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1. INTRODUCTION

Bruno Buchberger introduced Gröbner bases in his 1965 PhD thesis [2]. Computation of Gröbner bases requires
one to check whetherS-polynomials reduce to zero. Reduction is a computationally expensive process, so one would
like to avoid it whenever possible. If we knowa priori that theS-polynomial reduces to zero, then of course we can
skip its reduction.

Starting with Bruno Buchberger, several investigators [1, 2, 3, 5, 6] have discovered importanta priori criteria or
methods for skippingS-polynomial reduction. These criteria (and methods) can be divided into two kinds. One kind
[5] uses both the exponents and the coefficients, while the other [1, 2, 3, 6] uses only the exponents (in fact, only the
leading exponents, that is, the exponents of the leading terms). Since the exponents are natural numbers, we will refer
to these criteria ascombinatorial. Obviously, combinatorial criteria might not detect someS-polynomial reductions
that could have been skipped if we also considered the coefficients. However, we can check combinatorial criteria
with an ease and a speed that makes them appealling.

The question arises naturally:

Are the known combinatorial criteria “complete”?

By “complete”, we mean that the criterion makes maximal use of the information from the leading exponents. In
other words, if some exponents do not satisfy the criteria, then there is at least one polynomial system with those
leading exponents where one cannot skipS-polynomial reduction.

The answer to the question isno. We show that Buchberger’s two criteria arenot complete: they miss cases where
the information from the leading terms allows us to skip anS-polynomial reduction. We provide a new combinatorial
criterion for skipping anS-polynomial reduction, and we show that this new criterionis complete for a system of three
polynomials. The complete criterion for four or more polynomials remains an open problem.

2. MAIN THEOREM

All polynomials and monomials are from a ringF [x1, . . . , xn], whereF is a field. We follow the convention of
Cox, Little and O’Shea in [4] that a“monomial” includes a coefficient, while a“term” does not. For any fixed term
ordering�, and for polynomialsp, f , r, andf1, . . . , fm, we writelt� (f) for the leading term off , lm� (f) for the
leading monomial off , andlc� (f) for the leading coefficient off . Observe thatlm� (f) = lc� (f) · lt� (f).

We call theS-polynomial of fi andfj

S (fi, fj) :=
lcm (lt� (fi) , lt� (fj))

lm� (fi)
· fi −

lcm (lt� (fi) , lt� (fj))
lm� (fj)

· fj

For the sake of convenience, we writeSij for S (fi, fj) (only if the polynomials are in factfi, fj) and

σij :=
lcm (lt� (fi) , lt� (fj))

lm� (fi)

HenceSij = σij · fi − σji · fj .
The first results in skippingS-polynomial reduction are Buchberger’s two combinatorial criteria:
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BC1 (ti, tj) := gcd (ti, tj) = 1
BC2 (ti, tj , tk) := tj | lcm (ti, tk)

We have the following two well-known lemmas. A proof of the first is in [2]; a proof of the second is in [1].

Lemma 1 (Buchberger’s First Criterion). For all termsti, tj (A)⇒(B) where
(A) BC1 (ti, tj)
(B) Sij

∗−→
(f1,...,fm)

0 ∀ (f1, . . . , fm) such thatlt� (fi) = ti, lt� (fj) = tj .

Lemma 2 (Buchberger’s Second Criterion). For all termsti, tj , tk (A)⇒(B) where
(A) BC2 (t1, t2, t3)
(B) S12

∗−→
(f1,...,fm)

0 ∧ S23
∗−→

(f1,...,fm)
0 ⇒ S13

∗−→
(f1,...,fm)

0 ∀ (f1, f2, f3) : ∀k lt� (fk) = tk

To our knowledge, the only othercombinatorialcriteria that allow us to skipS-polynomial reduction are Buch-
berger’s two combinatorial criteria. We recall the question,Are the known combinatorial criteria complete?The
answer to this question is no, as theorem 1 demonstrates.

Let us consider a “weaker version” of BC1 and BC2:

VB1x (t1, t3) := degx t1 = 0 or degx t3 = 0
VB2x (t1, t2, t3) := degx t2 ≤ max (degx t1,degx t3)

Observe that VB1 and VB2 define conditions that we can call “variable-wise” BC1 and “variable-wise” BC2, respec-
tively.

Now we can define the complete criterion for skipping oneS-polynomial reduction in a system of three polynomi-
als:

Theorem 1(A new combinatorial criterion). (A) ⇔ [ (B) ∧ (C) ] where
(A) CC (t1, t2, t3,�, {(1, 2) , (2, 3)})
(B) gcd (t1, t3) | t2 ∨ BC2 (t1, t2, t3)
(C) VB1x (t1, t3) ∨ VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xm}

The theorem shows that we can skip the reduction ofS13 even when the previously known combinatorial criteria
fail: see example 1 of section 4.1 for a concrete example. However, one has to pay close attention to the quantifiers:
see example 2 of section 4.2 for an example of how easily this can be misunderstood.

Of course, this new criterion is consistent with the previous criteria; part (B) of any one of lemmas 1 or 2 will imply
(B) ∧ (C) of theorem 1.

3. PROOF OF MAIN THEOREM

For convenience, we writeCC for (B) ∨ (C) of theorem 1; that is,

CC =

 gcd (t1, t3) | t2 ∨ BC2 (t1, t2, t3)

VB1x (t1, t3) ∨ VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xm}

The structure of the proof, as outlined in sections 3.2 and 3.3, can be diagrammed as follows.

(B) ∨ (C)
↖ ↓ ↗

Lemma 7 Lemma 12 Lemma 8
↖ ↓ ↗

(A)

3.1. Useful facts. We begin the proof with a brief review of what we mean byreduction:

• p −→
f

r if there exists a monomialq and a monomiald of p such thatq · lm� (f) = d andr = p− qf

• p 9
f

if ¬∃r such thatp −→
f

r
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• p
∗−→

(f1,...,fm)
r if ∃µ ∈ N, ∃i1, . . . iµ ∈ {1, . . . ,m}, and there exist polynomialsp0, . . . , pµ such that

p = p0 −→
fi1

p1 −→
fi2

p2 · · · −→
fiµ

pµ = r

In this case, we sayp reduces tor modulo(f1, . . . , fm).
A proof of lemma 3 is found in [7], at the website of the second author. We use it to create counterexamples. The
application of lemma 3 usually requires a permutation on the indices of the polynomialsf1, . . . , fm. We do not write
this out explicitly, but it is usually evident.

Lemma 3. Let τ be a nonzero monomial, andF = (f1, . . . , fm) a system of polynomials. Then (A)⇒(B) where

(A) ∃µ with 1 ≤ µ ≤ m such that (A1)∧(A2) where

(A1) ∀` = 1, . . . , µ ∃λ1, . . . , λµ such that
degxλ`

lm� (f`) > degxλ`
τ

(A2) ∀` = µ + 1, . . . ,m
f` = t` + u`

t` � u`

degxλi
t` ≥ degxλi

u` ∀i = 1, . . . , µ

(B) τ
∗9
F

0.

We also resort to the following facts. Their proofs are not difficult, so we omit them.

Remark 1. The following are equivalent for all termst1, t2, t3:
(a)gcd (t1, t3) | t2
(b) gcd (t1, t3) | gcd (t1, t2)
(c) gcd (t1, t3) | gcd (t2, t3)

Remark 2. For all polynomialsf, g we have the following:

• lt� (f ± g) � max� (lt� (f) , lt� (g))
• lt� (f · g) = lt� (f) · lt� (g)

Remark 3. For all polynomialsfi, fj with i 6= j, the leading monomials ofσijfi andσjifj cancel, so thatlt� (Sij) ≺
lcm (lt� (fi) , lt� (fj)).

Remark 4. For any fixed term ordering�, consider a reduction chain

p = p0 −→
fi1

p1 −→
fi2

p2 · · · −→
fiµ

pµ = r

For this chain, we collect
hk =

∑
pj+1=pj−ufk

u

Then

(3.1) p− r =
m∑

k=1

hkfk

Note that∀k = 1, . . . ,m, if hk 6= 0, then from remark 3 we havelt� (hkfk) � lt� (p). In the case wherep = Sij ,
this implies that

(3.2) ∀k hk 6= 0 ⇒ lt� (hkfk) � lt� (Sij) ≺ lcm (lt� (fi) , lt� (fj))

However,it is not always the case that if we can satisfy 3.1 for two polynomialsp, r, thenp
∗−→
F

r. An example of

where itis true is provided in lemma 5.

Remark 5. For allfi andfj whereBC1 (lt� (fi) , lt� (fj)),

Sij = Hici +Hjcj

where
Hi = − (cj − lm� (cj)) Hj = ci − lm� (ci)
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Lemma 4. For all i 6= j (A)⇒(B) where
(A) Sij = h1f1 + · · ·+ hmfm such that∀k = 1, . . . ,m lt� (hkfk) � lt� (Sij)
(B) lt� ((σij ± hi)) = lt� (σij) andlt� ((σji ± hj)) = lt� (σji)

Proof. Let i 6= j be arbitrary, but fixed.
Assume (A).
The statement of (B) is equivalent tolt� (σij) � lt� (hi) andlt� (σji) � lt� (hj).
By way of contradiction, assume

lt� (σij) � lt� (hi)
Then

lcm (lt� (fi) , lt� (fj))
lt� (fi)

� lt� (hi)

lcm (lt� (fi) , lt� (fj)) � lt� (hi) lt� (fi) = lt� (hifi)

This contradicts (A) (see (3.2)).
Hencelt� (σij) � lt� (hi).
Thatlt� (σji) � lt� (hj), is proved similarly. �

The proof of lemma 5 below is somewhat tedious, so we do not reproduce it here. A key ingredient of the proof is
that every syzygy of the leading terms can be written in terms ofS-polynomials. This lemma is crucial for lemma 12.

Lemma 5. For allfi, fj , (A)⇔(B) where
(A) Sij = hifi + hjfj ∃hi, hj , and∀k = i, j

hk 6= 0 ⇒ lt� (hkfk) ≺ lcm (lt� (fi) , lt� (fj))

(B) Sij −→
(fi,fj)

0

Lemma 6 will allow us to draw a connection between the reduction of anS-polynomial for polynomialsf1, f2, f3

and the reduction of the correspondingS-polynomialsc1, c2, c3, which are cofactors of the greatest common divisor
of f1, f2, f3. This lemma is crucial for lemma 12.

Lemma 6. For allF = (f1, f2, f3) if ∃g, ck such that∀k fk = gck, then∀h1, h2, h3 the following are equivalent:
(A) S (fi, fj) = h1f1 + h2f2 + h3f3 andhk 6= 0 implieslt� (hkfk) ≺ lcm (lt� (fi) , lt� (fj))
(B) S (ci, cj) = H1c1+H2c2+H3c3 whereHk = lc� (g)·hk andHk 6= 0 implieslt� (Hkck) ≺ lcm (lt� (cj) , lt� (cj))

Proof. Let� be arbitrary, but fixed.
Let F be arbitrary, but fixed.
Assume that∀k ∃g, ck such thatfk = gck.
Let i 6= j be arbitrary, but fixed.
Then∀h1, h2, h3

S (fi, fj) = h1f1 + h2f2 + h3f3

m
lcm (lt� (fi) , lt� (fj))

lm� (fi)
· fi −

lcm (lt� (fi) , lt� (fj))
lm� (fj)

· fj = h1f1 + h2f2 + h3f3

m

g ·
(

lcm (lt� (gci) , lt� (gcj))
lm� (gci)

· ci −
lcm (lt� (gci) , lt� (gcj))

lm� (gcj)
cj

)
= g · (h1c1 + h2c2 + h3c3)

m
lt� (g) · lcm (lt� (ci) , lt� (cj))

lm� (g) · lm� (ci)
· ci −

lt� (g) · lcm (lt� (ci) , lt� (cj))
lm� (g) · lm� (cj)

cj = h1c1 + h2c2 + h3c3

m
1

lc� (g)
·
(

lcm (lt� (ci) , lt� (cj))
lm� (ci)

· ci −
lcm (lt� (ci) , lt� (cj))

lm� (cj)
cj

)
= h1c1 + h2c2 + h3c3

m
S (ci, cj) = H1c1 +H2c2 +H3c3
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Moreover, for anyk, if hk 6= 0 then

lt� (fkhk) ≺ lcm (lt� (fi) , lt� (fj))
m

lt� (fk) lt� (hk) ≺ lcm (lt� (fi) , lt� (fj))
m

lt� (gck) lt� (hk) ≺ lcm (lt� (gci) , lt� (gcj))
m

lt� (g) lt� (ck) lt� (hk) ≺ lt� (g) · lcm (lt� (ci) , lt� (cj))
m

lt� (ckhk) ≺ lcm (lt� (ci) , lt� (cj))

Clearlylt� (hk) = lt� (Hk), so

lt� (ckHk) ≺ lcm (lt� (ci) , lt� (cj))

From the preceding, we have the equivalence

S (fi, fj) = h1f1 + h2f2 + h3f3

m
S (ci, cj) = H1c1 +H2c2 +H3c3

and for eachk = 1, 2, 3 we have the equivalence

lt� (fkhk) ≺ lcm (lt� (fi) , lt� (fj))
m

lt� (ckHk) ≺ lcm (lt� (ci) , lt� (cj))

The statement of the lemma follows from these two equivalences. �

Three final remarks useful in the proof:

Remark 6. For all polynomialsfi, fj with i 6= j

σij =
lcm (lt� (fi) , lt� (fj))

lm� (fi)
=

lt� (fi) · lt� (fj)
lm� (fi) gcd (lt� (fi) , lt� (fj))

=
lt� (fj)

lc� (fi) gcd (lt� (fi) , lt� (fj))

Remark 7. ∀i 6= j gcd (lt� (σij) , lt� (σji)) = 1

Remark 8. For any term ordering� and for any two polynomialsfi, fj , if g | fi andg | fj , thenlt� (g) | lt� (fi)
andlt� (g) | lt� (fj). So if lt� (fi) andlt� (fj) are relatively prime,fi andfj have no nontrivial common factors.

3.2. Necessity of criterion for three polynomials. In this section, we show that we can skip the reduction ofS13

only if CC3 holds true. We do this by showing the contrapositive: if CC3 is false, then we have to check the reduction
of S13 explicitly. We demonstrate this by producing anF = (f1, f2, f3) whose leading terms aret1, t2, t3, and which
has the property thatS12

∗−→
F

0 andS23
∗−→
F

0, butS13
∗9
F

0.

We treat two different cases: one if the first clause of CC3 is false (lemma 7); the other, if its second clause is false
(lemma 8).

We use a form suggested by lemma 3 wheref1 = t1 + u, f2 = t2, andf3 = t3. In our first approach, we arrange
for S12 −→

f2
0. Per remark 6,

S12 =
t2

gcd (t1, t2)
· u

The simplest way to getS12 −→
f2

0 is if u1 = gcd (t1, t2). ThatS23
∗−→
F

0 is trivial.

How then will we ensure thatS13
∗9
F

0? This will depend on some “magical properties” ofu. These properties

exploit the facts thatt2 - lcm (t1, t3) andgcd (t1, t3) - t2 (hencegcd (t1, t3) - gcd (t1, t2)).
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Lemma 7. For all termst1, t2, t3 (A)⇐(B) where
(A) gcd (t1, t3) | t2 or BC2 (t1, t2, t3)
(B)

[
S12

∗−→
F

0 ∧ S23
∗−→
F

0
]

⇒ S13
∗−→
F

0 ∀F = (f1, f2, f3) : ∀k lt� (fk) = tk

Proof. We show (A)⇐(B) by proving its contrapositive.
Assume¬(A): gcd (t1, t3) - t2 and¬BC2 (t1, t2, t3).
We will constructF to show¬(B).
Let F = (f1, f2, f3) be such that

f1 = t1 + gcd (t1, t2)
f2 = t2

f3 = t3

We need to show thatf1 is a binomial, andlt� (f1) = t1.
Sincegcd (t1, t2) | t1, we havegcd (t1, t2) � t1.
It remains to show thatgcd (t1, t2) 6= t1. By way of contradiction:

gcd (t1, t2) = t1 ⇒ t1 | t2 ⇒ gcd (t1, t3) | t2
But¬(A) hasgcd (t1, t3) - t2.

Sogcd (t1, t2) 6= t1.
Hencegcd (t1, t2) ≺ t1.

Hencef1 is a binomial, andlt� (f1) = t1.
We claimS12

∗−→
F

0 andS23
∗−→
F

0 butS13
∗9
F

0.

From the construction ofF
S23 = 0

Also

S12 =
lcm (t1, t2)

t1
· (t1 + u)− lcm (t1, t2)

t2
· t2

=
t2

gcd (t1, t2)
· gcd (t1, t2)

= f2

SoS12
∗−→
F

0 andS23
∗−→
F

0.

Consider

S13 =
lcm (t1, t3)

t1
· (t1 + u)− lcm (t1, t3)

t3
· t3

=
t3

gcd (t1, t3)
· u

We claim thatt2 - S13.
Assume by way of contradiction thatt2 | S13.

Then

t2 |
t3

gcd (t1, t3)
· gcd (t1, t2)

This implies that

t2 |
t3

gcd (t1, t3)
· t1

Then
t2 | lcm (t1, t3)

This contradictst2 - lcm (t1, t3).
Hencet2 - S13.
We further claim thatt3 - S13.

Assume by way of contradiction thatt3 | S13.
Thengcd (t1, t3) | u.
Sinceu = gcd (t1, t2), we havegcd (t1, t3) | gcd (t1, t2).
This contradictsgcd (t1, t3) - t2.
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Hencet3 - S13.
So∃y2, y3 such thatdegy2

t2 > degy2
S13 anddegy3

t3 > degy3
S13.

By lemma 3,S13
∗9
F

0. �

For the other clause of CC3, we employ a similar approach. As before, we buildF = (f1, f2, f3) “as simple as
possible”:f2 andf3 will be monomials, andf1 = t1 + u whereu will have the “magical properties” thatS12 −→

F
0

but S13
∗9
F

0. We find the “magical properties” by exploiting the failure of CC3: in this case, the existence of

an indeterminatey ∈ {x1, . . . , xm} such that¬VB1y (t1, t3) and¬VB2y (t1, t2, t3). More precisely, we exploit
degy σ12 > degy σ13: then

degy S12 = degy (σ12u) > degy (σ13u) = degy S13

This is the key: a sufficiently small choice fordegy u givesS12 −→
f3

0 while S13
∗9
F

0.

Lemma 8. For all termst1, t2, t3 (A)⇐(B) where
(A) VB1x (t1, t3) or VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xn}
(B)

[
S12

∗−→
F

0 ∧ S23
∗−→
F

0
]

⇒ S13
∗−→
F

0 ∀F = (f1, f2, f3) : ∀k lt� (fk) = tk

Proof. We show (A)⇐(B) by proving its contrapositive.
Assume¬(A); then∃y ∈ {x1, . . . , xn} such that¬VB1y (t1, t3) and¬VB2y (t1, t2, t3).
Equivalently,∃y such that

0 < degy t1,degy t3 < degy t2

We need to findF such thatS12
∗−→
F

0 andS23
∗−→
F

0 butS13
∗9
F

0.

Without loss of generality, we may assumedegy t1 ≤ degy t3.
Case1: t1 � t3
Defineu as

∀x ∈ {x1, . . . , xn} degx u =
{

degx t3 x 6= y
max

(
0,degy t1 + degy t3 − degy t2

)
x = y

Let F = (f1, f2, f3) be such that

f1 = t1 + u

f2 = t2

f3 = t3

Note thatu | t3 andu 6= t3; henceu ≺ t3 � t1.
Hencef1 is a binomial withlt� (f1) = t1.
We claim thatS12

∗−→
F

0 andS23
∗−→
F

0 butS13
∗9
F

0.

Immediately we haveS23 = 0.
Next,

S12 =
lcm (t1, t2)

t1
· u

We see that

∀x 6= y degx S12 ≥ degx u = degx t3

whereas
degy S12 = max

(
degy t1,degy t2

)
− degy t1 + max

(
0,degy t1 + degy t3 − degy t2

)
Recalldegy t2 > degy t1. Then

degy S12 = degy t2 − degy t1 + max
(
0,degy t1 + degy t3 − degy t2

)
= max

(
degy t2 − degy t1,degy t3

)
≥ degy t3

SoS12 −→
f3

0, as desired.
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Next, consider

S13 =
lcm (t1, t3)

t1
· u

We claimdegy S13 < degy t3 < degy t2.
We have

degy S13 = max
(
degy t1,degy t3

)
− degy t1 + max

(
0,degy t1 + degy t3 − degy t2

)
Recalldegy t1 ≤ degy t3.
Then

degy S13 = degy t3 − degy t1 + max
(
0,degy t1 + degy t3 − degy t2

)
= max

(
degy t3 − degy t1, 2 degy t3 − degy t2

)
Recalldegy t3 < degy t2 and0 < degy t1.
Then

degy S13 < degy t3 < degy t2

Observe thatdegy t1 > degy u.

By lemma 3,S13
∗9
F

0.

Case2: t1 ≺ t3
We sketch the proof; it is similar to that for case 1.
Let F = (f1, f2, f3) be such that

f1 = t1

f2 = t2

f3 = t3 + v

wherev is defined as

∀x ∈ {x1, . . . , xn} degx v =
{

degx t1 x 6= y
max

(
0,degy t1 + degy t3 − degy t2

)
x = y

We see thatv | t1 andv 6= t1, sov ≺ t1 ≺ t3. Hencelt� (f3) | t3.
Again, we claimS12

∗−→
F

0, S23
∗−→
F

0, butS13
∗9
F

0.

We haveS12
∗−→
F

0 trivially.

As for S23:

S23 = − lcm (t2, t3)
t3

· v

Inspection showsS23
∗−→
f1

0.

We turn toS13. We have

degy S13 = max
(
0,degy t1 + degy t3 − degy t2

)
< degy t1 < degy t2

As in case 1,degy t3 > degy u and by lemma 3,S13
∗9
F

. �

We can now seta strict boundaryon triplets of terms that eliminate the need to check whetherS13
∗−→
F

0.

Lemma 9. For all termst1, t2, t3 (A)⇐(B) where
(A) CC3 (t1, t2, t3)
(B)

[
S12

∗−→
F

0 ∧ S23
∗−→
F

0
]
⇒ S13

∗−→
F

0 ∀F = (f1, f2, f3) : ∀k lt� (fk) = tk

Proof. Assume (B). From lemmas 7 and 8, we have (A). �
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3.3. Sufficience of criterion for three polynomials. Now we turn our attention to proving that CC3 eliminates the
need to check the reduction of anS-polynomial.

We need the following observation, proved easily by inspection. Note the subtle difference between remark 7,
which is true in all cases, and remark 9, which is true only ifgcd (t1, t3) | t2.

Remark 9. If gcd (t1, t3) | t2, thengcd (lt� (σ21) , lt� (σ23)) = 1.

Now we begin to delve into the meat of the proof. We proceed by factoring the common divisor off1, f3. Lemma
10 shows that when the new criterion is satisfied, we have the surprising result thatgcd (f1, f3) | f2.

Lemma 10. For all t1, t2, t3 (A)⇒(B) where
(A) gcd (t1, t3) | t2
(B) ∀F = (f1, f2, f3) : ∀k lt� (fk) = tk and forg13 = gcd (f1, f3),

S12
∗−→
F

0 ∧ S23
∗−→
F

0 ⇒ g13 | f2

Proof. Assume (A). Thengcd (t1, t3) | t2.
AssumeS12

∗−→
F

0 andS23
∗−→
F

0.

We need to showg13 | f2.
FromS12

∗−→
F

0, we know∃h1, h2, h3 such that

(3.3) S12 = h1f1 + h2f2 + h3f3

and∀k = 1, 2, 3, hk 6= 0 implieslt� (hkfk) ≺ lcm (lt� (f1) , lt� (f2)).
Likewise, fromS23

∗−→
F

0, we know∃H1,H2,H3 such that

(3.4) S23 = H1f1 + H2f2 + H3f3

and∀k = 1, 2, 3, Hk 6= 0 implieslt� (Hkfk) ≺ lcm (lt� (f2) , lt� (f3)).
Consider (3.3). We have

σ12f1 − σ21f2 = h1f1 + h2f2 + h3f3

(σ12 − h1) f1 − h3f3 = (σ21 + h2) f2(3.5)

Likewise (3.4) gives us

(3.6) H1f1 + (σ32 + H3) f3 = (σ23 −H2) f2

Let g13 = gcd (f1, f3).
Let c1, c3 be such thatf1 = c1g13 andf3 = c3g13.
From (3.5), we have

(3.7) g13 [(σ12 − h1) c1 − h3c3] = (σ21 + h2) f2

From (3.6), we have

(3.8) g13 [H1c1 + (σ32 −H3) c3] = (σ23 −H2) f2

Noteg13 | (σ21 + h2) f2 andg13 | (σ23 −H2) f2.
Sog13 divides the greatest common divisor of the right-hand sides of (3.7) and (3.8).
Using lemma 4,

lt� (σ21 + h2) = lt� (σ21)

and

lt� (σ23 −H2) = lt� (σ23)

From remark 9, we knowgcd (lt� (σ21) , lt� (σ23)) = 1.
As a consequence,σ21 + h2 andσ23 + H2 are relatively prime.
Thusf2 is the greatest common divisor of the right-hand side for both (3.7) and (3.8).
Henceg13 | f2. �

We use lemma 11 on thecofactorsof the gcd off1, f2, f3 in lemma 12.



A NEW COMBINATORIAL CRITERION FOR GRÖBNER BASES 10

Lemma 11. For all t1, t2, t3 (A)⇒(B) where
(A) gcd (t1, t3) | t2 and[VB1x (t1, t3) ∨ VB2x (t1, t2, t3)] ∀x ∈ {x1, . . . , xn}
(B) ∀F = (f1, f2, f3) : ∀k lt� (fk) = tk andgcd (f1, f3) = 1,

if ∃h1, h2, h3 such thatS12 = h1f1 + h2f2 + h3f3 andhk 6= 0 implieslt� (hkfk) ≺ lcm (lt� (f1) , lt� (f2))
and∃H1,H2,H3 such thatS23 = H1f1+H2f2+H3f3 andHk 6= 0 implieslt� (Hkfk) ≺ lcm (lt� (f2) , lt� (f3))
then

gcd (t1, t3) = 1

Proof. Assume (A).
Let F be arbitrary but fixed.
Chooseh1, h2, h3 such that

(3.9) S12 = h1f1 + h2f2 + h3f3 ∧ ∀k hk 6= 0 ⇒ lt� (hkfk) ≺ lcm (lt� (f1) , lt� (f2))

andH1,H2,H3 such that

(3.10) S23 = H1f1 + H2f2 + H3f3 ∧ ∀k Hk 6= 0 ⇒ lt� (Hkfk) ≺ lcm (lt� (f2) , lt� (f3))

From (3.9),

σ12f1 − σ21f2 = h1f1 + h2f2 + h3f3

(σ12 − h1) f1 − h3f3 = (σ21 + h2) f2

(σ12 − h1) f1 − h3f3

σ21 + h2
= f2(3.11)

Likewise from (3.10),

(3.12)
H1f1 + (σ32 + H3) f3

σ23 −H2
= f2

From (3.11) and (3.12),

(σ12 − h1) f1 − h3f3

σ21 + h2
=

H1f1 + (σ32 + H3) f3

σ23 −H2

(σ23 −H2) [(σ12 − h1) f1 − h3f3] = (σ21 + h2) [H1f1 + (σ32 + H3) f3]

Collect expressions withf1 andf3 on opposite sides:

(3.13) [(σ23 −H2) (σ12 − h1)−H1 (σ21 + h2)] f1 = [h3 (σ23 −H2) + (σ21 + h2) (σ32 + H3)] f3

Let
P = h3 (σ23 −H2) + (σ21 + h2) (σ32 + H3)

We claimlt� (P ) = lt� (σ21) lt� (σ32).
As per lemma 4,
* lt� (σ23) � lt� (H2)
* lt� (σ21) � lt� (h2)
* lt� (σ32) � lt� (H3).
So the only possible leading terms ofP arelt� (σ21) lt� (σ32) andlt� (σ23) lt� (h3).
Assume by way of contradiction that

lt� (σ23) lt� (h3) � lt� (σ21) lt� (σ32)

Then
lcm (lt� (f2) , lt� (f3))

lt� (f2)
· lt� (h3) � lcm (lt� (f1) , lt� (f2))

lt� (f2)
· lcm (lt� (f2) , lt� (f3))

lt� (f3)
Canceling, we find that this implies

lt� (h3) � lcm (lt� (f1) , lt� (f2))
lt� (f3)

lt� (f3) lt� (h3) � lcm (lt� (f1) , lt� (f2))
lt� (f3h3) � lcm (lt� (f1) , lt� (f2))

This clearly contradicts (3.9).
Hencelt� (P ) = lt� (σ21) lt� (σ32).
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Observe thatf1 divides the left-hand side of (3.13).
Sof1 must also divide the right-hand side of (3.13).
Recall thatf1 andf3 are relatively prime. Thus

f1 | P
Thenlt� (f1) | lt� (P ).
That is,

t1 | lt� (σ21) lt� (σ32)

t1 | lcm (lt� (f1) , lt� (f2))
lt� (f2)

· lcm (lt� (f2) , lt� (f3))
lt� (f3)

t1 | lcm (t1, t2)
t2

· lcm (t2, t3)
t3

t1 | t1t2
gcd (t1, t2) · t2

· t2t3
gcd (t2, t3) · t3

gcd (t1, t2) · gcd (t2, t3) | t2(3.14)

We claim this provesgcd (t1, t3) = 1.
Let x be an arbitrary, but fixed indeterminate.
Recall from (A):gcd (t1, t3) | t2 andVB1x (t1, t3) or VB2x (t1, t2, t3).
It will suffice to show that, in our circumstances,VB2x (t1, t2, t3) impliesVB1x (t1, t3).

AssumeVB2x (t1, t2, t3).
Assumedegx t1 ≤ degx t3

Thendegx t1 ≤ degx t2 ≤ degx t3.
From (3.14),

degx t1 + degx t2 ≤ degx t2

Sodegx t1 = 0.
HenceVB1x (t1, t3).

The case wheredegx t1 > degx t3 is shown similarly.
HenceVB2x (t1, t2, t3) impliesVB1x (t1, t3).
Sincex was arbitrary, we have for all indeterminatesx, degx t1 = 0 or degx t3 = 0.

Thusgcd (t1, t3) = 1. �

Lemma 12 completes the proof of the main theorem, by showing that the new criterion suffices to skip the reduction
of oneS-polynomial.

Lemma 12. For all termst1, t2, t3 (A)⇒(B) where
(A) CC3 (t1, t2, t3)
(B)

[
S12

∗−→
F

0 ∧ S23
∗−→
F

0
]
⇒ S13

∗−→
F

0 ∀F = (f1, f2, f3) : ∀k lt� (fk) = tk

Proof. Assume (A). ThusCC3 (t1, t2, t3).
Let F be arbitrary, but fixed.
AssumeS12

∗−→
F

0 andS23
∗−→
F

0.

We have two cases.
Case1: BC2 (t1, t2, t3)
From lemma 2, we have (B).
Case2: ¬BC2 (t1, t2, t3)
From (A), we have

gcd (t1, t3) | t2 ∧ [VB1x (t1, t3) ∨ VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xn}]

Let g = gcd (f1, f3), with lc� (g) = 1.
RecallS12

∗−→
F

0 andS23
∗−→
F

0.

From lemma 10,g | f2.
Let c1, c3 be such thatfk = gck.
Soc1 andc3 are relatively prime.
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Let c2 be such thatf2 = gc2.
By inspection,

gcd (lt� (c1) , lt� (c3)) | lt� (c2) ∧ ∀x [VB1x (lt� (c1) , lt� (c3)) ∨ VB2x (lt� (c1) , lt� (c2) , lt� (c3))]

SinceS12
∗−→
F

0 andS23
∗−→
F

0, there existh1, h2, h3 andH1,H2,H3 to satisfy

S12 = h1f1 + h2f2 + h3f3

and

S23 = H1f1 + H2f2 + H3f3

Also,

∀k = 1, 2, 3 hK 6= 0 ⇒ lt� (hkfk) ≺ lcm (lt� (f1) , lt� (f2))

and

∀k = 1, 2, 3 HK 6= 0 ⇒ lt� (Hkfk) ≺ lcm (lt� (f2) , lt� (f3))

By lemma 6, we have

S (c1, c2) = h1c1 + h2c2 + h3c3

and

S (c2, c3) = H1c1 + H2c2 + H3c3

Also,

∀k = 1, 2, 3 hk 6= 0 ⇒ lt� (hkck) ≺ lcm (lt� (c1) , lt� (c2))

and

∀k = 1, 2, 3 Hk 6= 0 ⇒ lt� (Hkck) ≺ lcm (lt� (c2) , lt� (c3))

By lemma 11,lt� (c1) andlt� (c3) are relatively prime.
ThusBC1 (lt� (c1) , lt� (c3)).
As per remark 5,

S (c1, c3) = H1c1 +H3c3

where

H1 = lm� (c3)− c3 H3 = c1 − lm� (c1)

Observe that∀k = 1, 3Hk 6= 0 implieslt� (Hkck) ≺ lcm (lt� (c1) , lt� (c3))
Re-applying lemma 6, we obtain

S (f1, f3) = H1 · f1 +H3 · f3

where∀k = 1, 3, if Hk 6= 0 thenlt� (Hkfk) ≺ lcm (lt� (f1) , lt� (f3)).
By lemma 5,S13 −→

F
0. �

4. OBSERVATIONS AND CONCLUSION

4.1. What’s new? We start with a very simple example of where the new criterion applies, that Buchberger’s Criteria
do not.

Example 1. Let F = (f1, f2, f3) wherelt� (f1) = x0x1, lt� (f2) = x0x2, andlt� (f3) = x0x3. It is clear that
Buchberger’s criteria do not apply to any pair. Upon inspection, however, we see that the new criteriondoesapply: if
S12

∗−→
F

0 andS23
∗−→
F

0, it follows from theorem 1 thatS13
∗−→
F

0.

As in case 2 of lemma 12, we can formally isolate the new combinatorial criterion from the theorem as follows:

NC (t1, t2, t3) := gcd (t1, t3) | t2 ∧ ∀x VB1x (t1, t3) or VB2x (t1, t2, t3)

This is a generalization of the first criterion:BC1 (t1, t3) implies NC(t1, t2, t3), while the converse does not hold.
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4.2. Pitfalls. These results apply only to triplets of polynomials(f1, f2, f3). The fact that the criterion requires the
reduction to be overf1, f2, f3 onlymeans that one has to remain wary of pitfalls such as the following:

Example 2. Let F = (f1, f2, f3, f4) where

• f1 = x0x1 + x2

• f2 = x0x2

• f3 = x0x3

• f4 = x2
2

Let � be any term ordering such thatlt� (f1) = x0x1; for example, a total-degree term ordering. Observe that
lt� (f1) , lt� (f2) , lt� (f3) are the same as those of example 1; hence, they satisfy CC3. However,

S12 = x2
2 −→

F
0

S23 = 0
S13 = x2x3 9

F
0

The natural question to ask is, how do we generalize the new criterion tom ≥ 4? At present, we do not know the
answer.

4.3. Another way of defining BC1 and BC2. The new criteria provide alternate definitions for BC1 and BC2: for
all termst1, t2, t3

BC1 (t1, t3) ⇔ (∀x VB1x (t1, t3))
BC2 (t1, t2, t3) ⇔ (∀x VB2x (t1, t2, t3))

Observe that
BC1 (t1, t3) ∨ BC2 (t1, t2, t3) ⇒ ∀x [VB1x (t1, t3) or VB2x (t1, t2, t3)]

However, as we see from example 1,

BC1 (t1, t3) ∨ BC2 (t1, t2, t3) : ∀x [VB1x (t1, t3) or VB2x (t1, t2, t3)]

4.4. Geometric classification. If we plot all possible termst2 that allow us to skip the reduction ofS13, we observe
the following pattern.

At the one extreme,t1 andt3 are relatively prime. HereBC1 (t1, t3) applies; there isno restriction at allon t2 (see
figure one).

1
x

y

3

t

t

Figure 1

At the other extreme,t1 and t3 share all their variables. In this case, as lemma 8 shows, onlyBC2 (t1, t2, t3)
applies:t2 is constrained to the finite region bounded bylcm (t1, t3) (see figure two).

x

y

t3

1t

Figure 2
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Between these two extremes, we have termst1 and t3 where∃x, y ∈ {x1, . . . , xn} such thatdegx t1 6= 0 and
degx t3 = 0, anddegy t1 = 0 anddegy t3 6= 0. In this case the new theorem applies: with each indeterminate
removed fromt1 or t3, we can pickt2 from larger sets of additional regions of the space of terms,unbounded on the
variables thatt1, t3 do not share.

x

y

t

t

3

1

t3

x

t

y

1

Figure 3(a) Figure 3(b)
We observe the following lattice structure from one extreme (BC1) to the other (BC2):

Only x1 shared
↗ ↘

No indeterminates shared (BC1) All indeterminates shared (BC2)
↘ ↗

Only x2 shared

4.5. Directions for future research. We have already mentioned the question of how to generalize the result to four
polynomials. There are different options for whichS-polynomials to skip, and which to check:

• We have the option of one straightline path:

S12
∗−→
F

0 ∧ S23
∗−→
F

0 ∧ S34
∗−→
F

0 ⇒ S14
∗−→
F

0?

• There are also possibilities for lattice-style paths; for example,

S12
∗−→
F

0 ∧ S13
∗−→
F

0 ∧ S23
∗−→
F

0 ∧ S34
∗−→
F

0 ⇒ S14
∗−→
F

0

Dr. Bruno Buchberger has suggested a statistical analysis of the results, and we have carried out a limited analysis.
[insert results here]
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