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1. INTRODUCTION

Bruno Buchberger introduced Grébner bases in his 1965 PhD thesis [2]. Computation of Grébner bases requires
one to check whethe§-polynomials reduce to zero. Reduction is a computationally expensive process, so one would
like to avoid it whenever possible. If we knaavpriori that theS-polynomial reduces to zero, then of course we can
skip its reduction.

Starting with Bruno Buchberger, several investigators [1, 2, 3, 5, 6] have discovered imgoptaotti criteria or
methods for skipping-polynomial reduction. These criteria (and methods) can be divided into two kinds. One kind
[5] uses both the exponents and the coefficients, while the other [1, 2, 3, 6] uses only the exponents (in fact, only the
leading exponents, that is, the exponents of the leading terms). Since the exponents are natural numbers, we will refer
to these criteria asombinatorial Obviously, combinatorial criteria might not detect soS¥olynomial reductions
that could have been skipped if we also considered the coefficients. However, we can check combinatorial criteria
with an ease and a speed that makes them appealling.

The question arises naturally:

Are the known combinatorial criteria “complete™?

By “complete”, we mean that the criterion makes maximal use of the information from the leading exponents. In
other words, if some exponents do not satisfy the criteria, then there is at least one polynomial system with those
leading exponents where one cannot skipolynomial reduction.

The answer to the questionns. We show that Buchberger’s two criteria aret complete: they miss cases where
the information from the leading terms allows us to skipsapolynomial reduction. We provide a new combinatorial
criterion for skipping art-polynomial reduction, and we show that this new criteicomplete for a system of three
polynomials. The complete criterion for four or more polynomials remains an open problem.

2. MAIN THEOREM

All polynomials and monomials are from a rifigx, . .., z,], whereF is a field. We follow the convention of
Cox, Little and O’Shea in [4] that @anonomial” includes a coefficient, while ‘derm” does not. For any fixed term
ordering:>-, and for polynomial, f, r, andfi, ..., f., we writelt, (f) for the leading term of, Im. (f) for the

leading monomial off, andle, (f) for the leading coefficient of. Observe thatm, (f) = lcy. (f) - 1t (f).
We call theS-polynomial of f; and f;

lem (It (fi) It (f5)) lem (It (fi) 16 (f5))
e TN 7 R T )

For the sake of convenience, we wrig for S (f;, f;) (only if the polynomials are in facf;, f;) and

s s 0T (It (fi) 1t (f5))
v Im, (fi)

'fj

HenceSZ'j = 0ij * fz — 0ji* fj'
The first results in skipping-polynomial reduction are Buchberger's two combinatorial criteria:
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BC1 (ti,tj) = ng (ti7tj) =1
BC2 (ti,tj7tk) = tj | lem (tq’tk)
We have the following two well-known lemmas. A proof of the first is in [2]; a proof of the second is in [1].

Lemma 1 (Buchberger’s First Criterion)For all termst;, ¢; (A)=-(B) where
(A) BCL(ti, ;)
(B) S” . L} ) 0 V(fl, ceey fm) such thaﬂt> (fz) =t;, 1t> (fj) = tj.
Lemma 2 (Buchberger's Second Criterianfror all termst;, ¢, ti, (A)=(B) where
(A) BC2 (t1,ta,t3)

(B)Si2 —— 0 A Sy — 0

= S = 0 V(f1, fon f3) : VKTt =t
(Fromrfm) (Fromsfm) B ) (1 f2r f3) - (fie) =t

To our knowledge, the only oth@ombinatorialcriteria that allow us to skip-polynomial reduction are Buch-
berger's two combinatorial criteria. We recall the questidre the known combinatorial criteria completePhe
answer to this question is no, as theorem 1 demonstrates.

Let us consider a “weaker version” of BC1 and BC2:

VB1, (tl, t3) = degw ty =0o0r degx t3 =20
VB2, (t1,t2,t3) = deg,ts < max(deg, t1,deg, t3)

Observe that VB1 and VB2 define conditions that we can call “variable-wise” BC1 and “variable-wise” BC2, respec-
tively.

Now we can define the complete criterion for skipping éhpolynomial reduction in a system of three polynomi-
als:

Theorem 1 (A new combinatorial criterion)(A) < [ (B) A (C) ] where

(A) CC (t1,t2,t3,=,{(1,2),(2,3)})

(B) ng (tl, tg) | t2 V BCZ (tl, tQ, tg)

(C) VB]—I (tlvtB) \ VBQCE (t13t25t3> Vx € {xlv o ;xm}

The theorem shows that we can skip the reductiofi,gfeven when the previously known combinatorial criteria
fail: see example 1 of section 4.1 for a concrete example. However, one has to pay close attention to the quantifiers:
see example 2 of section 4.2 for an example of how easily this can be misunderstood.

Of course, this new criterion is consistent with the previous criteria; part (B) of any one of lemmas 1 or 2 will imply
(B) A (C) of theorem 1.

3. PROOF OF MAIN THEOREM
For convenience, we write€C for (B) v (C) of theorem 1; that is,

ng (tl,tg) | t2 Vv BC2 (tl,tg,tg)
CC =
Vle (thtg) V VB?I (t17t27t3) Vl‘ S {Il,...7l’m}

The structure of the proof, as outlined in sections 3.2 and 3.3, can be diagrammed as follows.

(B) v ©)
AN ! /
Lemma7 Lemmal2 Lemma38
AN ! /!
(A)

3.1. Useful facts. We begin the proof with a brief review of what we meanrbgiuction
o p T r if there exists a monomial and a monomiad of p such thaty - lm. (f) =d andr =p — qf

o p —F if =3r such thap 7> r
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ep — rif3ueN,Ji,...i, € {1,...,m}, and there exist polynomiajs, . . ., p,, such that

(fl?'“ﬁ m

P=pPo—pP1 P2 ——Pu=T
fiq fiog fin .

In this case, we say reduces tor modulo(f1,. .., fm)-

A proof of lemma 3 is found in [7], at the website of the second author. We use it to create counterexamples. The
application of lemma 3 usually requires a permutation on the indices of the polyngfnials, f,,,. We do not write
this out explicitly, but it is usually evident.

Lemma 3. Let 7 be a nonzero monomial, add= (f1,. .., f;,) & system of polynomials. Then (A)(B) where
(A) Jp with 1 < p < m such that (AL)\(A2) where

(AL)Ve=1,...,p3)N,..., A, such that
deg,,, Im. (fy) > deg,, T
AV =pu+1,...,m
foe=1t+uy
te > ug
degzki ty > degmi uVi=1,..., 4

(B) T 0.

We also resort to the following facts. Their proofs are not difficult, so we omit them.

Remark 1. The following are equivalent for all termis, ¢o, t3:
(@) ged (t1,t3) | L2
(b) ng (tl, tg) | ng (t17 tz)
(C) ng (tl, tg) | ng (tQ, tg)
Remark 2. For all polynomialsf, g we have the following:
o 1t (f +g) < max, (It (f),1t- (9))
o lt. (f-g)=1t-(f) 1t~ (9)

Remark 3. For all polynomialsf;, f; with ¢ # j, the leading monomials ef;; f; ando;; f; cancel, so thdt, (.5;;) <

lem (16, (fi) 16 (f5))-
Remark 4. For any fixed term ordering, consider a reduction chain

P=pPo——pP1 P2 ——Pu=T
fiy fio fin H

hk: Z u

Pi+1=pj—ufx

For this chain, we collect

Then
(3.1) p—r=> hif
k=1

Note thatvk = 1,...,m, if hi, # 0, then from remark 3 we have, (hy fi) < It- (p). In the case wherg = S,
this implies that
(3.2) Vk hip #0 = b (hifr) < 16w (Si5) < lem (It (fi), 1t (f5))
Howeveri,it is not always the case that if we can satisfy 3.1 for two polynomiats thenp % r. An example of
where itis true is provided in lemma 5.
Remark 5. For all f; and f; whereBC1 (It,- (f;) .1t (f5)),

Sij = HiCi + HjCj

where
Hi = —(¢; —Imy () Hj=c; —1m, (¢;)
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Lemma 4. For alli: # j (A)=(B) where
(A) Sij =hifi+ -+ hnfm suchthawvk =1,...,m It (hkfk) =<1t (S”)
(B) 1ty ((0i; £ hi)) =1ty (04;) andlt, ((o; & hy)) = 1t,- (o)
Proof. Leti # j be arbitrary, but fixed.
Assume (A).
The statement of (B) is equivalentltg_ (o;;) > Ity (k) andlt, (o;) > Ity (h;).
By way of contradiction, assume
It (045) = 1t (hi)
Then
lem (1t (£). 1t (£)))
It (fi) th- (h)
lem (It (fs) 16 (f5)) = 1o (Ra) 1t (fi) =1t (hafi)
This contradicts (A) (see (3.2)).
Hencelt, (o;;) > Its (hs).
Thatlt, (0j;) > 1ty (h;), is proved similarly. O

IA

The proof of lemma 5 below is somewhat tedious, so we do not reproduce it here. A key ingredient of the proof is
that every syzygy of the leading terms can be written in terms-pblynomials. This lemma is crucial for lemma 12.

Lemma 5. For all f;, f;, (A)<(B) where
(A) Sij = hzfz + hjfj th, hj, andvk = i7j
hi #0 = Ity (hefi) < lem (Ite (fi), 1t (f5))
(B) Sij 7 0
Lemma 6 will allow us to draw a connection between the reduction d¢f-glynomial for polynomialsfi, fa, f3
and the reduction of the correspondifigpolynomialsc;, c2, c3, which are cofactors of the greatest common divisor
of f1, f2, f3. This lemma is crucial for lemma 12.

Lemma 6. For all F' = (f1, fo, f3) if 39, ¢, such thawk fir, = gci, thenVhy, ha, hs the following are equivalent:

(A) S(fi f5) = hafi + hafa + hsfs andhy, # 0 implieslt, (hy fi) < lem (16 (fi) 1t (f5))
(B) S (cs, ¢j) = Hici+Haco+Hses whereHy, = ley (g)-hy andHy, # 0 implieslt,. (Hicr) < lem (It (¢j), It (¢5))

Proof. Let > be arbitrary, but fixed.
Let F' be arbitrary, but fixed.
Assume thatk Jg, ¢;, such thatf,, = gc.
Leti # j be arbitrary, but fixed.
Thethl, ho, hs

S(fisf;) = hifi+hafo+hsfs
(i
et ) e B S gy — i e+
(i
g- <lcm (lt:élgfz();clt; (g¢4)) e — lem (ltirigji()gf; (ng))cj> = g (hici + hacs + hzcs)
! j
(i
Ity (g) - lem (It (i), 1ts (c))) Ity (g) - lem (It (c), 1t (cj))
Im,- (g) - Im,- (¢;) o Im, (g) - Imy (c¢j) ¢j = hici+haca + haes
(i
1C>1(g) . <lcm (ltiéi’)(;l)t> (¢) SC — fom (lt;rff_l)(;ls> (Cj))CJ) = hict + haca + hacs

I <=

S (ciycj) Hicr + Haco + Hsces
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Moreover, for any, if h; # 0 then

It (fihe) lem (It (fi) 16 (f5))

It (fi) 16> (h) lem (It (fi) 16 (f5))

It,- (g) - lem (It (c;) , 1t (cj))

<
)
<
7
Ity (ger)lte (hi) < lem (It (9¢;), It (gcy))
)
It (9) 1t (ck) It (hi) <
)
<

Ity (crhy) lem (It (¢;),1ts- (¢j))
Clearlylt, (hy) = lt. (Hg), SO

It (erHp) < lem (It (i), 16 (¢;))
From the preceding, we have the equivalence

S (fi, f5) hifi + hofo+ hsfs

<=

S (ci,cy) Hicr + Haco + Hies
and for eachk = 1, 2, 3 we have the equivalence

Ite (frhe) =< lem (It (f;), 1t (fj))

Ity (cxHi) 1—2 lem (It (¢;), 1t (¢j))
The statement of the lemma follows from these two equivalences. O
Three final remarks useful in the proof:
Remark 6. For all polynomialsf;, f; with ¢ # j
gy = lom 16 ()16 (1)) lte (fi) -1t (f)) _ It (/)
Im, (f;) Im, (fi) ged (It (fi) 1t (f5))  lew (fi) ged (16 (f3) ;165 (f5))

Remark 7. Vi 7£ i ng (1t>_ (Uij) ,1t>_ (O'ﬂ)) =1

Remark 8. For any term ordering- and for any two polynomialg;, f;, if g | f; andg | f;, thenlty (g) | 1tw (f3)
andlt, (9) | 1ts (f;). Soiflt. (f;) andlt, (f;) are relatively primef; and f; have no nontrivial common factors.

3.2. Necessity of criterion for three polynomials. In this section, we show that we can skip the reductios'of
only if CC3 holds true. We do this by showing the contrapositive: if CC3 is false, then we have to check the reduction
of S15 explicitly. We demonstrate this by producing &n= ( f1, f2, f3) whose leading terms arg, t5, t3, and which
has the property thaf;, % 0 and.Ss3 % 0, but S5 ij 0.

We treat two different cases: one if the first clause of CC3 is false (lemma 7); the other, if its second clause is false
(lemma 8).

We use a form suggested by lemma 3 whfre= ¢; + u, fo = 2, andf; = t3. In our first approach, we arrange
for S f—> 0. Per remark 6,

2
to

S = —= .
12 ged (t1,t2) b

The simplest way to gef» . 0isif u; = ged (t1,ts). ThatSs3 % 0 is trivial.
2

How then will we ensure tha$;; i} 0? This will depend on some “magical properties”of These properties
exploit the facts thaty t lem (¢4, t3) andged (¢4, t3) 1 t2 (henceged (¢1,t3) t ged (1, t2)).
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Lemma 7. For all termsty, to, t3 (A)<(B) where
(A) ng (tl, t3) | to Or BC2 (tl, to, tg)

(B) {512%0 A 523%0} = 513%0 VEF = (f1, f2, f3) : VK 1ts (fr) =t

Proof. We show (A)=(B) by proving its contrapositive.
Assume—(A): ged (t1,t3) 1 t2 and—BC2 (t1, ta, t3).
We will constructF’ to show—(B).

Let F = (f1, f2, f3) be such that

i = ti+ged(ty,t2)
fo = to
fz = t3

We need to show thah is a binomial, andt. (f1) = t;.
Sincegced (t1,t2) | t1, we haveged (t1,t2) < 1.
It remains to show thatcd (¢4, t2) # t1. By way of contradiction:
ng (tl,tg) =1 = t1 ‘ to = ng (tl,t3) ‘ to
But ﬁ(A) haSng (tl, tg) TtQ.
SOng (tl, tz) 7’5 t1.
Henceged (t1,t2) < 1.
Hencef; is a binomial, andt. (f1) = t;.
We claim ;- % 0 andSa; % 0 but S;3 f; 0.

From the construction af’

523:()
Also
1 t1,t 1 t1,t
S12 = lem (£1,2) 2).(t1+u)770m(1, 2)'tz
t1 t2
to
= —— ged(ty,t
ng(tl,tg) &¢ (1’ 2)
= f
SOSlg L) 0 and523 L 0.
°F F
Consider
I ti,t 1 ti,t
S = ) gy b
1 3
t3

I a—— ) A
ged (t1, t3)
We claim that.s 1 Sy3.

Assume by way of contradiction thaf | Si3.
Then

t2 | 8
. ged (fy, t3)
This implies that

-ged (ty, t2)

Then
ta | lem (t1,13)

This contradictss 1 lem (¢4, t3).

Hencet, 'f Slg.

We further claim thats 1 Sis.

Assume by way of contradiction thaf | Si3.

Thenged (t1,t3) | u.
Sinceu = ged (¢, t2), we havesed (¢, t3) | ged (t1,t2).
This contradictgced (¢1, t3) 1 ta.
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Hencets 1 S1s.
So3ys, y3 such tha'degy2 ty > deg,, S13 anddegy3 t3 > deg,. S13.

By lemma 3,515 % 0. O

For the other clause of CC3, we employ a similar approach. As before, weBu#d(f1, fo, f3) “as simple as
possible”: f, and f3 will be monomials, and’; = t; + u whereu will have the “magical properties” that; - 0
but Si3 % 0. We find the “magical properties” by exploiting the failure of CC3: in this case, the existence of

an indeterminatgy € {x1,...,z,} such that-VB1, (t1,t3) and ~VB2, (t,2,t3). More precisely, we exploit
degy o192 > degy 013. then
deg, S12 = deg,, (012u) > deg,, (013u) = deg,, S13

This is the key: a sufficiently small choice fdeg, u givesSia f—> 0 while S13 % 0.
3

Lemma 8. For all termsty, to, t3 (A)<(B) where
(A) VB1, (tl, f3) or VB2, (tl, to, t3) Vr € {.231, S ,J,‘n}

(B) {512 % 0 A S % 0} = Si3 % OVE = (f1, f2, f3) : Yk Ite (fr) = ti

Proof. We show (A)=(B) by proving its contrapositive.
Assume—(A); then3y € {z1,...,z,} such that-VB1, (¢1,t3) and—VB2,, (t1, 2, t3).
Equivalently, 3y such that
0 < deg, t1,deg, t3 < deg, t2

We need to find such thatS» % 0 and Sy % 0 butS;5 % 0.

Without loss of generality, we may assumes, t1 < deg, t3.
Casel: t; > t3

Defineu as
Vo € {n,.. o an}  degyu= { ?rfag; zg, deg, 1 + deg, t3 — deg, t2) i i Z
Let F = (f1, f2, f3) be such that
h = titu
Ja = t2
fs = t3

Note thatu | t3 andu # t3; henceu < t5 < t;.
Hencef; is a binomial withlt. (f1) = t;.
We claim thatS;» % 0 andSss % 0 butS;5 ij 0.

Immediately we havess = 0.

Next,
1 t1,t
Si2 = 70111( 1,t2) =
tq
We see that
Ve #y deg, S12 > deg,u =deg,ts
whereas

deg, S12 = max (degy t1,deg, t2) — deg, 1 + max (07 deg, t1 + deg, t3 — deg, tg)
Recalldegy to > deg, t1. Then
deg, S12 = deg,lo —deg,t; + max (0, deg, t1 + deg, t3 — deg, t2)
= max (degy ty — deg, t1,deg, tg)
> deg, i3

S0512 7 0, as desired.
3
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NeXt, consider
lem (¢9,¢t
C ( 1 3) -

S =
13 0
We claimdeg,, S13 < deg, t3 < deg, ta.
We have
degy S13 = max (degy t1, degy tg) — degy t1 + max (O7 degy t1 + degy t3 — degy tg)

Recalldeg, 1 < deg, t3.

Then

degy Si3 = degy t3 — degy t1 + max (0, degy t1 + degy ts — degy tg)

= max (deg, t3 — deg, t1,2deg, ts — deg, t2)
Recalldeg, 15 < deg, t> and0 < deg, 1.
Then
deg, S13 < deg, t3 < deg, 12
Observe thatleg, t; > deg,, u.
By lemma 3,53 % 0.

Case2: t; < t3
We sketch the proof; it is similar to that for case 1.
Let F = (f1, f2, f3) be such that

fi =
fa = t
f3 = t3+v
wherev is defined as
_ degz 3] €z 7é Yy
Vx € {xlv N 71777,} degmU = { max <O’degy tl + degy t3 . degy tz) z=y

We see that | t; andv # t1, SOv < ¢ < t3. Hencelty (f3) | t3.
Again, we claimsS, % 0, So3 % 0, butS;5 % 0.

We haveS, % 0 trivially.

As for Saa:
Saz = _lon(tz, ts) (tt;’t?’) v
Inspection shows; % 0.
We turn toS;3. We have
deg, Si3 = max (0, deg, t1 + deg, t3 — deg, t2)

< degy t1 < degy to

As in case 1deg, t3 > deg, u and by lemma 395 %

We can now sed strict boundaryon triplets of terms that eliminate the need to check wheﬂﬂgr% 0.

Lemma 9. For all termsty, to, t3 (A)<(B) where
(A) CC3 (tq,ta,t3)

(B) [512 —50 A Sa ?o} = Sig > OVF = (fi, f2, f3) : ¥ 1t () =t

Proof. Assume (B). From lemmas 7 and 8, we have (A).
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3.3. Sufficience of criterion for three polynomials. Now we turn our attention to proving that CC3 eliminates the
need to check the reduction of &polynomial.

We need the following observation, proved easily by inspection. Note the subtle difference between remark 7,
which is true in all cases, and remark 9, which is true onpyeif (¢1,t3) | to.

Remark 9. If ng (tl,tg) | to, thengcd (1t>_ (0'21) ,1t> (0’23)) =1.

Now we begin to delve into the meat of the proof. We proceed by factoring the common divigorfef Lemma
10 shows that when the new criterion is satisfied, we have the surprising resgltdtdt, f3) | fa.

Lemma 10. For allty, to, t3 (A)=(B) where
(A) ged (t1,t3) | t2
(B)VE = (f1, f2, f3) : Vk It (fx) = ti and forg,3 = ged (f1, f3),

512%0/\523%0 = 913‘,]62

Proof. Assume (A). Themged (1, t3) | ta.

AssumeS;, % 0 and S % 0.

We need to shows | fa.

From S, % 0, we know3hy, ha, hs such that
(3.3) S1a = hifi +hofo+ hafs
andvk = 1,2,3, hy # 0implieslty (hgfr) < lem (It (f1), 1t (f2)).

Likewise, fromSss % 0, we know3H;, H,, H such that
(3.4) Soz3 = Hifi + Hafo + H3f3

andvk = 1,2,3, Hy, # 0implieslt, (Hy fr) < lem (1t (f2), 1t (f3)).
Consider (3.3). We have

owiafi —oafa = hifi +hafo+hsfs
(3.5) (012 =h1) fr —hsfs = (0214 h2) fo
Likewise (3.4) gives us
(3.6) Hyf1 + (032 + H3) f3 = (023 — H2) f2

Letgis = ged (f1, f3)-
Let Cc1,C3 be such thafl = C1913 andf3 = C3913-

From (3.5), we have

(3.7) 913 [(012 — h1) c1 — hacs]) = (021 + he) fo
From (3.6), we have
(3.8) g13 [Hic1 + (032 — Hs) c3] = (023 — H2) fo

Notegis | (021 + ha) f2 @andgisz | (023 — Ha) fo.
Sog; 3 divides the greatest common divisor of the right-hand sides of (3.7) and (3.8).
Using lemma 4,

It, (021 + ha) =1t (021)

and
Ity (023 — Ha) = It (023)

From remark 9, we knowed (It. (021),1ts (023)) = 1.

As a consequencey; + ho andogs + Ho are relatively prime.

Thus f; is the greatest common divisor of the right-hand side for both (3.7) and (3.8).

Hencegis | fa. O

We use lemma 11 on tteofactorsof the ged offy, fo, f5 in lemma 12.
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Lemma 11. For allty, t5, t3 (A)=(B) where
(A) ged (tl,tg,) | to and[VBlw (tl,tg) Vv VB2, (tl,tg,tg)] Vx € {371, S ,xn}
(B) VE = (f1, fo, f3) : Vk 1t,- (fx) =t andged (f1, f3) = 1,
if Ihy, ho, hs such thatS1o = hy f1 + ha fo + hs fs andhy, # 0 implieslty (hy fi) < lem (Ite (1), 1ts (f2))
and3H;, Hy, Hs suchthatSos = Hy fi+Hs fo+Hs fs andHy, # 0implieslty (Hg fr) < lem (1t (f2), 1t (f3))
then
ged (t1,t3) =1

Proof. Assume (A).
Let £ be arbitrary but fixed.
Chooséh, ho, hg such that

(3.9) Si2 = hifi +hafo+hafs A Vkhy #0= 1t (hefr) < lem (16 (f1), 16 (f2))
andH,, H,, H3 such that
(3.10) Saz = Hyf1 + Hafo+ Hsfs AN Vk Hp #0 =1t (Hgfr) <lem (It (f2), 1t (f3))
From (3.9),
ow2fi —oofo = hifi+hafo+hafs
(012 = h1) fr = hsfs (021 + ha) fo

(012 = h1) fr —hafs
(311 021 + ha = f2

Likewise from (3.10),

Hifi1 + (032 + H3) f3
093 — Hy

(3.12) = f2

From (3.11) and (3.12),
(012 —h1) fi—hafs  Hifi + (032 + H3) f3

o921 + hs 023 — Ho
(095 — Ha) [(012 — h1) f1 — hsfs] = (021 + he) [Hif1 + (032 + H3) f3]
Collect expressions witlfi; and f3 on opposite sides:
(3.13) (023 — H3) (012 — h1) — Hy (021 + h2)] fi = [h3 (023 — H2) + (021 + ho) (032 + H3)] f3
Let

P = hg (023 — Ha) + (021 + h2) (032 + H3)
We claimlt, (P) = lt, (09;) Ity (o32).
As perlemma 4,
* Ity (023) = 1t (H2)
“ 1ty (021) = 1t (h2)
* 1ty (032) = 1t (H3).
So the only possible leading terms Bfarelt, (c21) lt- (032) andlt, (o23) 1t (h3).
Assume by way of contradiction that

1t> (O‘Qg) lt> (hg) = 1ty (0'21) lt> (0’32)

Then
lem (It (fo) 1t~ (fs)) (hs) lem (It (f1),16- (f2)) lem (16 (f2), 1t (f3))
It (fo) m It (f2) It (f3)
Canceling, we find that this implies
1t>_ (hg) lem (1t>- (fl) ) 1t>— (f?))

It (f3)
b (f3) 1t (h3) > lem (It (f1),1t- (f2))
b (f3hs) = lem (It (f1),1t- (f2))

This clearly contradicts (3.9).
Hencelt>_ (P) = lt>_ (0’21) 1t>_ (0'32).
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Observe thaf; divides the left-hand side of (3.13).
So f1 must also divide the right-hand side of (3.13).
Recall thatf; and f5 are relatively prime. Thus

fi| P
Thenlt, (f1) | lt= (P).
That is,
ti | 1t (o21) 1t (032)
hol lem (1t (f1), 1t (f2)) . lem (1t (f2),1ts (f3))
It (f2) It (fs)
lem (t1,t2) lem (to,t3)
lo l3
b 232 . lals
ged (t1,t9) - ta ged (ta,ts3) - ts
(3.14) ged (t1,t9) - ged (to,t3) |t

We claim this proveged (t1,t3) = 1.
Let z be an arbitrary, but fixed indeterminate.
Recall from (A):ged (1, t3) | t2 andVB1,, (¢1,t3) or VB2, (t1, ta, t3).
It will suffice to show that, in our circumstancégB2,, (t1, 2, t3) impliesVB1, (t1,t3).
AssumeVB2,, (t1,ta,13).
Assumedeg,, t1 < deg, t3
Thendegw 1 < degm to < degm ts3.
From (3.14),
deg, t1 + deg, t2 < deg, 12
Sodeg, t; = 0.
HenceVBl1, (1, t3).
The case wheréeg, t; > deg, t3 is shown similarly.
HenceVB2, (t1,ta,t3) impliesVB1, (¢, t3).
Sincex was arbitrary, we have for all indeterminatesleg, t; = 0 or deg, t3 = 0.
ThUSng (tl, tg) =1.

11

O

Lemma 12 completes the proof of the main theorem, by showing that the new criterion suffices to skip the reduction

of oneS-polynomial.

Lemma 12. For all termsty, to, t3 (A)=-(B) where
(A) CC3 (tq,ta,t3)

(B) {512%’0 A 523%0 :‘Sls%’OVF:(fl,fz»f:s)¢Vklt>(fk):tk

Proof. Assume (A). ThusCC3 (1, ta, t3).
Let F' be arbitrary, but fixed.
AssumeS;, % 0 and S % 0.

We have two cases.

Casel: BC2 (tl, to, tg)

From lemma 2, we have (B).
Case2: -BC2 (tl, to, t3)
From (A), we have

gcd (tl,tg) I to A [VBLL (t1,t3) VvV VB2, (tl,tg,tg) Vo € {1‘1, R ,x”}]
Letg = ng (f17f3)1 with 1C> (g> =1
Recall Sy % 0 andSss % 0.

From lemma 10yg | f.
Let ¢y, c3 be such thaf, = gcx.
Soc; andes are relatively prime.
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Let ¢ be such thafs = ges.
By inspection,

ged (It (c1),1ts (e3)) | 1bw (c2) A Va [VB1, (Ite (c1),1t. (c3)) V VB2, (Its (c1),1ts (c2), 1t (c3))]

SinceS» % 0 and Sy % 0, there existiy, ho, hs and Hy, Ho, Hs to satisfy

S12 = hifi +hofo+ hafs

and
S23 = Hyf1 + Hafa + H3f3
Also,
Vk=1,2,3 hxg #0 = Ite (hifr) < lem (It (f1),1t- (f2))
and

Vk=1,2,3 Hg #0 = Ite (Hp fr) < lem (1t (f2), 1t (f3))
By lemma 6, we have
S (c1,c2) = hicy + haca + hacs

and
S (ca,c3) = Hiey + Haco + Hses
Also,
Vk=1,2,3 hg #0= 1t (hrcr) < lem (Ite (c1), 1t (c2))
and

Vk=1,2,3 Hg #0=1t, (Hpcg) < lem (It (c2), 1t (c3))

By lemma 11]t. (c;) andlt. (c3) are relatively prime.
ThusBC1 (lt> (Cl) 5 1t> (63)).
As per remark 5,

S (c1,c3) = Hicr + Hses
where
Hy =Imy (c3) —c3 Hz=ci —Imy (01)

Observe thatk = 1,3 Hy, # 0 implieslt. (Hick) < lem (1t (¢1),1ts (c3))
Re-applying lemma 6, we obtain

S(fi,f3)=Hi-fi+Hs f3

wherevk = 1,3, if Hy, # 0thenlty (Hy fr) < lem (It (f1),1t- (f3)).
By lemma 5,53 - 0. O

4. OBSERVATIONS AND CONCLUSION

4.1. What's new? We start with a very simple example of where the new criterion applies, that Buchberger’s Criteria
do not.

Example 1. Let F' = (f1, fo, f3) wherelty (f1) = zoz1, lt- (f2) = xoxe, andlty (f3) = zoxs. Itis clear that
Buchberger’s criteria do not apply to any pair. Upon inspection, however, we see that the new alibesapply: if
Sia %» 0 andSas %» 0, it follows from theorem 1 tha$ 5 % 0.

As in case 2 of lemma 12, we can formally isolate the new combinatorial criterion from the theorem as follows:
NC (tl, ta, t3) = ng (t17 tg) | to A Vz VBlT (tl, t3) or VB2$ (tl, to, tg)

This is a generalization of the first criterioBC1 (¢4, t3) implies NC(¢1, t2, t3), while the converse does not hold.
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4.2. Pitfalls. These results apply only to triplets of polynomid)s, f, f3). The fact that the criterion requires the
reduction to be ovefi, f, f3 onlymeans that one has to remain wary of pitfalls such as the following:

Example 2. Let F = (f1, f2, f3, f1) where

o f1 =071+ T2

® fo=mxom2

® f3=wxor3

o fi=13
Let > be any term ordering such thit (f;) = zoxz1; for example, a total-degree term ordering. Observe that
It (f1),lt= (f2),lt- (f3) are the same as those of example 1; hence, they satisfy CC3. However,

512 = x% 7) 0

Sz = 0

513 = X223 *~ 0
F

The natural question to ask is, how do we generalize the new criterionxo4? At present, we do not know the
answer.

4.3. Another way of defining BC1 and BC2. The new criteria provide alternate definitions for BC1 and BC2: for
all termstq, to, t3

BC1 (t4,t3)
BC2 (t1,ta,t3)

(Vl‘ VB1$ (f,l, t3))

&
< (Vo VB2, (t1,t2,t3))
Observe that
BC1 (t1,t3) V BC2(ty,ta,t3) = Va [Vle (t1,t3) or VB2, (t1,to, td)]
However, as we see from example 1,

BC1 (thtg) v BC2 (t17t27t3) <V [Vle (tl,tg) or VB2, (tl,tg,t;),)]

4.4. Geometric classification. If we plot all possible terms, that allow us to skip the reduction 6f 3, we observe
the following pattern.
At the one extreme; andts are relatively prime. HerBC1 (¢4, t3) applies; there iso restriction at allon ¢, (see

figure one).
y

ty
° = X

Figure 1

At the other extremet; andts; share all their variables. In this case, as lemma 8 shows, 86%/(¢;, to, t3)
applies:t, is constrained to the finite region boundedlly: (¢4, t3) (see figure two).

y
A

-
o

Figure 2
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Between these two extremes, we have tetmandt¢; where3z,y € {z1,...,z,} such thatdeg t; # 0 and
deg, t3 = 0, anddeg, t; = 0 anddeg, t3 # 0. In this case the new theorem applies: with each indeterminate
removed from¢; or t3, we can picki, from larger sets of additional regions of the space of tetmbpunded on the

variables thatt|, t3 do not share.

y y
A

tl
@ > X = X

Figure 3(a) Figure 3(b)
We observe the following lattice structure from one extreme (BC1) to the other (BC2):
Only z; shared
/ N

No indeterminates shared (BC1) All indeterminates shared (BC2)

N\ /

Only x5 shared

4.5. Directions for future research. We have already mentioned the question of how to generalize the result to four
polynomials. There are different options for whigkpolynomials to skip, and which to check:

e We have the option of one straightline path:
* * * * 2
S ?O/\Sgg ?0/\534 ?0?514 TO
e There are also possibilities for lattice-style paths; for example,
S1a L>0/\513L>0/\523 i>OA534L>O$Sl4i>0
F F F F F

Dr. Bruno Buchberger has suggested a statistical analysis of the results, and we have carried out a limited analysis.
[insert results here]
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