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Abstract

Intermediate coefficient swell is a well-known difficulty with Buchberger’'s algorithm for
computing Gobner bases over the rational numbepsAdic and modular methods have been
successful in limiting intermediate coefficient growth in other computations, and in particular in
the Euclidian algorithm for computing the greatest common divisor (GCD) of polynomials in one
variable. In this paper we present two modular algorithms for computing aor@r”basis for
an ideal inQ[x4, ..., X,] which extend the modular GCD algorithms. These algorithms improve
upon previously proposed modular techniques for computirapb@ei’ bases in that we test primes
before lifting, and also provide an algorithm for checking the result for correctness. A complete
characterization of unlucky primes is also given. Finally, we give some preliminary timings which
indicate that these modular algorithms can provide considerable time improvements in examples
where intermediate coefficient growth is a problem. © 2003 Published by Elsevier Science Ltd.

1. Introduction

Intermediate coefficient swell is a notorious difficulty of Buchberger’s algorithm for
computing Gobner bases over the rational numbers. During the execution of the algorithm,
many intermediate polynomials are computed before the desir@oh@r basis is reached.
Unfortunately, the coefficients of these intermediate polynomials can grow to enormous
size, even if the coefficients of the polynomials of the original generating polynomials and
the Giobner basis are relatively small. This growth of coefficients can be so great as to
significantly slow down the Gtiner basis algorithm or halt it altogether.

Example 1.1.

f1 = 8x2y? + 5xy3 4 3x3z + x?yz
fo = x5+ 2y372% + 13y?z% 4 5y7
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f3 = 8x3+12y3+x2+3
f4 = Tx?y* + 18xy322 + y378.
With respect to the DegRevLex ordering with> y > z, the reduced Gibiner basis
for the ideal generated by, f2, f3, f4in Q[X, Yy, z] is

g1 = X
% =y +1/4
93 = 22

However, this polynomial appears in the intermediate computations:
y® — 1735906504290451290764747182

In fact, the integer in the second term of the above polynomial contains roughly 80,000
digits. It is the numerator of a rational number with roughly an equal number of digits in
the denominator. This six term polynomial has four such coefficients.

Modular and p-adic techniques have been applied successfully to many types of
problems where intermediate coefficient growth is significa®résh, 1965 These
algorithms typically have three basic steps: first, find a “lucky prime” with high probability
(roughly, a primep is lucky for the computation if we do not lose too much algebraic
information when viewing the object to be computed modp)psecondly, compute the
object modulo a prime or several primes and then “lift” the coefficients to the integers
or rationals; and finally, check that the result is the correct one. The main difficulties are
to determine criteria for finding a “lucky” prime, and to find an effective and efficient
method for checking the result. In this paper we extend the modulapaattic algorithms
for computing the greatest common divisor (GCD) of polynomials in one variable to
algorithms that will compute the @bnher basis of an ideal of polynomials in several
variables with coefficients in the rational numbers.

2. History

The idea of a modular algorithm for computingdbrier bases was first suggested by
Ebert (1983)In this paper he comments that one cannot compare the number of leading
terms in two modular Gatiner bases in order to determine the relative unluckiness of the
primes. He did, however, prove that one could detect a priori a lucky prime foolarn@r”
basis computation involving only binomials and monomials.

Winkler (1987)proposes g-adic method for lifting a Gubner basis modulo a prime
p to a Gobner basis with rational coefficients. He presents an effective “step two”
for a modular Gobner basis algorithm. However, Winkler's method is based on two
assumptions: (1) that a priori a “lucky prime” is known, and (2) that a bound on the
coefficients of the Gabner basis is known, hence determining when to stop the Hensel
lifting. If we were to take a random prime, and lift a given number of times, without a
method for checking the result, we would not know if our result was correct. But given a

1 Computed by Macaulay Z3rayson and Stillman, 2090
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lucky prime and a bound on the coefficients, Winkler's method produces a correct rational
Grébner basis for an ideal.

Pauer (1992)gand Grabe (1994)extend Winkler's Step two method to more general
rings, but no progress is made on detecting unlucky primes or checking the result. A
different approach is taken Byraverso (1988yvhich avoids the assumptions of knowing
a lucky prime and a bound on the coefficients. He proposes a modular “trace” algorithm.
But this algorithm is probabilistic. Adding a deterministic check significantly decreases the
efficiency of the algorithmSasaki (1989proposes using the Chinese remainder algorithm
for computing Gobner bases.

Our goal in this paper is to extend and improve the Step two lifting method of Winkler,
and add both a Step one and a Step three. By introducing the concept of a “Hilbert lucky
prime”, we will demonstrate an effective method for determining the relative luckiness of
two primes and also give an efficient method for checking the result.

3. Preliminaries

In this section we give some definitions and basiolé3er basis results, as well as
introduce notation that will be used throughout the paper. The notation that we use will
be the same as in the textbook Bylams and Loustaunau (199450or more detailed
descriptions and proofs, séelams and Loustaunau (199 Buchberger (1985)

Let X = {X1,...,X,} be a set of indeterminates. We wrife[X] as the ring of
polynomials inX with coefficients in a Noetherian ring. Let T = {x;*x5%...x,"}
be the set of power products R[X]. We fix a term order on the power productsTif.

We denote by Ipf) € T", the leading power product of, by Ic(f) € R, the leading
coefficient of f, and by I{f) = Ic(f)Ip(f), the leading term off. Moreover, for any
subsetS € R[X], we denote LpS) = {Ip(f) | f € S} called thesetof leading power
products ofS, and we denote IB) = (It(f) | f € S§) C R[X], the ideal generated by the
leading terms of polynomial§ in S called theleading term ideal of SNote that LgS) is

a set and L@S) is an ideal.

A set of polynomial€z C | is a Giobner basis fot if and only if Lt(G) = Lt(l).

If Risafield, ands is a Giobner basis fot C R[X], then for everyf in |, there exists
ag € G such that Itg) divides It f). This is not true in general wheR is not a field. It
will always be true that there isqae G such that Ijgg) divides Ip( f), but coefficients may
present a problem.

If we restrict the ringR to a principal ideal domain (PID), then we can construct what
is called astrong Gibbner basiswhich will satisfy the previous condition.

Definition 3.1. LetG = {gs, ..., gt} be a set of non-zero polynomialsR{ X], whereR
is a PID. We say thaB is astrong Gbbner basifor | = (g1, ..., g;) ifforeachf e I,
there exists am € {1,...,t} such that ltg;) divides It f). We say thaiG is a minimal
strong Gbner basisf no It(g;) divides lt(g;) fori # j.

Strong Gobner bases always exist, but are not usually unique. If the coefficient ring is
the integers, it is possible to construct a strongl@er basisG’, from a given Gobner
basisG, such that the set of all primes dividing the leading coefficient'a$ the same as
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the set of all primes dividing the leading coefficient€fThis will be useful inSection 5
SeeAdams and Loustaunau (19%4) a construction.

Note that ifR is a field, then any Gatiner basis is automatically a strongoBnér basis,
although not necessarily unique. We defimeducedGrobner basisG = {g1, g2, . . ., 0t},
for an ideall such that for every, Ic(gi) = 1, and no power product ig is divisible by
any leading Igg;j) for g; in the setG — {gi}. If R is a field, then every non-zero ideal
in R[X] has a unique reduced @hrier basis. Reduced @rier bases as defined do not
always exist if the coefficient ring is not a field. @mier bases for which(lgj) = 1 for
everyi are calledmonicGrébner bases. If a monic @Gbnher basis exists for an ideal, then
a reduced Gybner basis can be constructed from this which is unique.

For our computations involving the Hilbert function, we require the idéato be
homogeneous. However, we would like an algorithm that will computeab@i basis
for any ideal,I < Q[X]. If we chose a graded term order, then it is always possible
to homogenize the generators of an arbitrary ideatompute a Gsbner basis for the
homogeneous ideal, and then dehomogenize and reduce the result to obtain a reduced
Grobner basis for the original idedl (Moller and Mora, 198¢ Therefore, without loss
of generality, throughout the rest of this paper, all ideals are assumed to be homogeneous.

4. Modular GCD algorithms

Since the GCD of a set of polynomials in one variable is @lBer basis for the
ideal generated by these polynomials, we will first examine modular methods for GCD
computations. Minor details are omitted in order to present the main ideas which are
relevant in a modular @bner basis algorithm. For a more complete description, see
Davenport et al. (1988)

Let p be a prime integerf,g € Z[x], and f,g € Zplx], whereZp denotes the
field of integers modul. Letd = gcd(f, g) € Z[x] anddp = ged(f,9) € ZplX].

If d = dp mod p, and degdp) = degd) then we can use a Hensel algorithm to “lift”
dp to a polynomial,dpi € Zpi[X] or we can use many such primes and the Chinese
remainder theorem to compudls € Zn[x] wheren is a product of these primes. If the
coefficients ofd are all less thamp' (respectivelyn), thend,, (respectivelydn) (with the
appropriate representation of coefficients) is actually the GCD ahdg in Z[X]. This
computation will only work if degdp) = degd) for every prime used in the computation.
Unfortunately, this is not true for every pringe

Definition 4.1. A prime, p, is calledluckyfor f andg if and only if degd) = degdp).

Since we do not comput#, we cannot tell fromd, whether or nofp is a lucky prime.
However, it is easy to verify that ip does not divide either of the leading coefficients
of f org, then degdp) > degd). This gives us a method for comparing two primps,
andq, for relative luckiness. If de@lq) > degdp), then we can discamgl as unlucky. This
method of testing, however, does not guaranteeghsitucky, only thag is unlucky. Since
there are a finite number of unlucky primes (see for exarpleenport et al., 1988after
testing several primes, we can find a lucky prime with high probability.
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Once we have found a lucky prime with high probability, we can use a Hensel technique
to lift dp to d;i or the Chinese remainder theorem to compifevheren is a product
of lucky primes. We have lifted high enough wheh (respectivelyn) is larger than all
of the coefficients ofl. Since the primes used were lucky only with high probability, it
is necessary to check the result to determine if it is the correct GCD. This is an easy
computation. Ifd; (respectivelydn) divides bothf andg, then this together with the fact
that degdp) = degd,;) = degdn) can only be larger than the degreecbimplies that
what we have computed is indeed the correct GCD.

There are three key steps in the modular GCD algorithms presented above.

Step 1. Find a lucky prime with high probability.
Step 2. Use a Hensel algorithm or the Chinese remainder theorem iy lift
Step 3. Check the result.

The goal of this paper is to generalize theadic method and the Chinese remainder
method for computing GCD’s to @-adic method and Chinese remainder method for
computing Gobner basedNinkler (1987)effectively has Step two for @-adic Giobner
basis algorithm. In this paper, we improve and simplify the lifting in Winkler's Step
two, and add a Step one and three leading to an implemengahttic algorithm for
computing Gobner bases. We add the same Step one and three to the basic Step two
Chinese remainder algorithm for a fast and deterministic Chinese remainder algorithm for
computing Gobner bases.

5. Step one: lucky primesfor Grobner basis calculations

First we must define what is meant by “lucky” prime indbrier basis calculations. Let
| = (fy,..., fr) be anideal iNQ[X]. We scale appropriately so that eathis in Z[X]
and eachf; is primitive. We consider the idedp, = (f1,..., fr) € Zp[X]. Let G be
the reduced Gibiner basis fol andGp be the reduced ®bner basis foll p. Roughly
speaking, a lucky prime is one for which we do not lose too much algebraic information
about the ideal < Q[X]when we consider the ide&) < Zp[X]. For the lifting method
presented in this paper, the algebraic information albdbat we need to preserve modulo
p is the set of leading terms @&. So we have the following definition.

Definition 5.1. A prime integer,p, is calledluckyfor | if and only if Lp(G) = Lp(Gp).

Using this definition, we cannot determine whether or not a prime is lucky without
computing the actual @bner basis fof. We would like to be able to compare two primes,
p andq, for relative luckiness, just as in the GCD case. Unfortunately, it is impossible to
compare LpGp) and Lp(Gq) and determine which of the primgsor g is unlucky. We
need another definition of “lucky” prime. Knowledge of the Hilbert function has proved to
be useful in Gobner basis computationsr@verso, 199) so we next consider the Hilbert
function.



408 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403-419

5.1. Hilbert lucky primes

In the GCD algorithm, it is the degree of the GCD that allows us to compare primes. Let
I € Q[X]be ahomogeneousideal. Lidh] denote the set of polynomials irof degreen.
Thenl [n] is a vector space ové). The Hilbert function ofd[ X]/1 is a numerical function
HF, : N — N such thatH F| (n) = dimg(Q[X][n]/I[n]). As it turns out, the Hilbert
function of Q[ X]/1 is the corresponding notion to the degree of the GCD that we seek. We
now define the following:

Definition 5.2. A prime p is calledHilbert luckyfor I € Q[X] if and only if HF} =
HF,.

The following theorem allows us to compare two primes for relative Hilbert luckiness.
We see that just like the degree of the GCD, the Hilbert function can only “go up” modulo
a primep.

Theorem 5.3. For every degree, n, Hign) < HF,(n).

In order to proverheorem 5.3we need to relate the two idealsandl . Since there is
no clear way to compare them directly, we define another ideal in yet another ring which
will serve as a link. Let] = (fq,..., f;) be the ideal ifZ[ X] where f1, ..., f; are the
same generators aslinNow | = J mod pandJ C | as sets of polynomials.

Proof (Theorem 5.3 Let I[n] (respectivelyJ[n], Ip[n]) denote the set of polynomials
in | (respectivelyd, Ip) of degreen, and note that [n] (respectivelyl 5[n]) is a vector
space ovef) (respectivelyZp). Z[ X][n] is a free abelian group of rank = (”t:l) (see
Eisenbud, 1995Section 1.9).

Note thatH Fy (n) = dimg (Q[X][n]) —dimg (I [n]) andH F, ,(n) = dimZp(Zp[X][n])
—dimZp(Ip[n]). Since diny(Q[X][n]) = dimZp(Zp[X][n]), to show thatH F|(n) <
H Fi,(n), it suffices to show that digx(I [n]) > dimZp(I p[n]). We do this by showing that

dimg(I[n]) = rankz(J[n]) > dimZp(Ip[n]).

To see this, let{f/, ..., fi;} be aZ-basis forJ[n]. For everyf < 1, there exists a
C € Z such thatcf € J. Hence{f/,..., fi;} is a Q-basis forl[n], and therefore
dimg(I[n]) = rank;(J[n]). Sincelp, = J mod p, we can show thatf, ..., f} stil

generatd p[n] and hence rankJ[n]) > dimZp(I plnD). O

To determine the relative Hilbert luckiness of the primeand g, we compare the
Hilbert functions ofl , andlq. If, for some degree, we have thaH F, ;(n) < HF,(n),
then we discard] as unlucky. We will see frorfheorem 5.13hat there are only a finite
number of Hilbert unlucky primes, hence we can find a Hilbert lucky prime with high
probability. We note thatl Fy,, is easily computed from the Gbher basisGp.

As a corollary toTheorem 5.3we get a complete characterization of Hilbert unlucky
primes.
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Corollary 5.4. By the fundamental theorem for finitely generated abelian groups we can
write Z[X](n1/d[n] = 2" & Zyw @ Ly @ -+ @ Ly, where (W > 0,d; > 2and
1 2

di(i)l | di(”) foreveryi=1,..., 5, — 1. The Hilbert unlucky primes are precisely the prime
divisors of the elements of'H.

Proof. The free rank ofZ[X][n]/J[n] is equal tor . From the previous theorem, we
have that ™ = y —rank;(J[n]) = y —dimg(l [n]) = HF (n). If pis a Hilbert unlucky
prime, then we must have theitF; ,(n) > r ™ for somen. SinceZ[X][n]/J[n] ®z Zp =

ZplX1nl/1pIn], we getZp[XIInl/pln] = (Z'" ©2Zp) & (Zyn ®2Zp) & - &(Zyn @2
Zp). If p dividesdj(”), thenZm ®z Zp = Zp. In order forH Fy,(n) to be greater than
]

r (™, we must have the free part@f[ X][n]/1p[n] to have rank greater thaf”. This will
happen if and only ifp divides one of theij(”) 's. O

In the following theorem, we get another very useful characterization of Hilbert unlucky
primes.

Theorem 5.5. p is Hilbert unlucky if and only if there exists a p-torsion element of
Z[X1/J.

Proof. Let f + J be a p-torsion element ofZ[X]/J. Since J is homogeneous, we

can assumg is homogeneous, say, of degreeSo f + J[n] is a p-torsion element

of Z[X][n]/J[n]. We write Z[X][n]/J[n] = Z' & Zd(m ® Zd(m ®--- D ng) as in
1 2

Corollary 5.4 Since there exists p-torsion element of[ X][n]/J[n], we must have that

p dividesdi”). Hencep is Hilbert unlucky byCorollary 5.4

Conversely, byCorollary 5.4 since p is Hilbert unlucky, p divides di”) for somen
whereZ[X][n]/J[n] = Z' & Zd(m DD Zdé”" Therefore, there exists an element in
1

Z[X]/J of degreen which is p-torsion. [

The Hilbert function corresponds with the degree of the GCD in that it can only “go
up” modulo a primep. But when we extend a unimodular GCD algorithm to al&rér
basis algorithm, we must take term order into account. It is quite possible for a prime to be
Hilbert lucky, but unlucky as we have defined itDefinition 5.1(seeSection §.

5.2. Lucky primes

Once we have found a Hilbert lucky prime with high probability, we still need to find a
lucky prime, one that will give the correct leading power produciS jn

LetG = {01,.... 0t} andGp = {93, . . ., gt’p} be reduced GiBiner bases for and| p,
respectively, ordered by increasing leading power products, al@let {h1, ..., hs} be
a minimal strong Gabner basis fod ordered in the same way.

Theorem 5.6. For a Hilbert lucky prime, p, we havip(g;) < Ip(g1). Furthermore, if
Ip(gj) =Ip(g)) for1 < j < i, thenlp(g{, ;) < Ip(gi+1).
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Proof. First we will show that Igg;) < Ip(g1) by consideringsz. Since Ligl) = Lp(J)
and Ip(g1) and Iphy) are both least inG and Gy, respectively, we must have that
Ip(h1) = Ip(g1). Now we consideh; € Ip. If hy = 0, thenhy = pf, for f e Z[x].

If f € J, then sinceGz is a strong Gobner basis, there exist§ € Gz such that
It(hi) | It(f). But then Igh;) | Ip(h1) = Ip(f). Since Ighy) is least, we must have that
hi = h1. This is a contradiction, since(le;) cannot divide I¢f). Therefore,f cannot be
in J.Butif f ¢ J,thenf 4+ Jis a p-torsion element oZ[x]/J contradicting the fact that
p is Hilbert lucky (Theorem 5.5 Soh; # 0. Sinceh; € |p, there exists @, € Gp such
that In(g}) | Ip(h1). So we have Ipg)) < Ip(g)) < Ip(hy) < Ip(hy) = Ip(gy). Therefore
Ip(gp < Ip(go).

Now assume that [jg;) = Ip(g})forl <j<i.We wiIIshowthatImgi’+1) < Ip(gi+1).
Letc € Z be such thatg +1 € J. Suppose thaig 1 # 0. Then there exislg’j € Gpsuch
that Ip(g]) | IpCg+1). If j <i, then we get ng]) = Ip(gj) | Ip(CG+1). But then Igg;)
divides a term odj 1, a contradiction to the fact th& is a reduced Gafiner basis fof. So
we must have thaj > i which implies that Igg;, ;) < Ip(g]) < Ip(Cg+1) < Ip(gi+1) as
desired. Now supposeg 11 = 0. Thencg .1 = p*h, whereh e Z[x], « > 1 andh # 0.
Sincep®h € J,if h ¢ J, thenh + J is a p-torsion element o%[x]/J, contradicting the
fact thatp is Hilbert lucky (Theorem 5.5 So we have that € J. Sinceh # 0, we are
in the same situation as above. There e>«j§t$ Gp such that ng]) | lph). If j <,

then Ir(g]) = Ip(gj) | Ip(h). Sinceh andgi 1 have the same power products, we get a
contradiction to the fact th& is a reduced Gatiner basis. Otherwise> i which implies

thatIp(g{, 1) < Ip(g)) < IpCG+1) <Ip(gi+1). O

Now we can us@heorem 5.80 compare two primes for luckiness. If two primps
andq generate the same Hilbert function, then we compare the leading ter@g and
Gy, in increasing order. If, in the first place where the leading terms differ, the leading
term inGy, is smaller than the leading term @8g, we know thatp must be unlucky, since
by Theorem 5.6leading terms only “go down” modulo a prime. Note that we can only
determine thap is unlucky. We still cannot determine whether or not the prinelucky.
Checking thatp is Hilbert lucky before comparing leading terms is crucial as the
following example shows.

Example 5.7. Let | = (3y?x — 5yx? + 2x3, —7y®x + 5y?x2, 7y® — 2y3x3 + yx®) C
Qly, x]. Using the degree lexicographical ordering with- x, 5 is a lucky prime, hence
Hilbert lucky. Lp(Gs) = {y?x, yx3, x5, y8}. The prime 2 is Hilbert unlucky. L($,) =
{y?x, y®}. If we were comparing the leading power products @ with Gs using
Theorem 5.6we would discard 5 as unlucky, singé > yx3.

5.3. Other definitions of lucky

Pauer (1992)efines a primep to be lucky (denoted in this paper as “Pauer-lucky”) if
p does not divide a leading coefficient of any polynomial3n. He shows that fop a
Pauer-lucky prime, then (&) = Lp(Gp) (we also prove this ihemma 6.). Making use
of Hilbert lucky primes, we will show in the next several lemmas and theorems, that the
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converse is also true for homogeneous ideals, i.e. that(®l.p= Lp(Gp) thenp does not
divide a leading coefficient of any polynomial ;. Let d(G) denote the least common
multiple of the denominators of the coefficients of polynomial&in

In Proposition 6. Pauer (1992proves that ifp does not divide a leading coefficient of
any polynomial inGz, thenp does not dividel(G).

With the addition of a hypothesis about Hilbert lucky primes, we can show the converse
of this theorem. First we prove two lemmas.

Lemma 5.8. Let p be a Hilbert lucky prime such that p does not divid&y Then for
any ge G, there exists a constanteZ such that cge J € Z[X] and p does not divide c.

Proof. We know there exists a constait,e Z, such thatcg € J. We would like to
choose thig such thatp does not divide. Sincep does not divide a denominator of any
coefficient ofg, if p dividesc, thenp dividescg. So if p | ¢, thencg = p* f wherex is
maximal in the sense thdt € Z[X] and p does not dividef . Sinceg is monic, p* must
dividec. If f ¢ J, thenp*f € J implies thatf + J is a p-torsion element oZ[X]/J,
contradicting the fact that is Hilbert lucky. Thereford € J. Now choose’ = ¢/ p* and
getcg= f € J.If p| c/,thenp | c'g = f, sinceg is monic andp does not divide a
denominator of a coefficient @f. But p does not dividef, so p cannot dividec’. I

Lemma 5.9. Let Gz = {hy, ..., hs} be a minimal strong Gibner basis for J, and let
f € J suchthatp(f) = Ip(h;) for some ie {1...s}. Thenlc(h;) divideslc(f).

Proof. Given f € J, sinceGz is a strong Gobner basis, there existy € Gz such
that ltthj) | It(f). Suppose Ipf) = Ip(hi). Let It(thj) = ¢ X; and Ithj) = c¢;X;. So
Xi = Ip(f) andcj | lc(f). We will show thatc; | ¢j. Then we would have thaj | Ic(f),

proving the lemma. Let = gcd(c, ¢j). Thenc = a¢ + ajcj for somea;, aj € Z.

Leth = aj))é—;hj + ajhj € J. Note that Ith) = cX; sinceXj | Xj. Again, sinceGz

is a strong Gobner basis, there exist& € Gz such that Ithy) | It(h) = cX;. But

cXi | ¢ X = lt(hi), so we get Ithy) | It(hj). SinceGz is a minimal Gobner basis,
we must have that = i. So lahj) = ¢ | c. Thereforec = ¢ andc | ¢j. We have now
shown that I¢h;) divides Iq f). O

Theorem 5.10. If a prime p is Hilbert lucky and does not dividé@), then p does not
divide a leading coefficient of any polynomial i G

Proof. Leth be a polynomial inGy. We must show thap does not divide Ith). Sinceh
is also inl, there exists @; € G such that Igg;) divides Iph). By Lemma 5.8 we can
choose & € Z such thatg € J andp does not divide. Sinceg; is monic, we also have
that p does not divideg . Let X be a monomial such that(p) = Ip(cXg). Sinceh is in
the strong Gobner basis fod, by Lemma 5.9we must have that(h) divides ltcXqg) by
Lemma 5.9Sincep does not divide Iec Xg) = ¢, p cannot divide I¢h). O

The following theorem shows where we find the Hilbert lucky primes that are not lucky.
These primes depend on the term order chosen.
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Theorem 5.11. If a prime p is Hilbert lucky, but not lucky, then p must divid&l.

Proof. Let G andGp be ordered by increasing leading power products. Suppose to the
contrary thatp does not dividad(G). We will show thatp is either Hilbert unlucky omp

is lucky. If p is Hilbert unlucky, then we are done. So assume fhist Hilbert lucky. We
need to show thap is lucky. Letg; € G. By Lemma 5.&hoose & € Z such thatg; € J

and p does not divide. NowTgy € |p and IpTar) = Ip(g1). There exists & € Gp such
that Ip(g)) | Ip(Cay). Sincep is Hilbert lucky, we cannot have g)) < Ip(g1). Therefore,
Ip(g)) = Ip(g). Sinceg; is least inGp, we must havé = 1. Now we assume that
Ip(g)) = Ip(g]) e Lp(Gp) forl < j <i — 1. Again byLemma 5.8there exists @& € Z
such thatigi € J and p does not divides;. We know thatg e |p and Ipcg) = Ip(gi).

So there existg] € Gp such thatlig)) | Ip(Ca) = Ip(gi). Ifdeg(g)) < dedg), then since
Ip(g)) = Ip(g]) forl1<j <i—1,forn=degg), we would haveH F; ,(n) > HF (n)
contradicting the fact thap is Hilbert lucky. Hence Ipg)) = Ip(gi) € Lp(Gp). For every

i we can find ag such that Ipg/) = Ip(gi) € Lp(Gp). Therefore, we have shown that
Lp(G) < Lp(Gp). Sincep is Hilbert lucky, this cannot be a strict containment. Hence
Lp(G) = Lp(Gp), andpis lucky. O

Finally, we have the following theorem.
Theorem 5.12. If p is a lucky prime, then p does not divideé®@).

Proof. Suppose to the contrary that divides the denominator of a coefficient of a
polynomial in G. We will show thatp is not lucky. If p is Hilbert unlucky, thenp is
not lucky and we are done. So assume th& Hilbert lucky. Now suppose divides the
denominator of a coefficient @f € G. Chooset such thatg € J. Sinceg is monic, andp
divides a denominator of a coefficient@f p must also divide. If TG # 0, thentg € I,
and IpTy) < Ip(g). Now Ip(Cg) is in Lp(lp), but it is also a power product ig € G.
SinceG is areducedGrébner basis of , Ip(Cg) cannot be in Lpl). So, L(Ip) # Lp(l),
implying thatp is not lucky. Now assume thag = 0. Then we can writeg = p* f for
f € Z[X] and« is such thatp does not dividef. If f ¢ J, thenf + J is a p-torsion
element ofZ[ X]/J contradicting the fact thap is Hilbert lucky. If f € J, then we are in
the same situation as wheg # 0. We havef e I p. Sincep divides a denominator af,
then p must also divide I¢f), sinceg; is monic. So Ipf) < Ip(gi). Now Ip(f) € Lp(lp),
but Ip(T) is also a power productig € G. SinceG is areducedGrébner basis of , Ip(T)
cannot be in Lpl). So, Lp(lp) # Lp(l), implying thatp is not lucky. [

Combining the previous theorems, we now have a complete characterization of lucky
primes.

Theorem 5.13. The following statements are equivalent for a prime, p:

1. pis lucky.
2. p does not divide a leading coefficient of any polynomial jn(Bauer-lucky).
3. pis Hilbert lucky and does not dividg @).
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6. Step two: lifting of G,
6.1. p-Adic lifting

First we discuss g-adic algorithm which uses Hensel lifting techniques. Lgt =

(f1..... fr) S Zyi[X]. The following result is also proved Wauer (1992n Proposition
4.1, but we give an alternate proof using the techniques that we have developed so far.

Lemma 6.1. Let G; = {hy, ha, ..., hs} be a minimal strongZ-Grdbner basis for
J C Z[X]. Let p be a lucky prime. TheG; = {hi,...,hs} is a Grobner basis for
| 5i, although not necessarily reduced.

Proof. Clearly sinceGy = {h1, h, ..., hs} generates), G; = {hs, ..., hs} generates
I = J mod p'. Since p is lucky, by Theorem 5.13 p does not divide a leading
coefficient of anyh; € Gz. Therefore LpJ) < Lp(l). Let f be a primitive polynomial
(in the sense that iff = ch, for c € Z, thenh is not in J) in I,. We will show
that It(f) € Lt(Gz). Since f € lois there exists arF € J such thatF = f. If
Ip(f) = Ip(F), then, sinceGy is a strong Gobner basis, there exists ja such that
Ip(hj) divides In(F) = Ip(f). Sincep does not divide Ithj), we know that I¢h;) is a
unit in Z . Hence It f) is divisible by Ithj) and It f) € Lt(Gz). If In(f) # Ip(F),
and Ip(f) is not in Lp(J) = Lp(l), then L J) is a proper subset of l(byi). But
then rankZ(J[n]) # rankZpi (Iyi[nD) for n = degf). Using the same reasoning as
in the proof of Theorem 5.3this implies thatp is Hilbert unlucky and hence unlucky,
which is a contradiction. Therefore Ljp) = Lp(li). Sincep is lucky, we know that
Ip(hi) = Ip(h;) for everyi. Since Igh;) is monic and LtGz) = (It(hy), ..., lt(hs)), we
getthat Ltl ) = (It(hy). ..., lt(hs)). HenceGg is a Gibner basis fot . [

Note that the proof otemma 6.1tells us thatl ; has a monic Gibner basis. Recall
from Section 3that if a monic Gobner basis exists, then we can find a monic reduced
Grobner basis for ;i that is unique. We denote bg, = {gf), ...,gt(i')}, the monic
reduced Gobner basis fof,; € Z ;i [X].

By definition, for a lucky primep, we have that LgG) = Lp(Gp). By Lemma 6.1we

also have that LG) = Lp(G ).

Theorem 6.2. Let G = {01,092, ..., Gt} be the reduced @bner basis for IC Q[X], and
let p be a lucky prime. The@ = (g1, @2, - . ., Gt} € Zi [ X] is the reduced Gibner basis

for 1. Thatis to sayG = G, in Zy [X].
Proof. Let G = {gf), ...,gt(i)} be the unique monic reduced @rier basis fot ; <
Z g [X]. We orderG and G, by increasing leading power products. First we show that
Gj € | 5. Then we show thagj = g for j € {1,....t}.
Letgj € G. By Lemma 5.8choosecj € Z such thatcjgj € J and p does not divide

cj. Sincel ;i = Jin Z [X], we have tha€jgj € |,. Sincecj is invertible inZ i, we get
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¢ 'cjgj = Gj € I, foreveryj e {1,...,t}. From the fact thaG is monic, we know
that Lp(G) = Lp(G) = Lp(Gp).

Now we have tha@j € |, and Ip@j) = Ip(g}i)) for everyj. Considerg}i) —gj€ly.
Ip(g}i) -0j) < Ip(g}i)). In fact, Ip(gj(i) —0j) is a power productin eitheg; or g?) (or 0).
Since bothg}i) andgj are reduced with respect to Ug;) = Lp(l), we must have that

g}i) -gj=0¢€ly,. Henceg!) = 9, and we have shown th& = Gp inZy[X]. O

J
6.2. Lifting Gp to GV

Now we present a method for liftinG p, the reduced Gibiner basis fotp € Zp[X], to
Gpi , the monic reduced @bner basis fotpi - Zpi [X].

Assuming that we have a lucky primg, we first computeGp. We view Gp and
F = {fy,..., fr} as column matrices and compute the transformation matrtk with
entries inZp[ X] such that

ZWF =Gy mod p. (1)
For eacti, we need to find matricea”) andG® with entries inZ [ X] such that
ZVF=G" modp' and GV =Gp modp

from which we can computé ;i-1, the monic reduced @bher basis fot ;.
This is done by induction. Far= 1, we haveZ® andGy, in Eq. (1) GivenZ(~Y and
G i-1, we first compute matriceg’ andG’ such that

and

GV =Gy +p G (3)
where

ZOF =G mod p'. (4)

To do this, we need to solve the following congruence obtained by substitEtiag(2)
and(3) into (4).

20V 4 p1Z)F =Gy1 + p 16 mod p' (5)

for 2’ andG'.

One solution toEq. (5)is Z’ = 0,G’ = %(Z(‘*DF — G-1). However, we want
Gp-1 + p'~1G’ to be the reduced monic Giher basis for pi- We use the following
technique oPauer (1992fo obtain the correct power products@i. We useG, to reduce
G’ to a set of polynomialg”, such that ppG” (Lp(Gp) = #). Let M be the matrix of
polynomials used in this reduction. & = MG, + G”. LetZ2” = Z' — MZD, where
ZWis asinEq. (1) Then(Z”, G”) is also a solution t&q. (5)
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Now we show thaG") = G ;-1 + p'~1G’ is equal toG ;, the monic reduced @biner
basis ofl ;. By construction, we have th@'F = G mod p', soG" < 1. Since
p is lucky, LpG®) = Lp(Gp) = Lp(Gp). Let§ € GV andg’ e G such that
Ip(@ = Ip(g"). Considerg — g' € 1. The leading power product @ — g’ is strictly
less than 1) = Ip(g’), and is, hence, one of the lower power products of eitherg’.
But bothg andg’ are reduced with respect to UBp) = Lp(Gi). Thereforeg —g' =0
andG® = Gy in 1. So at the'th stage of Step 2, the lifting algorithm computes the
reduced monic Gafiner basis of ;.

The Farey rational number§pn = {§ | ab € Z/Ja < N1 < b <
N, gcd(@a, b) = 1, gcdb, p) = 1} can be used to recover the rational coefficient&of
from theZ; coefficients ofG; (Kornerup and Gregory, 1983The Farey rational map

¢ : FpN+—Zyi is one to one ifN < Vv p'/2. Let N be a bound on the numerators
and denominators of the coefficients®@f Then we can lifG, to G ;i wherei is such that

N < ,/p'/2, and pull the coefficients @ ;i backto their unique pre-imagesiip n € Q,
which are the coefficients @ by Theorem 6.2

If we knew a bound on the size numerators and denominators of the coefficigats of
we would know when to terminate the lifting algorithm. However, even if such a bound
could be computed, it would most likely be too large to be of any use. Instead, we pull
back the coefficients oB( to rational coefficients at each lift to obta . We say that
the computation “stabilizes” to a @bner basis candidat& if Gi_1) = Gj). Once the
computation stabilizes, we perform the check in Step three.

6.3. Chinese remainder lifting

Letk be a product of lucky primes, and Iptbe another lucky prime. In this section we
discuss an algorithm that uses the Chinese remainder theorem to form the monic reduced
Grébner basisGkp for the ideallyp = (f1, ..., fr) C Zip[X] from the two Gobner bases,

Gk andGp. Once we have performed a sufficient number of “lifts” , we can then construct
the reduced Gabiner basis@, for | by pulling back the modular coefficients to rational
coefficients using the Farey rational map. We recall the Chinese remainder theorem:

Let m and n be two relatively prime odd integers. Then there is a unique solution
modulo mn of the simultaneous congruencesxa mod m and x = b mod n where
—mn/2 < x <mn/2.

In order to apply the Chinese remainder theorem to the coefficiertg @hdGp, we
need the following theorem.

Theorem 6.3. For any product of lucky primes & [] pi, we have that G= G, mod n
where G, is the reduced monic @bner basis for |.

The proof of this theorem is just a generalization of the proof@at G, mod p for
a primep and can be found in eithérnold (2000)or Pauer (1992)

Now we apply the Chinese remainder algorithm to the coefficients of the polynomials
in Gk and Gp to get a new set of polynomialG*P, with coefficients inZp. By
constructionG*P is congruent taGx mod k andGp mod p. By Theorem 6.3we also
have thats is congruent t&skx modk andGp mod p. Therefore, by the Chinese remainder
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theorem, we must have that"P = G modkp, and henc&*P' = Gyp. As in the p-adic
algorithm, we pull back the coefficients &P after each lift. Once the computation
stabilizes, we have a Gbher basis candida® € Q[X] and we proceed to Step three.

7. Checking theresult

In order to show that our ®bher basis candidaté, is the correct result, we need to

carry out two checks. First we need to show tBats a Giobner basis for the ideal that
it generates(G). This can be done by checking that all of tBepolynomials reduce to
zero usingG, avoiding unnecessary reductions using criteria listeBunhberger (1979)
andGebauer and Miler (1988) Next we must show thaG) = |. To show that < (G),
we simply show that the generatorsloffy, ..., f;, reduce to zero usm@. This method,
however, will not work for showing thaG) < |, sinceF = {f1, ..., f;} is nota Gobner
basis. In principle, checking th&B) C | is as difficult a problem as computing adbrier
basis forl . However, keeping the leading power products constant throughout the lifting
process eliminates the need to check this second containment.

Theorem 7.1. LetG € Q[X] be a set of polynomials such than(G) = Lp(Gp), Gisa
Grobner basis for the ideal that it generaté&) and | € (G). Then | = (G).

Proof. | € (G) implies thatH Fg < HFI. SinceG has the same leading terms@s,
we have that F@ = HF,. By Theorem 5.3we know thatH F; < H Fi,. Sowe have
HF <HF,=H F@ < HF,. ThereforeH F<é) = H F; which, in addition to the fact

thatl < (G), impliesthat(G) = 1. O

So, in fact, once we know th& is a Gobner basis, and that< (G), we have thaG
is the reduced Gabiner basis fot . Note that this check does not require tipais a lucky
prime.

8. Examples

In this section we provide examples on which we time the Chinese remaindpraatid
Grobner basis algorithms and also current implementations of Buchberger’s algorithm in
CoCoA, Macaulay 2 and Maple. We have implemented both the Chinese remainder and
the p-adic Gébner basis algorithms using the programming language of the computer
algebra package CoCoAépani et al., 2001 Timings were conducted on a Pentium 1l
500 MHz system with 512 MB memory under the Linux operating system. Each of the
examples below are ideals @[X, y, z]. Grébner bases are computed using the degree
reverse lexicographical ordering with> y > z.

The examples chosen are those for which there is significant growth in the size of the
intermediate coefficients, yet the size of the coefficients in the reducgth@rbasis are
moderate. While intermediate coefficient growth is typical iml@rér basis calculations,
moderate coefficients in the final result are not. We summarize the results of the timings in
Table 1
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Table 1

Running times in seconds
Ex PGB CRGB CoCoA M2 Maple
1 151 4.8 11,090 21,611 -
2 1212 33 4,501 1,246 2059
3 484 10.46 16,433 12,078 -

The first example is from the introduction.

Example 8.1.

fi = 8x2y? +5xy3 + 3x3z + x%yz
fo = x5+ 2y3722 + 13y?72% 4 5y7
fa3 = 8x3+12y3+x2+3

f4 = 7x2y* + 18xy3z2 + y328.

Example 8.2.

fi = 2xy*22 + x3y2z — x2y3z 4+ 2xyZ2 + 7y3 + 7

fo = 2x2y%z 4 x2yZ2 — xy?Z% + 2x%yz— 12x + 12y

f3 = 2y5z+4 x2y?z — xy3z — xy3 + y* + 2y?z

f4 = 3XY*ZB +x%y%2 — xy3z+ 4y3Z22 + 3xy2 + 422 — x +y .

The Giobner basis consists of two polynomials:
01 = X—-Yy
B =y +1.
In the last example, the four generatorgJifx, y, z] generate the unit ideal.

Example 8.3.

f1 = 5x3y?z + 3y3x2z + Txy?Z?
fo = 3xy?2% + x5 + 11y?7?

f3 = 4dxyz+7x3+12y3+1

fs = 3x3—4y3+yA

Table 1compares The Chinese remaindeof@mér basis algorithm, CRGB, and the
p-adic algorithm, PGB, with times in seconds for the current implementations of
Buchberger’s algorithm in CoCoA, Macaulay 2 and Maple. Maple had the system error:
“ran out of memory” forExamples 8.5and8.3

9. Conclusions

These initial timings of the modular algorithms indicate that they perform well in
examples where intermediate coefficient growth is problematic and the resulihg&r”
basis is relatively simple. While these modular algorithms are not faster than the current
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implementations of Buchberger’s algorithm in all examples, the striking differences in
timing in these particular examples indicate that the modular algorithms deserve more
careful consideration.

The modular algorithms that we tested are coded in the high level programming
language of CoCoA. We do not present a detailed description of the code here. Some
procedures are implemented by built-in functions in CoCoA and others are implemented
in interpreted code. A more accurate comparison would be to implement the modular
algorithms in a lower level language such as C++. However, it is clear that the Step
three checking can become quite expensive. If the resultiog @&’ basis is simple, as in
our examples, then the check is inexpensive. This leads us to conclude that the modular
algorithms with the Step 3 check would be especially suited for examples where the
Grébner basis i§1}. Another class of examples for which the resultingp@ér basis
is often relatively simple is made up of elimination examples.

Finally, a very interesting question would be to determine which other classes of
examples have significant intermediate coefficient growth with relatively simperr”
bases. Even if this problem is not solved, it may be possible to start a traditional Buchberger
algorithm and then switch to a modular algorithm when intermediate coefficient growth
becomes apparent, saving as much of the information as possible.
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