxi

fi}, then
√

I = (I : F ).

Proof. (1) Since (I : F ) =
⋂

F 6∈Qi
(Qi : F ), we have only to prove that, for all i such

that F 6∈ Qi, then (Qi : F ) = Pi. Denote by Q one of the Qi’s such that F 6∈ Qi and
P =

√
Q and let us prove that (Q : F ) = P .

Consider the reduced Gröbner basis GQ for Q with respect to the lexicographical order
with x1 > · · · > xn and denote by q1, . . . , qn polynomials in GQ such that lt(qi) = xi

mi .
Let {h1, . . . , hn} be the reduced Gröbner basis for P =

√
Q. By Gianni et al. (1988,

Proposition 5.8), for each i = 1, . . . , n there exists an integer si such that

qi = hi
si +

n∑
k=i+1

dikhk (1)

with dik, hi ∈ K[xi, . . . , xn]. In particular qn = hn
sn .

In order to prove that (Q : F ) = P , it is sufficient to prove that hi ∈ (Q : F ) for all
i = 1, . . . , n. If we denote Fj =

∏n
k=j

∂fk

∂xk
(so that F = F1), we will get the thesis proving

by induction that hiFi ∈ Q ∀i = 1, . . . , n.
For all i, fi ∈ Q ∩K[xi, . . . , xn] and it is monic in xi, so it must reduce to 0 modulo

GQ ∩K[xi, . . . , xn] and hence

fi = uihi
si +

n∑
k=i+1

cikhk (2)

with ui, cik ∈ K[xi, . . . , xn].
We immediately see that hnFn ∈ Q because, using that fn = unhn

sn , we have

hnFn = hn
∂fn

∂xn
= hn

∂un

∂xn
hn

sn + snhnun
∂hn

∂xn
hn

sn−1 = hn
sn

(
hn

∂un

∂xn
+ snun

∂hn

∂xn

)
.

Assume now that hjFj ∈ Q ∀j = i + 1, . . . , n (and hence that hjFm ∈ Q ∀m ≤ j) and
let us prove that hiFi ∈ Q.

Observe that hi
siFi+1 ∈ Q because, using (1), we can write

hi
siFi+1 =

(
qi −

n∑
k=i+1

dikhk

)
Fi+1

which belongs to Q because each hkFi+1 in the sum belongs to Q, since i + 1 ≤ k.
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Differentiating the relation (2), we get

∂fi

∂xi
= hi

si−1

(
∂ui

∂xi
hi + siui

∂hi

∂xi

)
+

n∑
k=i+1

∂cik

∂xi
hk. (3)

Then

hiFi = hi
∂fi

∂xi
Fi+1 = hi

si

(
∂ui

∂xi
hi + siui

∂hi

∂xi

)
Fi+1 + hi

n∑
k=i+1

∂cik

∂xi
hkFi+1.

The second summand in the right-hand sum belongs to Q because hkFi+1 ∈ Q whenever
i + 1 ≤ k. Having already seen that hi

siFi+1 ∈ Q, we get that hiFi ∈ Q.
(2) We want now to prove that, if F 6∈ Q, then P is separable, or equivalently ∂hi

∂xi
6∈ P

for all i.
Assume, for contradiction, there exists an index i such that ∂hi

∂xi
∈ P . Since the set

{h1, . . . , hn} is the reduced Gröbner basis for P and ∂hi

∂xi
cannot be reduced by any of

the hi’s, we have that ∂hi

∂xi
∈ P implies that ∂hi

∂xi
= 0.

Using (3),

Fi =
∂fi

∂xi
Fi+1 =

(
hi

si
∂ui

∂xi
+

n∑
k=i+1

∂cik

∂xi
hk

)
Fi+1

and therefore, as above, Fi ∈ Q; then also F ∈ Q, which is a contradiction.
(3) When char(K) = 0 or char(K) > max{degxi

fi}, P is separable as follows from
the beginning of part (2). Thus we need to show that, since P is separable, then F 6∈ Q.
This will be proved by induction on the number n of variables.

If n = 1, then I = (fn), Q = (qn), P = (hn) with qn = hn
sn , fn = unhn

sn and
gcd(un, qn) = 1. Since P is separable, ∂hn

∂xn
6∈ P . Differentiating the relation fn = unhn

sn ,
we get

Fn =
∂fn

∂xn
=

∂un

∂xn
hn

sn + snun
∂hn

∂xn
hn

sn−1 = hn
sn−1

(
hn

∂un

∂xn
+ snun

∂hn

∂xn

)
.

Assume, for contradiction, that Fn ∈ Q; then, since hn
sn−1 6∈ Q, we have that hn

∂un

∂xn
+

snun
∂hn

∂xn
∈ P and hence snun

∂hn

∂xn
∈ P . Because of the hypothesis on the characteristic

and since un 6∈ P , this would imply that ∂hn

∂xn
∈ P , which contradicts the separability

of P .
Let us now prove the inductive step. Denote P2 = (h2, . . . , hn); since P is separable,

∂hi

∂xi
6∈ P for all i and therefore P2 is separable too. By the inductive hypothesis F2 =

∂f2
∂x2

· · · ∂fn

∂xn
6∈ Q2 and hence F2 6∈ Q. Observe that

F =
∂f1

∂x1
F2 =

(
h1

s1−1

(
∂u1

∂x1
h1 + s1u1

∂h1

∂x1

)
+

n∑
k=2

∂c1k

∂x1
hk

)
F2.

Assume, for contradiction, that F ∈ Q. As already said above,
(∑n

k=2
∂c1k

∂x1
hk

)
F2 ∈ Q.

Moreover h1
s1−1F2 6∈ Q, because F2 ∈ K[x2, . . . , xn] and F2 6∈ Q. Thus we get that

∂u1
∂x1

h1 + s1u1
∂h1
∂x1

∈ P and hence s1u1
∂h1
∂x1

∈ P . Since s1 6= 0 and u1 6∈ P , we would get
that ∂h1

∂x1
∈ P which is impossible. 2
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The previous proposition is a special case, with an elementary proof, of the Jacobian
criterion in Eisenbud et al. (1992, Theorem 2.1). In that theorem the hypothesis that
the characteristic is sufficiently large is included, whereas, using our proof, we show that
(I : F ) gives a portion of the radical even when the characteristic is very small.

3. Derivations

This section shows how general derivations can be used to recover portions of the
radical of an ideal.

Recall that a derivation on a ring R is a map D : R → R such that, for all x, y ∈ R,

D(x + y) = D(x) + D(y) and D(xy) = D(x)y + xD(y).

If J is an ideal in R and a derivation D is such that D(J) ⊆ J , then D induces a
derivation on R/J .

In the case when X = (x1, . . . , xn) and R = K[X], the next proposition shows that
any derivation on K[X]/I comes from a derivation on K[X]:

Lemma 3.1. Let I be an ideal in K[X] and let D be a derivation on K[X]/I. Then there
exists a derivation D∗ of K[X] such that D∗(I) ⊆ I and which induces D on K[X]/I.

Proof. The derivation D is determined by D|K and by D([xi]) = ai ∈ K[X]/I for all i.
If we choose bi ∈ K[X] such that [bi] = ai, then it is enough to define D∗ by setting
D∗

|K = D|K and D∗(xi) = bi. 2

Lemma 3.2. Let D be a derivation on a ring R and assume that J is an ideal of R such
that J =

⋂
i Mi, where Mi are pairwise coprime maximal ideals. Then D(J) ⊆ J if and

only if D(Mi) ⊆ Mi for all i.

Proof. One implication being trivial, assume that D(J) ⊆ J . For each i, there exists
mi ∈

⋂
j 6=i Mj and mi 6∈ Mi. Then for every x ∈ Mi we have that D(xmi) = D(x)mi +

xD(mi) ∈ J ⊆ Mi; so D(x)mi ∈ Mi and hence D(x) ∈ Mi. 2

In the situation of Lemma 3.2, for each i the derivation D induces a derivation on the
field R/Mi which, by abuse of language, we will also denote by D.

The derivations of a field K form a K-vector space DerK . Any derivation D of a field
K has a natural extension to K[x] obtained by applying D to all coefficients of f ∈ K[x],
i.e. if f(x) =

∑
i aix

i then D(f)(x) =
∑

i D(ai)xi.

Definition 3.3. Let K be a field and D a derivation of K[x]. We will say that D is
proper if, for every monic irreducible f ∈K[x] such thatD(f) 6=0, we have gcd(f,D(f))= 1.

For example, the map f → f ′ from K[x] → K[x], where ′ denotes the ordinary
derivation with respect to x, is a proper derivation. In addition, any derivation on K lifts
to a proper derivation on K[x].

Definition 3.4. Let B = {g1, . . . , gm} be a set of generators for a zero-dimensional
ideal I ⊆ R[x] and let D be a derivation on R[x]. We will denote by D(B) the ideal of
R[x] generated by the polynomials D(g1), . . . , D(gm).
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We will denote by (I : L∞) the stable limit of (I : Ln), i.e. the saturation of I by an
ideal L.

Although in general the ideal D(B) may depend on the chosen set of generators for I,
for the quotient we have:

Proposition 3.5. Let B = {g1, . . . , gm} be a set of generators for a zero-dimensional
ideal I ⊆ R[x]. If J = I ∩ R is radical and D is a proper derivation on R[x] such that
D(J) ⊆ J , then

(a) the ideal (I : D(B)) does not depend on the choice of B, hence we can denote it
simply by (I : D(I))

(b) the ideal L = (I : D(I)) is radical
(c) if H = (I : L∞), then (H : D(H)) = (1).

Proof. Let J =
⋂

i Mi be the decomposition of J as intersection of pairwise coprime
maximal ideals in R. By Lemma 3.2 we have D(Mi) ⊆ Mi for all i.

For any i denote by Bi a set of generators for (I,Mi) obtained as Bi = B ∪ Si where
Si ⊂ Mi. Then

(I : D(B)) =
⋂
i

((I,Mi) : D(Bi)).

So it is sufficient to prove the result for each ideal (I,Mi), whose intersection with R
is maximal; the thesis will follow directly from the fact that being radical is a local
condition.

Therefore, with no loss of generality, we can assume that J is maximal.

(a) Observe that there exists f ∈ R[x] such that I = (f, J). So we have

f =
∑

aigi and gi ≡ cif(mod J)

hence
D(f) =

∑
D(ai)gi +

∑
aiD(gi) ≡

∑
aiD(gi)(mod I)

and D(gi) ≡ D(ci)f+ciD(f) ≡ ciD(f)(mod I).
This proves that D(B) ≡ (D(f))(mod I), which easily implies that (I : D(B)) ≡
(f : D(f))(mod J), and (a) follows.

(b) If f =
∏

j∈A qj(x)sj is the irreducible factorization of f in (R/J)[x], then
(f : D(f)) =

(
f

gcd(f,D(f))

)
, and

gcd(f,D(f)) =
∏

j∈A1

qj(x)sj−1
∏

j∈A2

qj(x)sj (4)

where A1 = {j ∈ A | sjD(qj) 6= 0} and A2 = {j ∈ A | sjD(qj) = 0}.
Thus, modulo J , the ideal (f : D(f)) ≡

(∏
j∈A1

qj(x)
)

is radical; hence the ideal
L = (I : D(I)) = ((f, J) : D(f)) is radical.

(c) From (4) it follows that H = (I : L∞) =
(∏

j∈A2
qj(x)sj , J

)
. By definition of A2,

we get that D
(∏

j∈A2
qj(x)sj

)
∈ J and hence, using (a), (H : D(H)) = (1). 2

From the proof of point (c) in the previous proposition we have the following
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Corollary 3.6. With the notations of Proposition 3.5, let J =
⋂

i Mi be the decompo-
sition of J as intersection of pairwise coprime maximal ideals in R. If H =

⋂
i(hi,Mi),

then D(hi) ∈ Mi for all i.

Proposition 3.7. With the notations of Proposition 3.5, let {D1, . . . , Dr} be a set of
proper derivations on R[x] such that Di(J) ⊆ J for all i = 1, . . . , r. Then

1. the ideal L = (I : (D1(I), . . . , Dr(I))) is radical
2. if H = (I : L∞), then (H : Dj(H)) = (1) for all j
3. if H =

⋂
(hi,Mi), then Dj(hi) ∈ Mi ∀i, j.

Proof. As in the proof of Proposition 3.5 we can reduce to the case when J is maximal
in R and I = (f, J). Let f =

∏
j∈A qj(x)sj be the irreducible factorization of f in

(R/J)[x]. If

A1 = {j ∈ A|∃k such that sjDk(qj) 6= 0} and A2 = {j ∈ A| ∀k sjDk(qj) = 0},

then L ≡ (f : (D1(f), . . . , Dr(f))) ≡
(∏

j∈A1
qj

)
(mod J).

Hence (I : L∞) ≡
(∏

j∈A2
qj

sj
)
(mod J).

In particular Di

(∏
j∈A2

qj
sj
)
≡ 0(mod J) for all i. 2

Corollary 3.8. With the notations of Proposition 3.7, it is possible to compute monic
polynomials g1, . . . , gs and radical ideals J1, . . . , Js ⊆ R such that H =

⋂
(gi, Ji); more-

over Dj(gi) ∈ Ji ∀i, j.

Proof. From Proposition 3.7 we know that, if H =
⋂

(hi,Mi), then Dj(hi) ∈ Mi ∀i, j.
Compute a Gröbner basis for H, say {p1, . . . , pn, q1, . . . , qt} with pi ∈ R[x], qj ∈ R,

and consider the ideal G1 = (H, lc(p2), . . . , lc(pn)). Then (see, for instance, Gianni, 1989)
a Gröbner basis for G1 is of the form (g1, S1) where S1 is a set of polynomials generating
an ideal J1 ⊆ R such that J1 =

⋂
i∈B Mi where B = {i | deg hi = deg p1} and g1 ≡

hi (mod Mi) ∀i ∈ B. Hence Dj(g1) ∈ Mi ∀i, j.
Write H = G1 ∩ (H : G1); by construction the ideal H1 = (H : G1) is such that

(H1 : D(H1)) = (1); so we can iterate the previous construction. 2

4. Radicals Over General Fields With Condition P

In this section we present a procedure to compute the radical of a zero-dimensional
ideal I in K[x1, . . . , xn] where K is an arbitrary computable field of characteristic p.

Denote by G a Gröbner basis for I with respect to the lex order with x1 > x2 > · · · >
xn. For any m = 1, . . . , n consider the mth elimination ideal Im = I ∩K[xm, . . . , xn].

Our strategy to compute the radical of I is to start from the last elimination ideal,
In, and add the next elimination ideal to the radical computed at the previous stage.
Thus we are always working with an ideal whose contraction to the polynomial ring in
one fewer variable is radical.

Under this hypothesis we will employ the following simplified notation. We will denote
R = K[x2, . . . , xn] and x = x1, so that I ⊆ R[x]. Moreover we will assume that J = I∩R
is a radical ideal. We will denote with “ ’ ” the derivation with respect to the variable x
on R[x] and with I ′ the ideal generated by the derivatives of generators of I.
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If J =
⋂

i Mi is the decomposition of J as intersection of pairwise coprime maximal
ideals in R, then we have

√
I =

⋂
i

√
(I,Mi) and I is radical if and only if each ideal

(I,Mi) is radical.
Since, for any i, R/Mi is a field, the ideals (I,Mi)/Mi are principal in (R/Mi)[x];

moreover, as is well known, (I,Mi) is radical if and only if the principal generator in
(R/Mi)[x] is square-free.

Definition 4.1. Let I be a zero-dimensional ideal in R[x] with I∩R =
⋂

i Mi where Mi

are maximal ideals in R. We will say that I is relatively separable over R if R[x]/(I,Mi)
is a separable algebra over R/Mi for all i.

We remark that a relatively separable ideal is also a radical ideal.

Proposition 4.2. Let I be a zero-dimensional ideal in R[x] with R = K[x2, . . . , xn]
and char(K) = p. Denote by d the maximum of the degrees (with respect to x) of the
polynomials in some set of generators for I. Assume that J = I∩R is radical and consider
the ideals L = (I : I ′) and Q = (I : L∞).

1 If p = 0 or p > d, then
√

I = L.
2 If 0 < p ≤ d, then

√
I = L ∩

√
Q and the reduced Gröbner basis of Q is contained

in R[xp].

Proof. (1) Using the arguments and notations of the proof of Proposition 3.5, since in
our present hypothesis locally degx f ≤ d, then f has no inseparable factor; so A2 = ∅
and A1 = A.

(2) The fact that
√

I = L∩
√

Q follows easily from the proof of Proposition 3.5, since
locally at each Mi we have

Q ≡ (fi : (fi : fi
′)∞) ≡

(∏
Ai2

qij(x)sij

)
(mod Mi).

So, if we set hi =
∏

Ai2
qij(x)sij , we have that hi

′(x) = 0 and hence hi ∈ R[xp]. Via
the Chinese Remainder Theorem there exists h ∈ R[xp] such that h ≡ hi (mod Mi) and
therefore (h, J) = Q. So the reduced Gröbner basis of Q is contained in R[xp]. 2

This is essentially a special case of Proposition 3.5 which shows that Q can be generated
by polynomials in xp; therefore this is true for a Gröbner basis of Q under any ordering.

Corollary 4.3. Let I be a zero-dimensional ideal in R[x] such that I ∩ R is radical.
If I = (I : I ′), then I =

√
I with no restrictions on the characteristic.

From now on we will restrict to the case when 0 < p ≤ d and show how to complete
the process by giving an algorithmic procedure for computing the radical of Q, the
inseparable part of I.

Definition 4.4. Let H be the ideal of R[x] generated by the polynomials {h1, . . . , ht}.
We will denote by H(xpk

) the ideal generated by the polynomials h1(xpk

), . . . , ht(xpk

)
obtained by evaluating the generators of H in xpk

.
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Proposition 4.5. Let I be a zero-dimensional ideal in R[x] and assume that J = I∩R
is radical. Then it is possible to compute a finite number of zero-dimensional, relatively
separable ideals Li in R[x] such that

√
I =

⋂√
Lj(xpj ).

Proof. Consider the radical ideal L0 = (I : I ′).
If L0 = I, then I is radical and we are done. So assume that L0 6= I and consider

Ĩ0 = (I : L0
∞).

Recall that, by Proposition 4.2,
√

I = L0 ∩
√

Ĩ0 and that the polynomials of the
reduced Gröbner basis G of Ĩ0 are contained in R[xp].

Of course we can suppose Ĩ0 6= (1), because otherwise
√

I = L0 and we are done.
If, using the basis G, we set I1 = Ĩ0(x1/p), then

√
I = L0 ∩

√
I1(xp).

Start again with the ideal I1 ⊆ R[x], where the degrees in x have been divided by p,
and consider

L1 = (I1 : I1
′), Ĩ1 = (I1 : L1

∞) and I2 = Ĩ1(x1/p).

So
√

I1 = L1 ∩
√

Ĩ1 = L1 ∩
√

I2(xp) and

√
I = L0 ∩

√
L1(xp) ∩

√
I2(xp2).

After a finite number of steps, we find In such that
√

In = Ln with Ln relatively separable.
The ideals L0, . . . , Ln satisfy the thesis. 2

The previous result holds for any field K, but it will represent an algorithm to compute
the radical of I only if we are able to compute the radical of L(xpi

) for any relatively
separable ideal L and for all i.

Before seeing how we can compute the radical of L(xp), let us recall some results from
Gianni and Trager (1996) that we will use.

Lemma 4.6. (Gianni and Trager, 1996) Let k be a field of characteristic p and let
f(x) ∈ k[x] be separable. Then f(xp) decomposes as f(xp) = (f1(x))pf2(xp), where f1(x)
is separable, f2(xp) is square-free, and f1(x) and f2(xp) are coprime.

Lemma 4.7. (Gianni and Trager, 1996) Let k be a field of characteristic p. If f(xp)
∈ k[x] is a square-free polynomial, then f(xpi

) is also square-free for any integer i ≥ 1.

Proposition 4.8. Let L be a zero-dimensional, relatively separable ideal in R[x] such
that L ∩ R is radical. Let q be a polynomial such that q 6∈ L(xp) but q ∈

√
L(xp). If we

set N = (L(xp), q), then

1. S = (N : N ′) is relatively separable
2. T = (N : S∞) is radical
3. T (xpi

) is radical for all i

4.
√

L(xp) = S ∩ T .



Derivations and Radicals of Polynomial Ideals 619

Proof. If J = L ∩R =
⋂

i Mi is the decomposition of J as the intersection of maximal
ideals in R, it is sufficient to prove that the thesis holds locally at each Mi, i.e. in
(R/Mi)[x]. In other words we can assume that L ⊆ k[x] with k a field of characteristic p.

By hypothesis L is generated by a separable polynomial ϕ(x) and hence L(xp) is
generated by ϕ(xp). By Lemma 4.6 we have that ϕ(xp) = h1(x)ph2(xp) with h1 separable
and h2(xp) square-free.

Let r be a positive integer such that qr ∈ L(xp) = (ϕ(xp)). Since q 6∈ L(xp), then
q(x) = c(x)h1(x)jh2(xp)m with j < p and for some m ∈ N and c(x) coprime with ϕ(xp).

Then N = (L(xp), q) is generated by gcd(ϕ(xp), q) = h1(x)jh2(xp).
Consequently S = (N : N ′) = (h1(x)), so it is relatively separable (which was already

assured by Proposition 3.5) and T = (N : S∞) = (h2(xp)), so T is radical since h2(xp)
is square-free.

Moreover, for all i, the ideal T (xpi

) is generated by h2(xpi+1
) which is square-free by

Lemma 4.7, so that it is radical.
Finally

√
L(xp) = (L(xp), h1(x)h2(xp)) = S ∩ T . 2

The previous result guarantees that, if we can compute q such that q 6∈ L(xp) but
q ∈

√
L(xp), then we can compute algorithmically the radical of I.

Observe that √
L(xp2) =

√
S(xp) ∩

√
T (xp) =

√
S(xp) ∩ T (xp),

where we used the fact that T (xp) is already radical. Now S is separable, so we can
compute

√
S(xp) using Proposition 4.8. Thus, applying iteratively Proposition 4.8, we are

able to compute the radical of L(xpi

) for any integer i, and hence
√

I (see Proposition 4.5),
if we can compute a polynomial q with the properties mentioned above.

As a matter of fact, it is enough to compute a q such that q 6∈ L(xp) but qp ∈ L(xp).
In fact, if L(xp) is not radical, there exists a polynomial f such that f 6∈ L(xp) but

fm ∈ L(xp) for some positive integer m. If m ≤ p, then also fp ∈ L(xp) and q = f has
the requested property. If m > p (and m is the least positive integer such that f 6∈ L(xp)
but fm ∈ L(xp)), let s be the least positive integer multiple of p and greater than m,
say s = pr. Then q = fr is a polynomial such that qp = frp = fs ∈ L(xp) since s > m;
moreover q 6∈ L(xp) because r ≤ m.

It will be possible to compute such an element q (and therefore to compute the radical
of L(xp)) if the field K satisfies a condition introduced by Seidenberg, who called it
Condition P (see Seidenberg, 1974).

Definition 4.9. Let K be a field of characteristic p. We say that K satisfies Condition P
if, given a system of homogeneous linear equations over K, it is possible to decide if it
has a non-trivial solution in Kp and, if so, exhibit one.

Proposition 4.10. (Seidenberg, 1974) If a computable field K satisfies Condition P,
then so does any finitely generated extension of K.

If K satisfies Condition P and I is a zero-dimensional ideal in R[x], let us therefore
see how we can compute an element q such that q 6∈ I and qp ∈ I.

Consider the finite dimensional vector space R[x]/I over K and let {b1, . . . , br} be
a linear basis of it. In R[x]/I the element q we are looking for can be written as
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q =
∑

i cibi for suitable coefficients ci ∈ K. Imposing that qp = 0 modulo I, we get
that

∑
i ci

pbi
p = 0. If we express each bi

p as a linear combination of the fixed basis,
we get that

∑
i ci

p
(∑

j αijbj

)
= 0, that is

∑
j bj

(∑
i αijci

p
)

= 0. The bj ’s are linearly
independent, which implies that

∑
i αijci

p = 0. Since we are looking for a non-trivial
solution in Kp, we can decide if it exists, and exhibit one, using Condition P.

5. Multiple Derivations and pppth Powers

In the previous section we used derivations to reduce the problem of computing radicals
to applying Condition P to ideals of the form L(xpk

). Since Condition P can be very
expensive to use, in this section we will see that, in the case when the ground field is
finitely generated over a perfect field, we can use additional derivations to reduce the
problem of computing radicals to computing pth roots.

Let us recall a result that, using derivations, characterizes the elements which are pth
powers in a finitely generated extension K of a perfect field k.

Theorem 5.1. (Cf. Lang, 1984) Let K be a finitely generated extension of a perfect
field k. Then

• the K-vector space DerK has dimension equal to the transcendence degree of K
over k

• if β ∈ K, then β ∈ Kp ⇐⇒ D(β) = 0 ∀D ∈ DerK .

We intend to generalize this result to the case of finitely generated K-algebras; as a
first step we will examine how to find a generating set of derivations on such algebras.

Let therefore K be a finitely generated extension of a perfect field k. Assume J =
(f1, . . . , fm) is a zero-dimensional ideal in R = K[y1, . . . , yn] and consider the finitely
generated K-algebra A = R/J .

First of all observe that, if J is radical, since A is isomorphic to a finite product of
fields ki, there exists a 1− 1 correspondence between DerA and

∏
Derki

induced by the
projections πi : A → ki.

If s = tr.deg.kK, denote by D̃1, . . . , D̃s a basis of the s-dimensional K-vector space
DerK . If Y = (y1, . . . , yn), for any g ∈ R, g =

∑
I∈Nn aIY

I , denote

Di(g) =
∂g

∂yi
i = 1, . . . , n

Di(g) =
∑

I∈Nn

D̃i−n(aI)Y I i = n + 1, . . . , n + s.

So we have a set {D1, . . . , Dn+s} of derivations on R and we can consider the m×(n+s)
matrix Jac whose (i, j)-entry is defined by

Jaci,j = Dj(fi).

A derivation D of K[Y ] induces a derivation of A = K[Y ]/J if and only if D(J) ⊆ J ;
the matrix Jac provides a method to characterize such derivations:

Proposition 5.2. Let v = (v1, . . . , vn+s) ∈ K[Y ]n+s. Then the following facts are
equivalent:
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1. D =
∑n+s

i=1 viDi is such that D(J) ⊆ J

2. ∀j = 1, . . . ,m
∑n+s

i=1 viDi(fj) ≡ 0 (mod J)
3. Jac · v ≡ 0 (mod J).

Thus the syzygies of the Jacobian matrix modulo J generate the derivations on A.

Proposition 5.3. Let K be a field and J a radical, zero-dimensional ideal in K[Y ].
Consider the K-algebra A = K[Y ]/J and let α be an element in A. Then D(α) = 0 for
all D ∈ DerA if and only if there exists β ∈ A such that α = βp.

Proof. Since J is radical, A is isomorphic to a finite product of fields ki and any
derivation on A induces a derivation on ki and vice versa. So our thesis follows from the
analogous result for derivation on fields (see Theorem 5.1). 2

Proposition 5.4. Let R = K[Y ]. Let I be an ideal in R[x] and J = I ∩ R =
⋂

Mi.
Denote D0 = ∂

∂x and let D1, . . . , Dr be a set of generators of the derivations on R/J .
Define L = (I : (D0(I), . . . , Dr(I))) and H = (I : L∞). Then

1.
√

I = L ∩
√

H
2. it is possible to compute monic polynomials g1, . . . , gs and radical ideals J1, . . . , Js

such that H =
⋂

(gi, Ji), gi ≡ hi
p(mod Ji).

Proof. By Proposition 3.7 L is radical and by Corollary 3.8 we can compute monic
polynomials g1, . . . , gs and radical ideals J1, . . . , Js ⊆ R such that Dj(gi) ∈ Ji ∀i, j. We
can assume that gi is reduced modulo Ji.

Since D0(gi) ∈ Ji ⊆ R and gi is reduced modulo Ji, then D0(gi) = 0 for all i, which
implies that gi(x, Y ) = g̃i(xp, Y ). Since also Dj(g̃i(xp, Y )) ∈ Ji ∀j > 0 and D1, . . . , Dr

generate all the derivations on R/J , the coefficients of the g̃i’s are pth powers modulo Ji

by Proposition 5.3. Hence there exists hi ∈ R[x] such that gi ≡ hi
p (mod Ji). 2

As a result of the previous proposition we have constructed polynomials which are
known to be pth powers modulo radical ideals and we need to construct their pth roots.
After computing the hi’s which are the pth roots of gi, we apply our radical construction
to the ideals (hi, Ji) in order to finish the computation.

One approach to computing pth roots is to use Condition P; we should note that the
situation is improved since, with respect to the previous section, we are using Condition P
in the algebra R/J which is a lower dimensional subalgebra. In our situation J is a radical,
zero-dimensional ideal in K[Y ]; let {b1, . . . , br} be a basis of the K-algebra B = K[Y ]/J .
If q =

∑
i cibi, with ci ∈ K, is an element of Bp, then there exists an element a =

∑
i aibi

with ai ∈ K such that ap = q. If we express each bi
p as a linear combination of the fixed

basis, say bi
p =

∑
j βijbj , then the coefficients ai are solutions of the system

∑
i βijai

p =
cj .

In order to find a solution (a1, . . . , ar) of the latter system, we can think of using
Condition P which, however, deals with the existence of non-trivial solutions in Kp only
for homogeneous systems. Nevertheless we can find a solution of our system by solving
the homogeneous system

∑
i βijai

p − cjt = 0 where t is an additional unknown, because
all the non-trivial solutions of this system have the last entry different from 0 since the
radical algebra B contains no nilpotent elements.
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The situation turns out to be simpler when the K-algebra is separable over K, in fact
recall that

Proposition 5.5. Let B be a finite dimensional K-algebra and let {b1, . . . , br} be a
basis of B. If B is separable then {b1

p, . . . , br
p} is a basis of B.

Proof. It is enough to prove that {b1
p, . . . , br

p} are linearly independent over K. Oth-
erwise let

∑
i cibi

p = 0 be a non-trivial dependence relation with ci ∈ K. In some finite
extension K̃ of K there exists ai such that ai

p = ci. Consider
∑

i aibi; this element is
nilpotent in B ⊗K K̃, but that would imply that B is not separable, which is a contra-
diction. 2

Therefore in this case the matrix (βij) is invertible so the system
∑

i βijai
p = cj has

a unique solution (a1
p, . . . , ar

p) and computing the ai’s reduces to compute pth roots in
the field K. Since K is finitely generated over a perfect field, this problem is constructive
(see Gianni and Trager, 1996).

6. Higher Dimensional Ideals

To conclude this paper we want to show how to use the computation obtained for
zero-dimensional ideals in order to compute the radical of ideals of any dimension.

Given an ideal I of positive dimension d one can determine a set of variables {xi1 , . . . ,
xid
} such that I∩K[xi1 , . . . , xid

] = 0. Such a maximal independent set can be found using
a Gröbner basis for I under any term ordering as explained in Becker and Weispfenning
(1993).

Without loss of generality we will relabel the variables so that our independent set
is {x1, . . . , xd}. The ideal Ie = IK(x1, . . . , xd)[xd+1, . . . , xn] is zero-dimensional and we
can compute its radical using the result in the previous section. After computing L =√

Ie, we need to contract L back to the original polynomial ring, i.e. compute Lc =
L ∩ K[x1, . . . , xn]. This contraction can be performed by saturating with respect to a
principal ideal as in the following proposition:

Proposition 6.1. (Gianni et al., 1988) Let G = {f1, . . . , fk} be a Gröbner basis for
an ideal I ⊆ K(x1, . . . , xd)[xd+1, . . . , xn] under any term ordering. We can assume
that the fi are monic and we compute a polynomial g ∈ K[x1, . . . , xd] such that gfi ∈
K[x1, . . . , xn] for all 1 ≤ i ≤ k; then we have:

I ∩K[x1, . . . , xn] = (gt− 1, gf1, . . . , gfk) ∩K[x1, . . . , xn]

where t is a new variable.

This allows us to compute Lc =
√

Ie ∩ K[x1, . . . , xn] which is a radical ideal whose
associated primes are the associated primes of I whose intersection with K[x1, . . . , xd] is
zero. We must now find a complementary ideal J such that

√
I = Lc ∩

√
J . One way to

compute such a J is to use a simple corollary to Proposition 6.1.

Corollary 6.2. (Gianni et al., 1988) Let G = {f1, . . . , fr} be the reduced Gröbner
basis of an ideal I ⊆ K[x1, . . . , xd][xd+1, . . . , xn] under a block term ordering. Assume
that I ∩ K[x1, . . . , xd] = 0 and let Iec = IK(x1, . . . , xd)[xd+1, . . . , xn] ∩ K[x1, . . . , xn].
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If we denote by g ∈ K[x1, . . . , xd] the lcm of the leading coefficients of the polynomials
fi, then we have: √

I =
√

Iec ∩
√

(I, g).

Corollary 6.3. Let I ⊆ K[x1, . . . , xn] be an ideal of dimension d > 0, where K is a
computable field satisfying Condition P. Then it is possible to compute the radical of I.

Proof. Let S be a maximal independent set for I and let X = {x1, . . . , xn}. Let Ie be
the extension of the ideal I to K(S)[X − S] and Iec be the contraction of Ie to K[X].
We have √

I =
√

(I, g) ∩
√

Iec =
√

(I, g) ∩ (
√

Ie)c.

Now Ie is a zero-dimensional ideal, and (I, g) is an ideal where S is no longer a maximal
set of independent variables. So repeating this process, we reduce the problem to the
computation of radicals of zero-dimensional ideals. 2

One problem with this kind of construction, though, is that in general the ideal (I, g)
can have some components which contain some components of Iec and are thus redun-
dant. Since we want to compute the radical and so we are not concerned about mul-
tiplicity, we can avoid this problem. In fact, as remarked in both Alonso et al. (1991)
and Caboara et al. (1997), the redundancies can be eliminated by replacing (I, g) by the
saturation of I by

√
Iec, since the following holds:

Proposition 6.4. Let I ⊂ J be ideals, then we have
√

I =
√

J ∩
√

I : J∞

and the associated primes of (I : J∞) are the associated primes of I which do not
contain J .

In Alonso et al. (1991) it is shown that, by first putting the ideal in a sufficiently
general position, one can replace the general saturation in the previous proposition, by
saturating with respect to a suitable principal ideal. However arguments requiring general
linear changes of coordinates require special handling when the coefficient fields are finite.

7. Examples

Example 1. The following “challenge” ideal was presented in Eisenbud et al. (1992).
Let I = (x7 − zyu5, y4 − z3u) ⊆ Z7[x, y, z, u]. This ideal is two-dimensional but it

is in Noether normal form and equidimensional, so we can consider directly its zero-
dimensional extension to the ring Z7(z, u)[x, y].

We proceed as in Section 1 by computing the univariate projections. Since the sec-
ond generator is separable, it is enough to add the square-free part of the generator of
I ∩ Z7(z, u)[x]; this polynomial is x28 − u21z7 and its square-free part is x4 − u3z. Then
(I, x4 − u3z) = (xz2 − y3, y4 − uz3) is a radical ideal in Z7(z, u)[x, y]. Now it remains to
compute the contraction to Z7[x, y, z, u]. Since the lcm of the leading coefficients is z2,
it is enough to compute the saturation with respect to z, finally yielding the radical of
the original ideal I

√
I = (x3 − yu2, y3 − xz2, x2z − y2u, xy − zu).
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Example 2. Let I = (xp − u, yp − u) ⊆ Zp(u)[x, y], where u is transcendental over
Zp. This ideal is zero-dimensional and the two generators are square-free, but this ideal
is not radical. This example shows that it is not sufficient that I contains square-free
univariate polynomials in each variable in order that I be radical, unless the coefficient
field is perfect. Although Zp is perfect, Zp(u) is not. If we let R = Zp(u)[y], then J =
I ∩ R = (yp − u) is radical since it is principal, generated by a square-free polynomial.
I ′ = 0, so to finish the computation we need to choose a strategy: in this example we use
derivations. The only derivation on R/J is ∂

∂y , so, since ∂(xp−u)
∂x = 0 and ∂(xp−u)

∂y = 0 we
deduce that xp − u is a pth power modulo (yp − u). We need then to compute the pth
root of u modulo (yp−u): this is y, then (xp−u) = (x− y)p modulo (yp−u) and so the
radical is the ideal (x− y, yp − u).

Example 3. Let I = (x6 + 2x3y3 + 1, y4 + y2 + 1) ⊆ Z3[x, y]. First we compute the
radical of the contracted ideal M = (y4 + y2 + 1). Let J = (M : M ′) = (y2 + 2). Since
(M : J2) = (1), we have that J =

√
M . Now consider the ideal (I, J) = (x6+2x3y+1, y2+

2) and call it again I. Then I ′ = 0, so we compute I1 = I(x1/3) = (x2 + 2xy + 1, y2 + 2).
Moreover L1 = (I1 : I ′1) = (x + y, y2 + 2). Since degx I1 < 3, we have that L1 =

√
I1.

The final step is to compute the radical of L1(x3) = (x3 + y, y2 + 2). Since there are
no non-trivial derivations on Z3 we immediately obtain that x3 + y is a perfect cube
modulo (y2 + 2). The algebra Z3[y]/(y2 + 2) is separable, so we can find the cubic root
of y by solving a 2 × 2 linear system over Z3. In this case we find that y3 = y so that
x3 + y = (x + y)3 modulo (y2 + 2) and then the radical of I is (x + y, y2 + 2).
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Becker, T., Weispfenning, V. (1993). Gröbner Bases. A Computational Approach to Commutative Alge-
bra. New York, NY, Springer.

Caboara, M., Conti, P., Traverso, C. (1997). Yet another ideal decomposition algorithm. In Proceedings
of AAECC (Toulouse, 1997), Springer LNCS 1255, pp. 39–54.

Eisenbud, D., Huneke, C., Vasconcelos, W. (1992). Direct methods for primary decomposition. Invent.
Math., 110, 207–235.
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