
Journal of Symbolic Computation 35 (2003) 403–419

www.elsevier.com/locate/jsc

Modular algorithms for computing Gröbner bases

Elizabeth A. Arnold∗

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Received 5 October 2000; accepted 14 March 2002

Abstract

Intermediate coefficient swell is a well-known difficulty with Buchberger’s algorithm for
computing Gr¨obner bases over the rational numbers.p-Adic and modular methods have been
successful in limiting intermediate coefficient growth in other computations, and in particular in
the Euclidian algorithm for computing the greatest common divisor (GCD) of polynomials in one
variable. In this paper we present two modular algorithms for computing a Gr¨obner basis for
an ideal inQ[x1, . . . , xν] which extend the modular GCD algorithms. These algorithms improve
upon previously proposed modular techniques for computing Gr¨obner bases in that we test primes
before lifting, and also provide an algorithm for checking the result for correctness. A complete
characterization of unlucky primes is also given. Finally, we give some preliminary timings which
indicate that these modular algorithms can provide considerable time improvements in examples
where intermediate coefficient growth is a problem. © 2003 Published by Elsevier Science Ltd.

1. Introduction

Intermediate coefficient swell is a notorious difficulty of Buchberger’s algorithm for
computing Gr¨obner bases over the rational numbers. During the execution of the algorithm,
many intermediate polynomials are computed before the desired Gr¨obner basis is reached.
Unfortunately, the coefficients of these intermediate polynomials can grow to enormous
size, even if the coefficients of the polynomials of the original generating polynomials and
the Gröbner basis are relatively small. This growth of coefficients can be so great as to
significantly slow down the Gr¨obner basis algorithm or halt it altogether.

Example 1.1.

f1 = 8x2y2 + 5xy3 + 3x3z + x2yz
f2 = x5 + 2y3z2 + 13y2z3 + 5yz4

∗ Tel.: +1-979-862-2182; fax: +1-979-279-9226.
E-mail address:barnold@math.tamu.edu (E.A. Arnold).

0014-5793/03/$ - see front matter © 2003 Published by Elsevier Science Ltd.
doi:10.1016/S0747-7171(02)00140-2

404 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

f3 = 8x3 + 12y3 + xz2 + 3
f4 = 7x2y4 + 18xy3z2 + y3z3.

With respect to the DegRevLex ordering withx > y > z, the reduced Gr¨obner basis
for the ideal generated byf1, f2, f3, f4 in Q[x, y, z] is

g1 = x
g2 = y3 + 1/4
g3 = z2.

However, this polynomial appears in the intermediate computations:

y3 − 1735906504290451290764747182. . . .

In fact, the integer in the second term of the above polynomial contains roughly 80,000
digits. It is the numerator of a rational number with roughly an equal number of digits in
the denominator. This six term polynomial has four such coefficients.1

Modular and p-adic techniques have been applied successfully to many types of
problems where intermediate coefficient growth is significant (Borosh, 1966). These
algorithms typically have three basic steps: first, find a “lucky prime” with high probability
(roughly, a primep is lucky for the computation if we do not lose too much algebraic
information when viewing the object to be computed modulop); secondly, compute the
object modulo a prime or several primes and then “lift” the coefficients to the integers
or rationals; and finally, check that the result is the correct one. The main difficulties are
to determine criteria for finding a “lucky” prime, and to find an effective and efficient
method for checking the result. In this paper we extend the modular andp-adic algorithms
for computing the greatest common divisor (GCD) of polynomials in one variable to
algorithms that will compute the Gr¨obner basis of an ideal of polynomials in several
variables with coefficients in the rational numbers.

2. History

The idea of a modular algorithm for computing Gr¨obner bases was first suggested by
Ebert (1983). In this paper he comments that one cannot compare the number of leading
terms in two modular Gr¨obner bases in order to determine the relative unluckiness of the
primes. He did, however, prove that one could detect a priori a lucky prime for a Gr¨obner
basis computation involving only binomials and monomials.

Winkler (1987)proposes ap-adic method for lifting a Gr¨obner basis modulo a prime
p to a Gröbner basis with rational coefficients. He presents an effective “step two”
for a modular Gr¨obner basis algorithm. However, Winkler’s method is based on two
assumptions: (1) that a priori a “lucky prime” is known, and (2) that a bound on the
coefficients of the Gr¨obner basis is known, hence determining when to stop the Hensel
lifting. If we were to take a random prime, and lift a given number of times, without a
method for checking the result, we would not know if our result was correct. But given a

1 Computed by Macaulay 2 (Grayson and Stillman, 2000).

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 405

lucky prime and a bound on the coefficients, Winkler’s method produces a correct rational
Gröbner basis for an ideal.

Pauer (1992)and Gräbe (1994)extend Winkler’s Step two method to more general
rings, but no progress is made on detecting unlucky primes or checking the result. A
different approach is taken byTraverso (1988)which avoids the assumptions of knowing
a lucky prime and a bound on the coefficients. He proposes a modular “trace” algorithm.
But this algorithm is probabilistic. Adding a deterministic check significantly decreases the
efficiency of the algorithm.Sasaki (1989)proposes using the Chinese remainder algorithm
for computing Gr¨obner bases.

Our goal in this paper is to extend and improve the Step two lifting method of Winkler,
and add both a Step one and a Step three. By introducing the concept of a “Hilbert lucky
prime”, we will demonstrate an effective method for determining the relative luckiness of
two primes and also give an efficient method for checking the result.

3. Preliminaries

In this section we give some definitions and basic Gr¨obner basis results, as well as
introduce notation that will be used throughout the paper. The notation that we use will
be the same as in the textbook byAdams and Loustaunau (1994). For more detailed
descriptions and proofs, seeAdams and Loustaunau (1994)or Buchberger (1985).

Let X = {x1, . . . , xν} be a set of indeterminates. We writeR[X] as the ring of
polynomials inX with coefficients in a Noetherian ringR. Let Tν = {xα1

1 xα2
2 . . . xαν

ν }
be the set of power products inR[X]. We fix a term order on the power products inTn.
We denote by lp(f) ∈ Tn, the leading power product off , by lc(f) ∈ R, the leading
coefficient of f , and by lt(f) = lc(f)lp(f), the leading term off . Moreover, for any
subsetS ⊆ R[X], we denote Lp(S) = {lp(f) | f ∈ S} called thesetof leading power
products ofS, and we denote Lt(S) = 〈lt(f) | f ∈ S〉 ⊆ R[X], the ideal generated by the
leading terms of polynomialsf in S called theleading term ideal of S. Note that Lp(S) is
a set and Lt(S) is an ideal.

A set of polynomialsG ⊆ I is a Gröbner basis forI if and only if Lt(G) = Lt(I).
If R is a field, andG is a Gröbner basis forI ⊆ R[X], then for everyf in I , there exists

a g ∈ G such that lt(g) divides lt(f). This is not true in general whenR is not a field. It
will always be true that there is ag ∈ G such that lp(g) divides lp(f), but coefficients may
present a problem.

If we restrict the ringR to a principal ideal domain (PID), then we can construct what
is called astrong Gr̈obner basis, which will satisfy the previous condition.

Definition 3.1. Let G = {g1, . . . , gt} be a set of non-zero polynomials inR[X], whereR
is a PID. We say thatG is astrong Gr̈obner basisfor I = 〈g1, . . . , gt 〉 if for each f ∈ I ,
there exists ani ∈ {1, . . . , t} such that lt(gi) divides lt(f). We say thatG is a minimal
strong Gr̈obner basisif no lt(gi) divides lt(gj) for i �= j .

Strong Gröbner bases always exist, but are not usually unique. If the coefficient ring is
the integers, it is possible to construct a strong Gr¨obner basis,G′, from a given Gr¨obner
basis,G, such that the set of all primes dividing the leading coefficients ofG′ is the same as

406 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

the set of all primes dividing the leading coefficients ofG. This will be useful inSection 5.
SeeAdams and Loustaunau (1994)for a construction.

Note that ifR is a field, then any Gr¨obner basis is automatically a strong Gr¨obner basis,
although not necessarily unique. We define areducedGröbner basis,G = {g1, g2, . . . , gt },
for an idealI such that for everyi , lc(gi) = 1, and no power product ingi is divisible by
any leading lp(gj) for gj in the setG − {gi }. If R is a field, then every non-zero ideal
in R[X] has a unique reduced Gr¨obner basis. Reduced Gr¨obner bases as defined do not
always exist if the coefficient ring is not a field. Gr¨obner bases for which lt(gi) = 1 for
everyi are calledmonicGröbner bases. If a monic Gr¨obner basis exists for an ideal, then
a reduced Gr¨obner basis can be constructed from this which is unique.

For our computations involving the Hilbert function, we require the ideal,I , to be
homogeneous. However, we would like an algorithm that will compute a Gr¨obner basis
for any ideal, I ⊆ Q[X]. If we chose a graded term order, then it is always possible
to homogenize the generators of an arbitrary idealI , compute a Gr¨obner basis for the
homogeneous ideal, and then dehomogenize and reduce the result to obtain a reduced
Gröbner basis for the original idealI (Möller and Mora, 1984). Therefore, without loss
of generality, throughout the rest of this paper, all ideals are assumed to be homogeneous.

4. Modular GCD algorithms

Since the GCD of a set of polynomials in one variable is a Gr¨obner basis for the
ideal generated by these polynomials, we will first examine modular methods for GCD
computations. Minor details are omitted in order to present the main ideas which are
relevant in a modular Gr¨obner basis algorithm. For a more complete description, see
Davenport et al. (1988).

Let p be a prime integer,f, g ∈ Z[x], and f , g ∈ Zp[x], whereZp denotes the
field of integers modulop. Let d = gcd(f, g) ∈ Z[x] anddp = gcd(f , g) ∈ Zp[x].
If d ≡ dp mod p, and deg(dp) = deg(d) then we can use a Hensel algorithm to “lift”
dp to a polynomial,dpi ∈ Zpi [X] or we can use many such primes and the Chinese
remainder theorem to computedn ∈ Zn[x] wheren is a product of these primes. If the
coefficients ofd are all less thanpi (respectivelyn), thendpi (respectivelydn) (with the
appropriate representation of coefficients) is actually the GCD off andg in Z[X]. This
computation will only work if deg(dp) = deg(d) for every prime used in the computation.
Unfortunately, this is not true for every primep.

Definition 4.1. A prime, p, is calledluckyfor f andg if and only if deg(d) = deg(dp).

Since we do not computed, we cannot tell fromdp whether or notp is a lucky prime.
However, it is easy to verify that ifp does not divide either of the leading coefficients
of f or g, then deg(dp) ≥ deg(d). This gives us a method for comparing two primes,p
andq, for relative luckiness. If deg(dq) > deg(dp), then we can discardq as unlucky. This
method of testing, however, does not guarantee thatp is lucky, only thatq is unlucky. Since
there are a finite number of unlucky primes (see for exampleDavenport et al., 1988), after
testing several primes, we can find a lucky prime with high probability.

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 407

Once we have found a lucky prime with high probability, we can use a Hensel technique
to lift dp to dpi or the Chinese remainder theorem to computedn wheren is a product
of lucky primes. We have lifted high enough whenpi (respectivelyn) is larger than all
of the coefficients ofd. Since the primes used were lucky only with high probability, it
is necessary to check the result to determine if it is the correct GCD. This is an easy
computation. Ifdpi (respectivelydn) divides bothf andg, then this together with the fact
that deg(dp) = deg(dpj) = deg(dn) can only be larger than the degree ofd implies that
what we have computed is indeed the correct GCD.

There are three key steps in the modular GCD algorithms presented above.

Step 1. Find a lucky prime with high probability.

Step 2. Use a Hensel algorithm or the Chinese remainder theorem to liftdp.

Step 3. Check the result.

The goal of this paper is to generalize thep-adic method and the Chinese remainder
method for computing GCD’s to ap-adic method and Chinese remainder method for
computing Gr¨obner bases.Winkler (1987)effectively has Step two for ap-adic Gröbner
basis algorithm. In this paper, we improve and simplify the lifting in Winkler’s Step
two, and add a Step one and three leading to an implementablep-adic algorithm for
computing Gr¨obner bases. We add the same Step one and three to the basic Step two
Chinese remainder algorithm for a fast and deterministic Chinese remainder algorithm for
computing Gr¨obner bases.

5. Step one: lucky primes for Gröbner basis calculations

First we must define what is meant by “lucky” prime in Gr¨obner basis calculations. Let
I = 〈 f1, . . . , fr 〉 be an ideal inQ[X]. We scale appropriately so that eachfi is in Z[X]
and eachfi is primitive. We consider the idealI p = 〈 f1, . . . , fr 〉 ⊆ Zp[X]. Let G be
the reduced Gr¨obner basis forI and Gp be the reduced Gr¨obner basis forI p. Roughly
speaking, a lucky prime is one for which we do not lose too much algebraic information
about the idealI ⊆ Q[X] when we consider the idealI p ⊆ Zp[X]. For the lifting method
presented in this paper, the algebraic information aboutI that we need to preserve modulo
p is the set of leading terms ofG. So we have the following definition.

Definition 5.1. A prime integer,p, is calledluckyfor I if and only if Lp(G) = Lp(Gp).

Using this definition, we cannot determine whether or not a prime is lucky without
computing the actual Gr¨obner basis forI . We would like to be able to compare two primes,
p andq, for relative luckiness, just as in the GCD case. Unfortunately, it is impossible to
compare Lp(Gp) and Lp(Gq) and determine which of the primesp or q is unlucky. We
need another definition of “lucky” prime. Knowledge of the Hilbert function has proved to
be useful in Gr¨obner basis computations (Traverso, 1997), so we next consider the Hilbert
function.

408 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

5.1. Hilbert lucky primes

In the GCD algorithm, it is the degree of the GCD that allows us to compare primes. Let
I ⊆ Q[X] be a homogeneous ideal. LetI [n] denote the set of polynomials inI of degreen.
ThenI [n] is a vector space overQ. The Hilbert function ofQ[X]/I is a numerical function
H FI : N N such thatH FI (n) = dimQ(Q[X][n]/I [n]). As it turns out, the Hilbert
function ofQ[X]/I is the corresponding notion to the degree of the GCD that we seek. We
now define the following:

Definition 5.2. A prime p is calledHilbert lucky for I ⊆ Q[X] if and only if H FI =
H FI p .

The following theorem allows us to compare two primes for relative Hilbert luckiness.
We see that just like the degree of the GCD, the Hilbert function can only “go up” modulo
a primep.

Theorem 5.3. For every degree, n, H FI (n) ≤ H FI p(n).

In order to proveTheorem 5.3, we need to relate the two ideals,I andI p. Since there is
no clear way to compare them directly, we define another ideal in yet another ring which
will serve as a link. LetJ = 〈 f1, . . . , fr 〉 be the ideal inZ[X] where f1, . . . , fr are the
same generators as inI . Now I p ≡ J mod p andJ ⊆ I as sets of polynomials.

Proof (Theorem 5.3). Let I [n] (respectivelyJ[n], I p[n]) denote the set of polynomials
in I (respectivelyJ, I p) of degreen, and note thatI [n] (respectivelyI p[n]) is a vector
space overQ (respectivelyZp). Z[X][n] is a free abelian group of rankγ = (n+ν−1

ν−1

)
(see

Eisenbud, 1995, Section 1.9).
Note thatH FI (n) = dimQ(Q[X][n])−dimQ(I [n]) andH FI p(n) = dimZp(Zp[X][n])

− dimZp(I p[n]). Since dimQ(Q[X][n]) = dimZp(Zp[X][n]), to show thatH FI (n) ≤
H FI p(n), it suffices to show that dimQ(I [n]) ≥ dimZp(I p[n]). We do this by showing that

dimQ(I [n]) = rankZ(J[n]) ≥ dimZp(I p[n]).
To see this, let{ f ′

1, . . . , f ′
in

} be a Z-basis for J[n]. For every f ∈ I , there exists a
c ∈ Z such thatc f ∈ J. Hence{ f ′

1, . . . , f ′
in

} is a Q-basis for I [n], and therefore

dimQ(I [n]) = rankZ(J[n]). SinceI p ≡ J mod p, we can show that{ f ′
1, . . . , f ′

in
} still

generateI p[n] and hence rankZ(J[n]) ≥ dimZp(I p[n]). �

To determine the relative Hilbert luckiness of the primesp and q, we compare the
Hilbert functions ofI p and Iq. If, for some degreen, we have thatH FI p(n) < H FIq (n),
then we discardq as unlucky. We will see fromTheorem 5.13that there are only a finite
number of Hilbert unlucky primes, hence we can find a Hilbert lucky prime with high
probability. We note thatH FI p is easily computed from the Gr¨obner basis,Gp.

As a corollary toTheorem 5.3, we get a complete characterization of Hilbert unlucky
primes.

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 409

Corollary 5.4. By the fundamental theorem for finitely generated abelian groups we can
write Z[X][n]/J[n] ∼= Zr (n) ⊕ Z

d(n)
1

⊕ Z
d(n)

2
⊕ · · · ⊕ Z

d(n)
sn

, where r(n) ≥ 0, di ≥ 2 and

d(n)
i+1 | d(n)

i for every i= 1, . . . , sn − 1. The Hilbert unlucky primes are precisely the prime

divisors of the elements of d(n)
1 .

Proof. The free rank ofZ[X][n]/J[n] is equal tor (n). From the previous theorem, we
have thatr (n) = γ − rankZ(J[n]) = γ − dimQ(I [n]) = H FI (n). If p is a Hilbert unlucky
prime, then we must have thatH FI p(n) > r (n) for somen. SinceZ[X][n]/J[n] ⊗Z Zp =
Zp[X][n]/I p[n], we getZp[X][n]/I p[n] = (Zr (n) ⊗ZZp)⊕(Z

d(n)
1

⊗ZZp)⊕· · ·⊕(Z
d(n)

sn
⊗Z

Zp). If p dividesd(n)
j , thenZ

d(n)
j

⊗Z Zp = Zp. In order forH FI p(n) to be greater than

r (n), we must have the free part ofZp[X][n]/I p[n] to have rank greater thanr (n). This will

happen if and only ifp divides one of thed(n)
j ’s. �

In the following theorem, we get another very useful characterization of Hilbert unlucky
primes.

Theorem 5.5. p is Hilbert unlucky if and only if there exists a p-torsion element of
Z[X]/J .

Proof. Let f + J be a p-torsion element ofZ[X]/J. Since J is homogeneous, we
can assumef is homogeneous, say, of degreen. So f + J[n] is a p-torsion element
of Z[X][n]/J[n]. We write Z[X][n]/J[n] ∼= Zr ⊕ Z

d(n)
1

⊕ Z
d(n)

2
⊕ · · · ⊕ Z

d(n)
sn

as in

Corollary 5.4. Since there exists ap-torsion element ofZ[X][n]/J[n], we must have that
p dividesd(n)

1 . Hencep is Hilbert unlucky byCorollary 5.4.

Conversely, byCorollary 5.4, since p is Hilbert unlucky, p divides d(n)
1 for somen

whereZ[X][n]/J[n] ∼= Zr ⊕ Z
d(n)

1
⊕ · · · ⊕ Z

d(n)
s

. Therefore, there exists an element in

Z[X]/J of degreen which is p-torsion. �

The Hilbert function corresponds with the degree of the GCD in that it can only “go
up” modulo a primep. But when we extend a unimodular GCD algorithm to a Gr¨obner
basis algorithm, we must take term order into account. It is quite possible for a prime to be
Hilbert lucky, but unlucky as we have defined it inDefinition 5.1(seeSection 8).

5.2. Lucky primes

Once we have found a Hilbert lucky prime with high probability, we still need to find a
lucky prime, one that will give the correct leading power products inGp.

Let G = {g1, . . . , gt } andGp = {g′
1, . . . , g′

tp
} be reduced Gr¨obner bases forI and I p,

respectively, ordered by increasing leading power products, and letGZ = {h1, . . . , hs} be
a minimal strong Gr¨obner basis forJ ordered in the same way.

Theorem 5.6. For a Hilbert lucky prime, p, we havelp(g′
1) ≤ lp(g1). Furthermore, if

lp(gj) = lp(g′
j) for 1 ≤ j ≤ i , thenlp(g′

i+1) ≤ lp(gi+1).

410 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

Proof. First we will show that lp(g′
1) ≤ lp(g1) by consideringGZ. Since Lp(I) = Lp(J)

and lp(g1) and lp(h1) are both least inG and GZ, respectively, we must have that
lp(h1) = lp(g1). Now we considerh1 ∈ I p. If h1 = 0, thenh1 = p f , for f ∈ Z[x].
If f ∈ J, then sinceGZ is a strong Gr¨obner basis, there existshi ∈ GZ such that
lt(hi) | lt(f). But then lp(hi) | lp(h1) = lp(f). Since lp(h1) is least, we must have that
hi = h1. This is a contradiction, since lc(h1) cannot divide lc(f). Therefore,f cannot be
in J. But if f /∈ J, then f + J is a p-torsion element ofZ[x]/J contradicting the fact that
p is Hilbert lucky (Theorem 5.5). Soh1 �= 0. Sinceh1 ∈ I p, there exists ag′

j ∈ Gp such

that lp(g′
j) | lp(h1). So we have lp(g′

1) ≤ lp(g′
j) ≤ lp(h1) ≤ lp(h1) = lp(g1). Therefore

lp(g′
1) ≤ lp(g1).

Now assume that lp(gj) = lp(g′
j) for 1 ≤ j ≤ i . We will show that lp(g′

i+1) ≤ lp(gi+1).
Let c ∈ Z be such thatcgi+1 ∈ J. Suppose thatcgi+1 �= 0. Then there existsg′

j ∈ Gp such
that lp(g′

j) | lp(cgi+1). If j ≤ i , then we get lp(g′
j) = lp(gj) | lp(cgi+1). But then lp(gj)

divides a term ofgi+1, a contradiction to the fact thatG is a reduced Gr¨obner basis forI . So
we must have thatj > i which implies that lp(g′

i+1) ≤ lp(g′
j) ≤ lp(cgi+1) ≤ lp(gi+1) as

desired. Now supposecgi+1 = 0. Thencgi+1 = pαh, whereh ∈ Z[x], α ≥ 1 andh �= 0.
Sincepαh ∈ J, if h /∈ J, thenh + J is a p-torsion element ofZ[x]/J, contradicting the
fact that p is Hilbert lucky (Theorem 5.5). So we have thath ∈ J. Sinceh �= 0, we are
in the same situation as above. There existsg′

j ∈ Gp such that lp(g′
j) | lp(h). If j ≤ i ,

then lp(g′
j) = lp(gj) | lp(h). Sinceh andgi+1 have the same power products, we get a

contradiction to the fact thatG is a reduced Gr¨obner basis. Otherwisej > i which implies
that lp(g′

i+1) ≤ lp(g′
j) ≤ lp(cgi+1) ≤ lp(gi+1). �

Now we can useTheorem 5.6to compare two primes for luckiness. If two primesp
andq generate the same Hilbert function, then we compare the leading terms ofGp and
Gq, in increasing order. If, in the first place where the leading terms differ, the leading
term inGp is smaller than the leading term inGq, we know thatp must be unlucky, since
by Theorem 5.6, leading terms only “go down” modulo a prime. Note that we can only
determine thatp is unlucky. We still cannot determine whether or not the primeq is lucky.

Checking thatp is Hilbert lucky before comparing leading terms is crucial as the
following example shows.

Example 5.7. Let I = 〈3y2x − 5yx2 + 2x3,−7y3x + 5y2x2, 7y6 − 2y3x3 + yx5〉 ⊆
Q[y, x]. Using the degree lexicographical ordering withy > x, 5 is a lucky prime, hence
Hilbert lucky. Lp(G5) = {y2x, yx3, x5, y6}. The prime 2 is Hilbert unlucky. Lp(G2) =
{y2x, y6}. If we were comparing the leading power products ofG2 with G5 using
Theorem 5.6, we would discard 5 as unlucky, sincey6 > yx3.

5.3. Other definitions of lucky

Pauer (1992)defines a primep to be lucky (denoted in this paper as “Pauer-lucky”) if
p does not divide a leading coefficient of any polynomial inGZ. He shows that forp a
Pauer-lucky prime, then Lp(G) = Lp(Gp) (we also prove this inLemma 6.1). Making use
of Hilbert lucky primes, we will show in the next several lemmas and theorems, that the

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 411

converse is also true for homogeneous ideals, i.e. that if Lp(G) = Lp(Gp) thenp does not
divide a leading coefficient of any polynomial inGZ. Let d(G) denote the least common
multiple of the denominators of the coefficients of polynomials inG.

In Proposition 6.1Pauer (1992)proves that ifp does not divide a leading coefficient of
any polynomial inGZ, thenp does not divided(G).

With the addition of a hypothesis about Hilbert lucky primes, we can show the converse
of this theorem. First we prove two lemmas.

Lemma 5.8. Let p be a Hilbert lucky prime such that p does not divide d(G). Then for
any g∈ G, there exists a constant c∈ Z such that cg∈ J ⊆ Z[X] and p does not divide c.

Proof. We know there exists a constant,c ∈ Z, such thatcg ∈ J. We would like to
choose thisc such thatp does not dividec. Sincep does not divide a denominator of any
coefficient ofg, if p dividesc, then p dividescg. So if p | c, thencg = pα f whereα is
maximal in the sense thatf ∈ Z[X] and p does not dividef . Sinceg is monic, pα must
divide c. If f /∈ J, then pα f ∈ J implies that f + J is a p-torsion element ofZ[X]/J,
contradicting the fact thatp is Hilbert lucky. Thereforef ∈ J. Now choosec′ = c/pα and
getc′g = f ∈ J. If p | c′, then p | c′g = f , sinceg is monic andp does not divide a
denominator of a coefficient ofg. But p does not dividef , so p cannot dividec′. �

Lemma 5.9. Let GZ = {h1, . . . , hs} be a minimal strong Gr̈obner basis for J , and let
f ∈ J such thatlp(f) = lp(hi) for some i∈ {1 . . .s}. Thenlc(hi) divideslc(f).

Proof. Given f ∈ J, sinceGZ is a strong Gr¨obner basis, there existsh j ∈ GZ such
that lt(h j) | lt(f). Suppose lp(f) = lp(hi). Let lt(hi) = ci Xi and lt(h j) = cj X j . So
Xi = lp(f) andcj | lc(f). We will show thatci | cj . Then we would have thatci | lc(f),
proving the lemma. Letc = gcd(ci , cj). Thenc = ai ci + aj cj for someai , aj ∈ Z.
Let h = aj

Xi
X j

h j + ai hi ∈ J. Note that lt(h) = cXi since X j | Xi . Again, sinceGZ

is a strong Gr¨obner basis, there existshk ∈ GZ such that lt(hk) | lt(h) = cXi . But
cXi | ci Xi = lt(hi), so we get lt(hk) | lt(hi). SinceGZ is a minimal Gröbner basis,
we must have thatk = i . So lc(hi) = ci | c. Thereforec = ci andci | cj . We have now
shown that lc(hi) divides lc(f). �

Theorem 5.10. If a prime p is Hilbert lucky and does not divide d(G), then p does not
divide a leading coefficient of any polynomial in GZ.

Proof. Let h be a polynomial inGZ. We must show thatp does not divide lc(h). Sinceh
is also in I , there exists agi ∈ G such that lp(gi) divides lp(h). By Lemma 5.8, we can
choose ac ∈ Z such thatcgi ∈ J andp does not dividec. Sincegi is monic, we also have
that p does not dividecgi . Let X be a monomial such that lp(h) = lp(cXgi). Sinceh is in
the strong Gr¨obner basis forJ, by Lemma 5.9, we must have that lt(h) divides lt(cXgi) by
Lemma 5.9. Sincep does not divide lc(cXgi) = c, p cannot divide lc(h). �

The following theorem shows where we find the Hilbert lucky primes that are not lucky.
These primes depend on the term order chosen.

412 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

Theorem 5.11. If a prime p is Hilbert lucky, but not lucky, then p must divide d(G).

Proof. Let G andGp be ordered by increasing leading power products. Suppose to the
contrary thatp does not divided(G). We will show thatp is either Hilbert unlucky orp
is lucky. If p is Hilbert unlucky, then we are done. So assume thatp is Hilbert lucky. We
need to show thatp is lucky. Letg1 ∈ G. By Lemma 5.8choose ac ∈ Z such thatcg1 ∈ J
and p does not dividec. Now cg1 ∈ I p and lp(cg1) = lp(g1). There exists ag′

i ∈ Gp such
that lp(g′

i) | lp(cg1). Sincep is Hilbert lucky, we cannot have lp(g′
i) < lp(g1). Therefore,

lp(g′
i) = lp(g1). Sinceg′

i is least inGp, we must havei = 1. Now we assume that
lp(gj) = lp(g′

j) ∈ Lp(Gp) for 1 ≤ j ≤ i − 1. Again byLemma 5.8, there exists aci ∈ Z

such thatci gi ∈ J and p does not divideci . We know thatcgi ∈ I p and lp(cgi) = lp(gi).
So there existsg′

l ∈ Gp such that lp(g′
l) | lp(cgi) = lp(gi). If deg(g′

l) < deg(gi), then since
lp(gj) = lp(g′

j) for 1 ≤ j ≤ i − 1, for n = deg(g′
l), we would haveH FI p(n) > H FI (n)

contradicting the fact thatp is Hilbert lucky. Hence lp(g′
l) = lp(gi) ∈ Lp(Gp). For every

i we can find ag′
l such that lp(g′

l) = lp(gi) ∈ Lp(Gp). Therefore, we have shown that
Lp(G) ⊆ Lp(Gp). Since p is Hilbert lucky, this cannot be a strict containment. Hence
Lp(G) = Lp(Gp), andp is lucky. �

Finally, we have the following theorem.

Theorem 5.12. If p is a lucky prime, then p does not divide d(G).

Proof. Suppose to the contrary thatp divides the denominator of a coefficient of a
polynomial in G. We will show thatp is not lucky. If p is Hilbert unlucky, thenp is
not lucky and we are done. So assume thatp is Hilbert lucky. Now supposep divides the
denominator of a coefficient ofg ∈ G. Choosec such thatcg ∈ J. Sinceg is monic, andp
divides a denominator of a coefficient ofg, p must also dividec. If cg �= 0, thencg ∈ I p

and lp(cg) < lp(g). Now lp(cg) is in Lp(I p), but it is also a power product ing ∈ G.
SinceG is areducedGröbner basis ofI , lp(cg) cannot be in Lp(I). So, Lp(I p) �= Lp(I),
implying that p is not lucky. Now assume thatcg = 0. Then we can writecg = pα f for
f ∈ Z[X] andα is such thatp does not dividef . If f /∈ J, then f + J is a p-torsion
element ofZ[X]/J contradicting the fact thatp is Hilbert lucky. If f ∈ J, then we are in
the same situation as whencg �= 0. We havef ∈ I p. Sincep divides a denominator ofg,
then p must also divide lc(f), sincegi is monic. So lp(f) < lp(gi). Now lp(f) ∈ Lp(I p),
but lp(f) is also a power product ingi ∈ G. SinceG is areducedGröbner basis ofI , lp(f)
cannot be in Lp(I). So, Lp(I p) �= Lp(I), implying thatp is not lucky. �

Combining the previous theorems, we now have a complete characterization of lucky
primes.

Theorem 5.13. The following statements are equivalent for a prime, p:

1. p is lucky.

2. p does not divide a leading coefficient of any polynomial in GZ (Pauer-lucky).

3. p is Hilbert lucky and does not divide d(G).

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 413

6. Step two: lifting of Gp

6.1. p-Adic lifting

First we discuss ap-adic algorithm which uses Hensel lifting techniques. LetI pi =
〈 f1, . . . , fr 〉 ⊆ Zpi [X]. The following result is also proved byPauer (1992)in Proposition
4.1, but we give an alternate proof using the techniques that we have developed so far.

Lemma 6.1. Let GZ = {h1, h2, . . . , hs} be a minimal strongZ-Gröbner basis for
J ⊆ Z[X]. Let p be a lucky prime. ThenGZ = {h1, . . . , hs} is a Gröbner basis for
I pi , although not necessarily reduced.

Proof. Clearly sinceGZ = {h1, h2, . . . , hs} generatesJ, GZ = {h1, . . . , hs} generates
I pi ≡ J mod pi . Since p is lucky, by Theorem 5.13, p does not divide a leading
coefficient of anyhi ∈ GZ. Therefore Lp(J) ⊆ Lp(I pi). Let f be a primitive polynomial
(in the sense that iff = ch, for c ∈ Z, then h is not in J) in I pi . We will show

that lt(f) ∈ Lt(GZ). Since f ∈ I pi , there exists anF ∈ J such thatF = f . If
lp(f) = lp(F), then, sinceGZ is a strong Gr¨obner basis, there exists aj , such that
lp(h j) divides lp(F) = lp(f). Sincep does not divide lc(h j), we know that lc(h j) is a
unit in Zpi . Hence lt(f) is divisible by lt(h j) and lt(f) ∈ Lt(GZ). If lp(f) �= lp(F),
and lp(f) is not in Lp(J) = Lp(I), then Lp(J) is a proper subset of Lp(I pi). But
then rankZ(J[n]) �= rankZpi (I pi [n]) for n = deg(f). Using the same reasoning as
in the proof ofTheorem 5.3, this implies thatp is Hilbert unlucky and hence unlucky,
which is a contradiction. Therefore Lp(J) = Lp(I pi). Since p is lucky, we know that

lp(hi) = lp(hi) for everyi . Since lc(hi) is monic and Lt(GZ) = 〈lt(h1), . . . , lt(hs)〉, we
get that Lt(I pi) = 〈lt(h1), . . . , lt(hs)〉. HenceGZ is a Gröbner basis forI pi . �

Note that the proof ofLemma 6.1tells us thatI pi has a monic Gr¨obner basis. Recall
from Section 3that if a monic Gr¨obner basis exists, then we can find a monic reduced
Gröbner basis forI pi that is unique. We denote byGpi = {g(i)

1 , . . . , g(i)
ti }, the monic

reduced Gr¨obner basis forI pi ⊆ Zpi [X].
By definition, for a lucky primep, we have that Lp(G) = Lp(Gp). By Lemma 6.1, we

also have that Lp(G) = Lp(Gpi).

Theorem 6.2. Let G = {g1, g2, . . . , gt } be the reduced Gröbner basis for I⊆ Q[X], and
let p be a lucky prime. ThenG = {g1, g2, . . . , gt } ⊆ Zpi [X] is the reduced Gr̈obner basis

for I pi . That is to sayG = Gpi in Zpi [X].

Proof. Let Gpi = {g(i)
1 , . . . , g(i)

t } be the unique monic reduced Gr¨obner basis forI pi ⊆
Zpi [X]. We orderG andGpi by increasing leading power products. First we show that

gj ∈ I pi . Then we show thatgj = g(i)
j for j ∈ {1, . . . , t}.

Let gj ∈ G. By Lemma 5.8, choosecj ∈ Z such thatcj gj ∈ J and p does not divide
cj . SinceI pi = J in Zpi [X], we have thatcj gj ∈ I pi . Sincecj is invertible inZpi , we get

414 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

cj
−1cj gj ≡ gj ∈ I pi for every j ∈ {1, . . . , t}. From the fact thatG is monic, we know

that Lp(G) = Lp(G) = Lp(Gpi).

Now we have thatgj ∈ I pi and lp(gj) = lp(g(i)
j) for every j . Considerg(i)

j − gj ∈ I pi .

lp(g(i)
j − gj) < lp(g(i)

j). In fact, lp(g(i)
j − gj) is a power product in eithergj or g(i)

j (or 0).

Since bothg(i)
j andgj are reduced with respect to Lp(I pi) = Lp(I), we must have that

g(i)
j − gj = 0 ∈ I pi . Henceg(i)

j = gj , and we have shown thatG = Gpi in Zpi [X]. �

6.2. Lifting Gp to G(i)

Now we present a method for liftingGp, the reduced Gr¨obner basis forI p ⊆ Zp[X], to
Gpi , the monic reduced Gr¨obner basis forI pi ⊆ Zpi [X].

Assuming that we have a lucky primep, we first computeGp. We view Gp and
F = { f1, . . . , fr } as column matrices and compute the transformation matrixZ(1) with
entries inZp[X] such that

Z(1)F ≡ Gp mod p. (1)

For eachi , we need to find matricesZ(i) andG(i) with entries inZpi [X] such that

Z(i) F ≡ G(i) mod pi and G(i) ≡ Gp mod p

from which we can computeGpi−1, the monic reduced Gr¨obner basis forI pi .

This is done by induction. Fori = 1, we haveZ(1) andGp in Eq. (1). GivenZ(i−1) and
Gpi−1, we first compute matrices,Z′ andG′ such that

Z(i) = Z(i−1) + pi−1Z′ (2)

and

G(i) = Gpi−1 + pi−1G′ (3)

where

Z(i) F ≡ G(i) mod pi . (4)

To do this, we need to solve the following congruence obtained by substitutingEqs. (2)
and(3) into (4).

(Z(i−1) + pi−1Z′)F ≡ Gpi−1 + pi−1G′ mod pi (5)

for Z′ andG′.
One solution toEq. (5) is Z′ = 0, G′ = 1

pi−1 (Z(i−1)F − Gpi−1). However, we want

Gpi−1 + pi−1G′ to be the reduced monic Gr¨obner basis forI pi . We use the following
technique ofPauer (1992)to obtain the correct power products inG′. We useGp to reduce
G′ to a set of polynomials,G′′, such that pp(G′′ ⋂ Lp(Gp) = ∅). Let M be the matrix of
polynomials used in this reduction. SoG′ = MGp + G′′. Let Z′′ = Z′ − M Z(1), where
Z(1) is as inEq. (1). Then(Z′′, G′′) is also a solution toEq. (5).

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 415

Now we show thatG(i) = Gpi−1 + pi−1G′ is equal toGpi , the monic reduced Gr¨obner

basis ofI pi . By construction, we have thatZ(i)F ≡ G(i) mod pi , so G(i) ⊆ I pi . Since
p is lucky, Lp(G(i)) = Lp(Gp) = Lp(Gpi). Let g̃ ∈ G(i) and g′ ∈ Gpi such that
lp(g̃) = lp(g′). Considerg̃ − g′ ∈ I pi . The leading power product of̃g − g′ is strictly
less than lp(g̃) = lp(g′), and is, hence, one of the lower power products of eitherg̃ or g′.
But bothg̃ andg′ are reduced with respect to Lp(Gp) = Lp(Gpi). Therefore,̃g − g′ = 0

andG(i) = Gpi in I pi . So at thei th stage of Step 2, the lifting algorithm computes the
reduced monic Gr¨obner basis ofI pi .

The Farey rational numbersFp,N = {a
b | a, b ∈ Z, |a| ≤ N, 1 ≤ b ≤

N, gcd(a, b) = 1, gcd(b, p) = 1} can be used to recover the rational coefficients ofG
from theZpi coefficients ofGpi (Kornerup and Gregory, 1983). The Farey rational map

φ : Fp,N Zpi is one to one ifN ≤ √
pi /2. Let N be a bound on the numerators

and denominators of the coefficients ofG. Then we can liftGp to Gpi wherei is such that

N ≤ √
pi /2, and pull the coefficients ofGpi back to their unique pre-images inFp,N ⊆ Q,

which are the coefficients ofG by Theorem 6.2.
If we knew a bound on the size numerators and denominators of the coefficients ofG,

we would know when to terminate the lifting algorithm. However, even if such a bound
could be computed, it would most likely be too large to be of any use. Instead, we pull
back the coefficients ofG(i) to rational coefficients at each lift to obtaiñGi . We say that
the computation “stabilizes” to a Gr¨obner basis candidate,G̃ if G̃(i−1) = G̃(i). Once the
computation stabilizes, we perform the check in Step three.

6.3. Chinese remainder lifting

Let k be a product of lucky primes, and letp be another lucky prime. In this section we
discuss an algorithm that uses the Chinese remainder theorem to form the monic reduced
Gröbner basis,Gkp for the idealIkp = 〈 f1, . . . , fr 〉 ⊆ Zkp[X] from the two Gröbner bases,
Gk andGp. Once we have performed a sufficient number of “lifts” , we can then construct
the reduced Gr¨obner basis,G, for I by pulling back the modular coefficients to rational
coefficients using the Farey rational map. We recall the Chinese remainder theorem:

Let m and n be two relatively prime odd integers. Then there is a unique solution
modulo mn of the simultaneous congruences x≡ a mod m and x ≡ b mod n where
−mn/2 ≤ x ≤ mn/2.

In order to apply the Chinese remainder theorem to the coefficients ofGk andGp, we
need the following theorem.

Theorem 6.3. For any product of lucky primes n= ∏
pi , we have that G≡ Gn mod n

where Gn is the reduced monic Gröbner basis for In.

The proof of this theorem is just a generalization of the proof thatG ≡ Gp mod p for
a primep and can be found in eitherArnold (2000)or Pauer (1992).

Now we apply the Chinese remainder algorithm to the coefficients of the polynomials
in Gk and Gp to get a new set of polynomials,G(kp), with coefficients inZkp. By
construction,G(kp) is congruent toGk mod k andGp mod p. By Theorem 6.3, we also
have thatG is congruent toGk modk andGp mod p. Therefore, by the Chinese remainder

416 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

theorem, we must have thatG(kp) ≡ G modkp, and henceG(kp) = Gkp. As in thep-adic
algorithm, we pull back the coefficients ofG(kp) after each lift. Once the computation
stabilizes, we have a Gr¨obner basis candidatẽG ∈ Q[X] and we proceed to Step three.

7. Checking the result

In order to show that our Gr¨obner basis candidate,G̃, is the correct result, we need to
carry out two checks. First we need to show thatG̃ is a Gröbner basis for the ideal that
it generates,〈G̃〉. This can be done by checking that all of theS-polynomials reduce to
zero usingG̃, avoiding unnecessary reductions using criteria listed inBuchberger (1979)
andGebauer and M¨oller (1988). Next we must show that〈G̃〉 = I . To show thatI ⊆ 〈G̃〉,
we simply show that the generators ofI , f1, . . . , fr , reduce to zero using̃G. This method,
however, will not work for showing that〈G̃〉 ⊆ I , sinceF = { f1, . . . , fr } is not a Gröbner
basis. In principle, checking that〈G̃〉 ⊆ I is as difficult a problem as computing a Gr¨obner
basis forI . However, keeping the leading power products constant throughout the lifting
process eliminates the need to check this second containment.

Theorem 7.1. Let G̃ ⊆ Q[X] be a set of polynomials such thatLp(G̃) = Lp(Gp), G̃ is a
Gröbner basis for the ideal that it generates,〈G̃〉 and I ⊆ 〈G̃〉. Then I = 〈G̃〉.
Proof. I ⊆ 〈G̃〉 implies thatH F〈G̃〉 ≤ H FI . SinceG̃ has the same leading terms asGp,
we have thatH F〈G̃〉 = H FI p. By Theorem 5.3, we know thatH FI ≤ H FI p. So we have
H FI ≤ H FI p = H F〈G̃〉 ≤ H FI . Therefore,H F〈G̃〉 = H FI which, in addition to the fact

that I ⊆ 〈G̃〉, implies that〈G̃〉 = I . �

So, in fact, once we know that̃G is a Gröbner basis, and thatI ⊆ 〈G̃〉, we have that̃G
is the reduced Gr¨obner basis forI . Note that this check does not require thatp is a lucky
prime.

8. Examples

In this section we provide examples on which we time the Chinese remainder andp-adic
Gröbner basis algorithms and also current implementations of Buchberger’s algorithm in
CoCoA, Macaulay 2 and Maple. We have implemented both the Chinese remainder and
the p-adic Gröbner basis algorithms using the programming language of the computer
algebra package CoCoA (Capani et al., 2001). Timings were conducted on a Pentium III
500 MHz system with 512 MB memory under the Linux operating system. Each of the
examples below are ideals inQ[x, y, z]. Gröbner bases are computed using the degree
reverse lexicographical ordering withx > y > z.

The examples chosen are those for which there is significant growth in the size of the
intermediate coefficients, yet the size of the coefficients in the reduced Gr¨obner basis are
moderate. While intermediate coefficient growth is typical in Gr¨obner basis calculations,
moderate coefficients in the final result are not. We summarize the results of the timings in
Table 1.

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 417

Table 1
Running times in seconds

Ex PGB CRGB CoCoA M2 Maple

1 151 4.8 11,090 21,611 –
2 1212 33 4,501 1,246 2059
3 484 10.46 16,433 12,078 –

The first example is from the introduction.

Example 8.1.

f1 = 8x2y2 + 5xy3 + 3x3z + x2yz
f2 = x5 + 2y3z2 + 13y2z3 + 5yz4

f3 = 8x3 + 12y3 + xz2 + 3
f4 = 7x2y4 + 18xy3z2 + y3z3.

Example 8.2.

f1 = 2xy4z2 + x3y2z − x2y3z + 2xyz2 + 7y3 + 7
f2 = 2x2y4z + x2yz2 − xy2z2 + 2x2yz− 12x + 12y
f3 = 2y5z + x2y2z − xy3z − xy3 + y4 + 2y2z
f4 = 3xy4z3 + x2y2z − xy3z + 4y3z2 + 3xyz3 + 4z2 − x + y .

The Gröbner basis consists of two polynomials:

g1 = x − y
g2 = y3 + 1 .

In the last example, the four generators inQ[x, y, z] generate the unit ideal.

Example 8.3.

f1 = 5x3y2z + 3y3x2z + 7xy2z2

f2 = 3xy2z2 + x5 + 11y2z2

f3 = 4xyz+ 7x3 + 12y3 + 1
f4 = 3x3 − 4y3 + yz2.

Table 1compares The Chinese remainder Gr¨obner basis algorithm, CRGB, and the
p-adic algorithm, PGB, with times in seconds for the current implementations of
Buchberger’s algorithm in CoCoA, Macaulay 2 and Maple. Maple had the system error:
“ran out of memory” forExamples 8.1and8.3.

9. Conclusions

These initial timings of the modular algorithms indicate that they perform well in
examples where intermediate coefficient growth is problematic and the resulting Gr¨obner
basis is relatively simple. While these modular algorithms are not faster than the current

418 E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419

implementations of Buchberger’s algorithm in all examples, the striking differences in
timing in these particular examples indicate that the modular algorithms deserve more
careful consideration.

The modular algorithms that we tested are coded in the high level programming
language of CoCoA. We do not present a detailed description of the code here. Some
procedures are implemented by built-in functions in CoCoA and others are implemented
in interpreted code. A more accurate comparison would be to implement the modular
algorithms in a lower level language such as C++. However, it is clear that the Step
three checking can become quite expensive. If the resulting Gr¨obner basis is simple, as in
our examples, then the check is inexpensive. This leads us to conclude that the modular
algorithms with the Step 3 check would be especially suited for examples where the
Gröbner basis is{1}. Another class of examples for which the resulting Gr¨obner basis
is often relatively simple is made up of elimination examples.

Finally, a very interesting question would be to determine which other classes of
examples have significant intermediate coefficient growth with relatively simple Gr¨obner
bases. Even if this problem is not solved, it may be possible to start a traditional Buchberger
algorithm and then switch to a modular algorithm when intermediate coefficient growth
becomes apparent, saving as much of the information as possible.

Acknowledgements

Some of the results in this paper are from my Ph.D. thesis at the University of Maryland.
I would like to thank my advisors Drs William W. Adams and Philippe Loustaunau,
Antonio Behn for his help with the code, and also an anonymous referee for helpful
comments.

References

Adams, W.W., Loustaunau, P., 1994. An Introduction to Gr¨obner Bases, American Mathematical
Society, Providence, RI.

Arnold, E.A., 2000. Computing Gr¨obner Bases with Hilbert Lucky Primes, Ph.D. Dissertation,
University of Maryland, College Park, MD.

Borosh, I., 1966. Exact solutions of linear equations with rational coefficients by congruence
techniques. Mathematics of Computation 20, 107–112.

Buchberger, B., 1979. A criterion for detecting unnecessary reductions in the construction of
Gröbner-bases, Lecture Notes in Computer Science, vol. 72, pp. 23–21.

Buchberger, B., 1985. Gr¨obner-bases: an algorithmic method in polynomial ideal theory,
In: Multidimensional Systems Theory, pp. 184–232.

Capani, A., Niesi, G., Robbiano, L., 2001. CoCoA, a system for doing Computations in Commutative
Algebra. Available via anonymous ftp from cocoa.dima.unige.it, ed. 4.1.

Davenport, J.H., Siret, Y., Tournier, E., 1988. Computer Algebra: Systems and algorithms for
algebraic computation, Academic Press.

Ebert, G.L., 1983. Some comments on the modular approach to Gr¨obner-bases. ACM SIGSAM
Bulletin 17, 28–32.

Eisenbud, D., 1995. Commutative Algebra with a view toward Algebraic Geometry, Springer-Verlag.
Gebauer, R., Möller, H.M., 1988. On an installation of Buchberger’s algorithm. Journal of Symbolic

Computation 6, 275–286.

ftp://cocoa.dima.unige.it

E.A. Arnold / Journal of Symbolic Computation 35 (2003) 403–419 419

Gräbe, H., 1994. On lucky primes. Journal of Symbolic Computation 15, 199–209.
Kornerup, P., Gregory, R., 1983. Mapping integers and Hensel codes onto Farey fractions. Bit 23,

9–20.
Grayson, D., Stillman, M., 2000. Macaulay 2, Available via anonymous ftp fromftp.math.uiuc.edu,

ed. 0.8.60.
Möller, H.M., Mora, F., 1984. Upper and lower bounds for the degree of Groebner bases, Eurosam

’84, Lecture Notes in Computer Science, vol. 174, pp. 172–183.
Pauer, F., 1992. On lucky ideals for Gr¨obner basis computations. Journal of Symbolic Computation

14, 471–482.
Sasaki, T., Takeshima, T., 1989. A modular method for Gr¨obner-basis construction overQ and

solving system of algebraic equations. Journal of Information Processing 12, 371–379.
Traverso, C., 1988. Gr¨obner Trace Algorithms, Proceedings ISSAC ‘88, Lecture notes in Computer

Science, vol. 358, pp. 125–138.
Traverso, C., 1997. Hilbert functions and the Buchberger’s algorithm. Journal of Symbolic

Computation 22, 355–376.
Winkler, F., 1987. Ap-adic approach to the computation of Gr¨obner bases. Journal of Symbolic

Computation 6, 287–304.

ftp://ftp.math.uiuc.edu

	Modular algorithms for computing Grobner bases
	Introduction
	History
	Preliminaries
	Modular GCD algorithms
	Step one: lucky primes for Gröbner basis calculations
	Hilbert lucky primes
	Lucky primes
	Other definitions of lucky

	Step two: lifting of Gp
	p-Adic lifting
	Lifting Gp to G(i)
	Chinese remainder lifting

	Checking the result
	Examples
	Conclusions
	Acknowledgements
	References

