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Groebner Basis Under Composition I

HOON HONG†
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Composition is the operation of replacing variables in a polynomial with other poly-
nomials. The main question of this paper is: When does composition commute with
Groebner basis computation? We prove that this happens iff the composition is ‘com-
patible’ with the term ordering and the nondivisibility. This has a natural application
in the computation of Groebner bases of composed polynomials which often arises in
real-life problems.
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1. Introduction

The main question of this paper is: When does Groebner basis computation (Buchberger,
1965, 1985) commute with composition?

More precisely, let F be a finite set of polynomials in the variables x1, . . . , xn, and
let G be a Groebner basis of the ideal generated by F under some term ordering. Let
Θ = (θ1, . . . , θn) be a list of n polynomials in the variables x1, . . . , xn. Let F ∗ be the set
obtained from F by replacing xi by θi and likewise let G∗ be the set obtained from G by
replacing xi by θi. One ponders whether G∗ is also a Groebner basis of F ∗ (under the
same term ordering). It is not. One can easily construct counterexamples (for instance,
just permute the variables) but one can also find numerous positive examples. Thus, the
following question naturally arises: When is G∗ a Groebner basis of F ∗? In other words,
when does Groebner basis computation commute with composition?

The main contribution of this paper is to show that Groebner basis computation
commutes with composition iff the composition is ‘compatible’ with the term ordering
and the nondivisibility.

Apart from satisfying curiosity, the answer to such a question has a natural application
in the computation of a Groebner basis of the ideal generated by composed polynomials.
In order to compute a Groebner basis of F ∗, we first compute a Groebner basis G of F
and carry out the composition on G, obtaining a Groebner basis of F ∗. This should be
more efficient than computing a Groebner basis of F ∗ directly (ignoring the structural
information).

Composed objects (polynomials) often occur in real-life problem-solving because the
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underlying mathematical models are usually hierarchically structured. For instance, nu-
merous physical quantities (such as work, torque, etc.) are defined in terms of other more
basic quantifies (such as length, time, etc.). Thus, we often need to deal with a set of
polynomials in which the variables are defined in terms of other variables.

On the other hand, if inputs are already given in expanded forms, one can first try to
de-compose them and then apply the method described here. For several efficient methods
for polynomial decomposition, see Barton and Zippel (1985); Kozen and Landau (1989);
Von zur Gathen (1990a,b) and Binder (1996).

This paper is the first of two related papers. The second paper will provide an extension
of the result given here. Namely, it will tackle the following more general question: Let
G be a Groebner basis of F under the term ordering >. When is G∗ a Groebner basis
of F ∗ under some term ordering (possibly different from >)?

The reader might also be interested in the related works (McKay and Wang, 1989;
Cheng et al., 1995; Hong, 1995; Hong, 1997) which studied how other fundamental oper-
ations (resultants, subresultants and multivariate resultants) behave under composition.

The structure of this paper is as follows. In Section 2, we briefly review the terminology
and results from Groebner basis theory that will be used throughout the subsequent
sections. In Section 3, we give a precise statement of the main theorem of this paper. In
Sections 4 and 5, we prove the sufficiency and necessity of the compatibility condition
in the main theorem. In Section 6, we give several examples of compatible compositions.
Finally in Section 7, we list several new questions/problems arising from this work.

2. Review of Groebner Basis Theory

In this section, we will review some basic terminology and results from Groebner
basis theory that will be used in the subsequent sections. The reader who is familiar
with the theory is still encouraged to skim through this section in order to become
familiar with the notational convention. The details (and proofs) can be found in the
original papers (Buchberger, 1965, 1985) or the textbooks (Cox et al., 1992; Becker and
Weispfenning, 1993).

Notation/Definitions 2.1.

K a field.

a, b, c an element of K.

p, q, r a term, that is, xe11 , . . . , x
en
n for some e1, . . . , en ∈ N.†

f, g a non-zero polynomial in K[x1, . . . , xn].
h a (possibly zero) polynomial in K[x1, . . . , xn].
F,G a non-empty finite set of non-zero polynomials in K[x1, . . . , xn].
H a non-empty (possibly infinite) set of (possibly zero) polynomials in

K[x1, . . . , xn].
| the divisibility relation over terms, that is, p | q iff p divides q.

† Caution. In the literature, there are two contradicting definitions of term and monomial . Some, such
as Cox et al. (1992), define a monomial as a term with coefficient 1, while others, such as Buchberger
(1985) and Becker and Weispfenning (1993), define a term as a monomial with coefficient 1. I fol-
low Buchberger (1985).
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> an admissible term ordering, that is, a linear ordering on terms such
that

� ∀p∀q∀r [ p > q =⇒ pr > qr ],
� ∀p [ p 6= 1 =⇒ p > 1 ].

lt(f) the leading term of f under >.

lc(f) the leading coefficient of f under >.

lm(h) the leading monomial of h under >, that is, lm(h) = lc(h)lt(h) for
h 6= 0, lm(0) = 0.

lm(H) the set {lm(h) | h ∈ H}.
Ideal(H) the ideal generated by H, that is, the set

{∑
i ĥihi | hi ∈ H

}
.

GB(G) the predicate stating that G is a Groebner basis, that is,

� Ideal(lm(G)) = Ideal(lm(Ideal(G))).
GB(G,F ) the predicate stating that G is a Groebner basis of Ideal(F ), that

is,

� GB(G),
� Ideal(G) = Ideal(F ).

lcm(p, q) the least common multiple of p and q.

σ(f, g) lcm (lt(f), lt(g)) /lm(f).
S(f, g) the S-polynomial of f and g, that is, σ(f, g)f − σ(g, f)g.

Proposition 2.1. The following are equivalent:

(A) GB(G).
(B) ∀f ∈ Ideal(G) ∃ g ∈ G [ lt(g) | lt(f) ].

This follows immediately from the definition of a Groebner basis given above.

Theorem 2.1. (Buchberger, 1965) The following are equivalent:

(A) GB(G).
(B) For all gi and gj ∈ G = {g1, . . . , gt}, i 6= j, there exist h1, . . . , ht such that

(a) S(gi, gj) = h1g1 + · · ·+ htgt,
(b) for every k, either hk = 0 or lt(hk)lt(gk) < lcm(lt(gi), lt(gj)).

This is one of the key theorems in Groebner basis theory. Note that the statement of
the theorem, in particular condition (b), is slightly different from the one usually found
in the literature, Buchberger (1965, 1985); Cox et al. (1992); Becker and Weispfenning
(1993), in that lt(S(gi, gj)) is usually used in place of lcm(lt(hk)lt(gk)) and ≤ in place of
<. However, the proofs for both are essentially the same. In the subsequent sections, we
will make essential use of the formulation given above.†

Corollary 2.1. The following are equivalent:

(A) GB(G).
(B) For all gi and gj ∈ G = {g1, . . . , gt}, i 6= j, there exist h1, . . . , ht such that

† I have made many attempts, without success, to find a simple proof for the main theorem of this
paper using the usual formulation. I would be happy to know whether anyone has done it.
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(a) S(gi, gj) = h1g1 + · · ·+ htgt,
(b) for every k, either hk = 0 or lt(hk)lt(gk) < lcm(lt(gi), lt(gj)).
(c) for every k < `, no term in h`lt(g`) is divisible by lt(gk).

This is almost the same as in the previous theorem, except that we have one more condi-
tion (c). The implication from (B) to (A) is immediate from the previous theorem. The
implication from (A) to (B), in particular (c), follows immediately from the characteri-
zation of the generalized division described in Cox et al. (1992, p. 68).

3. Main Result

In this section, we crystallize the question and answer described in the introduction.
For this, we fix some notation and notions.

Notation 3.1.

Θ a list (θ1, . . . , θn) of n non-zero polynomials in K[x1, . . . , xn].
lt(Θ) the list ( lt(θ1), . . . , lt(θn) ).
lm(Θ) the list ( lm(θ1), . . . , lm(θn) ).

Definition 3.1. (Composition) The composition of h by Θ, written as h◦Θ, is the
polynomial obtained from h by replacing each xi in it with θi. Likewise, H◦Θ is the set
{ h◦Θ | h ∈ H }.

One might consider the possibility of defining composition as the “function composition”,
namely,

∀(x1, . . . , xn) ∈ Kn [ (h◦Θ)(x1, . . . , xn) = h(θ1(x1, . . . , xn), . . . , θn(x1, . . . , xn)). ]

But this is not suitable since h◦Θ is not uniquely determined when K is a finite field.

Definition 3.2. (Commutativity with Composition) We say that composition by
Θ commutes with Groebner basis computation iff the following formula is true for Θ:

∀F ∀G [ GB(G,F ) =⇒ GB(G◦Θ, F◦Θ) ].

The main question of this paper is when a composition commutes with Groebner basis
computation and the main contribution of this paper is to provide a simple answer to
this question. In order to describe the answer we need to introduce a few new notions.

Definition 3.3. (Compatibility with term ordering) We say that composition
by Θ is compatible with a term ordering > iff for all terms p and q, we have

p > q =⇒ p◦lt(Θ) > q◦lt(Θ).

Definition 3.4. (Compatibility with nondivisibility) We say that composition
by Θ is compatible with nondivisibility iff for all terms p and q, we have

p 6 | q =⇒ p◦lt(Θ) 6 | q◦lt(Θ).
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The reader might wonder whether divisibility might be a more natural condition than
un-divisibility; but divisibility is compatible with every composition. Thus, compatibility
with divisibility is not a useful condition.

Theorem 3.1. (Main Theorem) The following are equivalent.

(A) Composition by Θ commutes with Groebner basis computation.

(B) Composition by Θ is

(a) compatible with term ordering > and
(b) compatible with nondivisibility.

4. Proof of Sufficiency

In this section, we prove the sufficiency of the compatibility condition for commutativ-
ity, that is, we prove that (B) of the main theorem implies (A). We begin by stating some
basic properties/facts about compositions and leading terms/monomials. These will be
used throughout the paper, often without explicit reference to them.

Proposition 4.1.

(a) (fg)◦Θ = f◦Θ g◦Θ.
(b) (f + g)◦Θ = f◦Θ + g◦Θ.
(c) lm(fg) = lm(f) lm(g).
(d) lt(fg) = lt(f) lt(g).
(e) If lt(f) > lt(g), then lm(f + g) = lm(f).
(f) If lt(f) > lt(g), then lt(f + g) = lt(f).
(g) lm(p◦Θ) = p◦lm(Θ).
(h) lt(p◦Θ) = p◦lt(Θ). 2

Proof. This follows immediately from their definitions. 2

The following lemma states that a composition operation commutes with the leading
monomial (term) extraction if it is compatible with the term ordering.

Lemma 4.1. Let

(A) the composition by Θ be compatible with the term ordering >.

(B) For every f , we have

(a) lm(f◦Θ) = lm(f)◦lm(Θ).
(b) lt(f◦Θ) = lt(f)◦lt(Θ).

Then (A) =⇒ (B).

Proof. Assume (A). We need to show (B). Let f be arbitrary but fixed. It can† be
written as f = c1p1+· · ·+ctpt where ci 6= 0 and p1 > p2 > · · · > pt. Thus, we have f◦Θ =
c1p1◦Θ + · · ·+ ctpt◦Θ. From Proposition 4.1 (d) and (h), we have lt(cipi◦Θ) = pi◦lt(Θ).
From (A) we have p1◦lt(Θ) > p2◦lt(Θ) > · · · > pt◦lt(Θ). Thus, we have lt(c1p1◦Θ) >

† Recall that our notational convention (Notation/Definition 2.1) dictates that f is a non-zero
polynomial.
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lt(c2p2◦Θ) > · · · > lt(ctpt◦Θ). Hence, from Proposition 4.1 (c)–(h) we conclude that
lm(f◦Θ) = lm(c1p1◦Θ) = lm(f)◦lm(Θ) and lt(f◦Θ) = lt(c1p1◦Θ) = lt(f)◦lt(Θ). 2

The following lemma completely characterizes the condition of compatibility with the
nondivisibility. It will also be used in the next section while proving the necessity of the
main theorem.

Lemma 4.2. Let

(A) the composition by Θ be compatible with the nondivisibility; and

(B) the list lt(Θ) be a ‘permuted powering’, that is, lt(Θ) = (xλ1
π1
, . . . , xλnπn) for some

permutation π of (1, . . . , n) and some λ1, . . . , λn > 0.

Then (A) ⇐⇒ (B).

Proof.
(A)⇐= (B):

Assume (B). We need to show (A). Let p and q be arbitrary but fixed. Assume that
p◦lt(Θ) | q◦lt(Θ). We need to show that p | q.

Let p = xµ1
1 · · ·xµnn and q = xν1

1 · · ·xνnn . Then, we have

p◦lt(Θ) = xλ1µ1
π1
· · ·xλnµnπn ,

q◦lt(Θ) = xλ1ν1
π1
· · ·xλnνnπn .

Thus, for every i, we have λiµi ≤ λiνi. Since λi > 0, we have µi ≤ νi. Hence, p | q.

(A) =⇒ (B):

Assume (A). We need to show (B). Let lt(θj) = x
e1j
1 · · ·xenjn and let e = [eij ] be the

associated matrix. Let

(A′) ≡ ∀α ∈ Zn [ eα ≥ 0 =⇒ α ≥ 0 ]
(B′) ≡ ∀j ∃i [ eij > 0 ∧ ∀j′ 6= j [eij′ = 0 ] ]

where eα is a matrix–vector multiplication and ≥ is applied component-wise. We will
prove that

(A) =⇒ (A′) =⇒ (B′) =⇒ (B).

Claim 1: (A) =⇒ (A′).
Let p = xµ1

1 · · ·xµnn and q = xν1
1 · · ·xνnn . Then

p◦lt(Θ) = x
µ′1
1 · · ·x

µ′n
n

q◦lt(Θ) = x
ν′1
1 · · ·x

ν′n
n

where µ′i =
∑n
j=1 eijµj and ν′i =

∑n
j=1 eijνj . Let µ = (µ1, . . . , µn), ν = (ν1, . . . , νn),

µ′ = (µ′1, . . . , µ
′
n) and ν′ = (ν′1, . . . , ν

′
n) be column vectors. Then we have µ′ = eµ and

ν′ = eν. Hence

p | q⇐⇒ µ1 ≤ ν1 ∧ · · · ∧ µn ≤ νn
⇐⇒ µ ≤ ν
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p◦lt(Θ) | q◦lt(Θ)⇐⇒ µ′1 ≤ ν′1 ∧ · · · ∧ µ′n ≤ ν′n
⇐⇒ µ′ ≤ ν′

⇐⇒ eµ ≤ eν.

So we have the following

(A)⇐⇒ ∀µ ∈ Nn ∀ν ∈ Nn [ ¬µ ≤ ν =⇒ ¬eµ ≤ eν ]
⇐⇒ ∀µ ∈ Nn ∀ν ∈ Nn [ eµ ≤ eν =⇒ µ ≤ ν ]
⇐⇒ ∀µ ∈ Nn ∀ν ∈ Nn [ e(ν − µ) ≥ 0 =⇒ ν − µ ≥ 0 ]
⇐⇒ ∀α ∈ Zn [ eα ≥ 0 =⇒ α ≥ 0 ]
⇐⇒ (A′).

Claim 2: (A′) =⇒ (B′).
We will prove the contrapositive. Thus, assume ¬(B′). Then, there exists, say j∗, such

that for every i we have

eij∗ = 0 ∨ ∃j′ 6= j∗ [eij′ 6= 0 ].

We need to show ¬(A′), that is, we need to find an α ∈ Zn such that eα ≥ 0 but not
α ≥ 0. We claim that the following α does the job:

αj =
{
−1 if j = j∗

maxk ekj∗ else.

Clearly it is not that α ≥ 0. Thus, we only need to show that eα ≥ 0. Observe

(eα)i =
∑
j

eijαj

=

∑
j 6=j∗

eij max
k

ekj∗

− eij∗
= max

k
ekj∗

∑
j 6=j∗

eij

− eij∗ .
If eij∗ = 0 then obviously (eα)i ≥ 0. If eij∗ 6= 0 then there exists j′ 6= j∗ such that
eij′ 6= 0, and thus

∑
j 6=j∗ eij ≥ 1, and hence (eα)i ≥ 0. Thus, we see that (eα)i ≥ 0 in

both cases. Hence, (eα) ≥ 0.

Claim 3: (B′) =⇒ (B).
Assume (B′). Then there are π1, . . . , πn such that

eπ1,1 > 0 ∧ ∀j′ 6= 1 [ eπ1,j′ = 0 ]
eπ2,2 > 0 ∧ ∀j′ 6= 2 [ eπ2,j′ = 0 ]

...
...

eπn,n > 0 ∧ ∀j′ 6= n [ eπn,j′ = 0 ].

Note that π` 6= πm for ` 6= m since eπ`,` > 0 and eπm,` = 0. Thus (π1, . . . , πn) is a
permutation of (1, . . . , n). Hence eij = λjδiπj for some λ1, . . . , λn > 0. Thus, lt(θj) = x

λj
πj .

So we have (B). 2



650 H. Hong

The following lemma states that the composition operation commutes with the least
common multiple computation if it is compatible with the nondivisibility.

Lemma 4.3. Let

(A) the composition by Θ be compatible with the nondivisibility; and

(B) ∀p∀q [ lcm(p◦lt(Θ), q◦lt(Θ)) = lcm(p, q)◦lt(Θ) ].
Then (A) =⇒ (B).

Proof. Assume (A). We need to show (B). Let p and q be arbitrary but fixed. We need
to show that lcm(p◦lt(Θ), q◦lt(Θ)) = lcm(p, q)◦lt(Θ).

From (A) and Lemma 4.2, we see that lt(Θ) = (xλ1
π1
, . . . , xλnπn) for some permutation π

of (1, . . . , n) and some λis. Let p = xµ1
1 · · ·xµnn and q = xν1

1 · · ·xνnn . Then, we have

p◦lt(Θ) = xλ1µ1
π1
· · ·xλnµnπn ,

q◦lt(Θ) = xλ1ν1
π1
· · ·xλnνnπn .

Thus, we have

lcm(p◦lt(Θ), q◦lt(Θ)) = xmax(λ1µ1,λ1ν1)
π1

· · ·xmax(λnµn,λnνn)
πn

= xλ1 max(µ1,ν1)
π1

· · ·xλn max(µn,νn)
πn

=
(
x

max(µ1,ν1)
1 · · ·xmax(µn,νn)

n

)
◦lt(Θ)

= lcm(p, q)◦lt(Θ). 2

Lemma 4.4. Ideal(G) = Ideal(F ) =⇒ Ideal(G◦Θ) = Ideal(F◦Θ).

Proof. Assume Ideal(G) = Ideal(F ). We need to show that Ideal(G◦Θ) = Ideal(F◦Θ).
We will first show that Ideal(G◦Θ) ⊆ Ideal(F◦Θ). Let h ∈ Ideal(G◦Θ). Then

h =
∑
i

ĥi gi◦Θ (4.1)

for some ĥis. Since gi ∈ Ideal(F ), we also have

gi =
∑
j

ĝijfj (4.2)

for some ĝijs. Putting (4.1) and (4.2) together and repeatedly rewriting, we obtain

h =
∑
i

ĥi

∑
j

ĝijfj

 ◦Θ
=
∑
i

ĥi
∑
j

ĝij◦Θ fj◦Θ

=
∑
i

∑
j

ĥi ĝij◦Θ fj◦Θ

=
∑
j

∑
i

ĥi ĝij◦Θ fj◦Θ
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=
∑
j

(∑
i

ĥi ĝij◦Θ
)
fj◦Θ

∈ Ideal(F◦Θ).

Thus, we have that Ideal(G◦Θ) ⊆ Ideal(F◦Θ).
In a similar way, we can show that Ideal(G◦Θ) ⊇ Ideal(F◦Θ). For this, we only need

to switch the roles of G and F . Thus, we conclude that Ideal(G◦Θ) = Ideal(F◦Θ). 2

Lemma 4.5. Let

(A) ∀F ∀G [ GB(G,F ) =⇒ GB(G◦Θ, F◦Θ) ]; and
(B) ∀G [ GB(G) =⇒ GB(G◦Θ) ].

Then (B) =⇒ (A).

Proof. Assume (B). We need to show (A). Let F and G be arbitrary but fixed such
that GB(G,F ). We need to show that GB(G◦Θ, F◦Θ). Since GB(G,F ), we trivially
have GB(G). Then from (B), we have

GB(G◦Θ). (4.3)

Since GB(G,F ), we have that Ideal(G) = Ideal(F ). Then from Lemma 4.4, we have

Ideal(G◦Θ) = Ideal(F◦Θ). (4.4)

Putting together (4.3) and (4.4), we conclude that GB(G◦Θ, F◦Θ). 2

Now we have prepared enough machinery to formulate the core of the sufficiency proof
of the main theorem.

Lemma 4.6. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ]; and

(B) the composition by Θ be

(a) compatible with the term ordering > and
(b) compatible with the nondivisibility.

Then (B) =⇒ (A).

Proof. Assume (B). We need to show (A). Let G = {g1, . . . , gt} be arbitrary but fixed
such that GB(G). We need to show that GB(G◦Θ).

Let 1 ≤ i 6= j ≤ t be arbitrary but fixed. Since G is a Groebner basis, by Theorem 2.1,
there exist h1, . . . , ht such that

S(gi, gj) =
t∑

k=1

hkgk (4.5)

and
∀k [ hk = 0 ∨ lt(hkgk) < lcm(lt(gi), lt(gj)) ]. (4.6)

From (4.5) we have

S(gi, gj)◦Θ =
t∑

k=1

hk◦Θ gk◦Θ.
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Let c = 1

lc
(
lcm(lt(gi),lt(gj))◦lm(Θ)

) . Note that

S(gi◦Θ, gj◦Θ) = S(gi◦Θ, gj◦Θ)− cS(gi, gj)◦Θ + cS(gi, gj)◦Θ
= σ(gi◦Θ, gj◦Θ)gi◦Θ− σ(gj◦Θ, gi◦Θ)gj◦Θ
−c (σ(gi, gj)gi − σ(gj , gi)gj) ◦Θ

+c
t∑

k=1

hk◦Θ gk◦Θ

= σ(gi◦Θ, gj◦Θ)gi◦Θ− σ(gj◦Θ, gi◦Θ)gj◦Θ
−cσ(gi, gj)◦Θgi◦Θ + cσ(gj , gi)◦Θgj◦Θ

+c
t∑

k=1

hk◦Θ gk◦Θ

=
t∑

k=1

ĥkgk◦Θ

where

ĥk =

 chk◦Θ + ḡij if k = i
chk◦Θ− ḡji if k = j
chk◦Θ otherwise

where again

ḡij = σ(gi◦Θ, gj◦Θ)− cσ(gi, gj)◦Θ
ḡji = σ(gj◦Θ, gi◦Θ)− cσ(gj , gi)◦Θ.

Recalling Theorem 2.1, it will be sufficient to show that

ĥk = 0 or lt(ĥkgk◦Θ) < lcm (lt(gi◦Θ), lt(gj◦Θ))

is true for every k. This follows immediately from the following three claims.

Claim 1: For every k, chk◦Θ = 0 or lt(chk◦Θgk◦Θ) < lcm (lt(gi◦Θ), lt(gj◦Θ)).

Let k be arbitrary but fixed. We need to show that chk◦Θ = 0 or lt(chk◦Θgk◦Θ) <
lcm (lt(gi◦Θ), lt(gj◦Θ)). If chk◦Θ = 0, then the claim is trivially true. Thus, from now
on assume that chk◦Θ 6= 0. Thus hk 6= 0.

From (B) and Lemma 4.1 we have

lt(chk◦Θgk◦Θ) = lt(hkgk)◦lt(Θ). (4.7)

From (B) and Lemmas 4.1 and 4.3 we have

lcm (lt(gi◦Θ), lt(gj◦Θ)) = lcm (lt(gi), lt(gj)) ◦lt(Θ). (4.8)

From (B) and (4.6) we have

lt(hkgk)◦lt(Θ) < lcm (lt(gi), lt(gj)) ◦lt(Θ). (4.9)

From (4.7), (4.8) and (4.9), the claim immediately follows.

Claim 2: ḡij = 0 or lt(ḡijgi◦Θ) < lcm (lt(gi◦Θ), lt(gj◦Θ)) .
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If ḡij = 0, the claim is trivially true. Thus from now on assume that ḡij 6= 0. Note

lm (σ(gi◦Θ, gj◦Θ)gi◦Θ) = lm
(

lcm (lt(gi◦Θ), lt(gj◦Θ))
lm(gi◦Θ)

gi◦Θ
)

= lm
(

lcm (lt(gi◦Θ), lt(gj◦Θ))
lm(gi◦Θ)

)
lm(gi◦Θ)

=
lcm (lt(gi◦Θ), lt(gj◦Θ))

lm(gi◦Θ)
lm(gi◦Θ)

= lcm (lt(gi◦Θ), lt(gj◦Θ)) .

Note also

lm (cσ(gi, gj)◦Θgi◦Θ) = c lm
[(

lcm (lt(gi), lt(gj))
lm(gi)

)
◦Θgi◦Θ

]
= c lm

[(
lcm (lt(gi), lt(gj))

lm(gi)

)
◦Θ
]

lm(gi◦Θ)

= c

(
lcm (lt(gi), lt(gj))

lm(gi)

)
◦lm(Θ) lm(gi◦Θ)

= c
lcm (lt(gi), lt(gj)) ◦lm(Θ)

lm(gi)◦lm(Θ)
lm(gi◦Θ) 2

from (B) and Lemma 4.1

= c
lcm (lt(gi), lt(gj)) ◦lm(Θ)

lm(gi)◦lm(Θ)
lm(gi)◦lm(Θ)

= c lcm (lt(gi), lt(gj)) ◦lm(Θ)
= lcm (lt(gi), lt(gj)) ◦lt(Θ) 2

from (B) and Lemmas 4.3 and 4.1
= lcm (lt(gi◦Θ), lt(gj◦Θ)) .

Thus, the two polynomials σ(gi◦Θ, gj◦Θ)gi◦Θ and cσ(gi, gj)◦Θgi◦Θ have the same lead-
ing monomial, namely lcm (lt(gi◦Θ), lt(gj◦Θ)). Hence, we have

lt(ḡijgi◦Θ) < lcm (lt(gi◦Θ), lt(gj◦Θ)) .

Claim 3: ḡji = 0 or lt(ḡjigj◦Θ) < lcm (lt(gi◦Θ), lt(gj◦Θ)) .

The proof is essentially the same as that for Claim 2. We only need to switch i and j. 2

Finally we are ready to state the sufficiency side of the main theorem.

Theorem 4.1. (Sufficiency) Let

(A) the composition by Θ commutes with Groebner basis computation; and

(B) the composition by Θ be

(a) compatible with the term ordering > and
(b) compatible with the nondivisibility.

Then (B) =⇒ (A).
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Proof. Assume (B). By Lemma 4.6, we have

∀G [ GB(G) =⇒ GB(G◦Θ) ].

By Lemma 4.5, we have

∀F ∀G [ GB(G,F ) =⇒ GB(G◦Θ, F◦Θ) ].

By Definition 3.2, it is exactly the condition (A). 2

5. Proof of Necessity

In this section, we prove the necessity of the compatibility condition for commutativity,
that is, we prove that (A) of the main theorem implies (B).

Before plunging into the detail of the ‘long’ proof, we describe the overall strategy.
Mostly the proof is by proving contrapositive. Thus, it goes like this. Assume that (B) is
not true. Then find G such that GB(G) but not GB(G◦Θ). Obviously the main difficulty
in this process lies in finding such G. I had to spend numerous days (experimenting with
computer algebra systems, making conjectures, disproving them to my dismay, dreaming
about them in my sleep, etc., as usual) to find the ones presented here. Once they have
been found, it was easy to write down the ‘straight-line forward’ proof. Lemmas 5.4
and 5.5 are the cores of the proof, that is, they contain such Gs as those mentioned
above.

Lemma 5.1. Let

(A) ∀F ∀G [ GB(G,F ) =⇒ GB(G◦Θ, F◦Θ) ]; and

(B) ∀G [ GB(G) =⇒ GB(G◦Θ) ].
Then (A) =⇒ (B).

Proof. Assume (A). We need to prove (B). Let G be arbitrary but fixed such that
GB(G). We need to show that GB(G◦Θ). Since GB(G), we trivially have GB(G,G).
Then from (A), we have GB(G◦Θ, G◦Θ). Thus, we have GB(G◦Θ). 2

Lemma 5.2. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ].
(B) ∀p∀q∀a∀b [ p > q ∧ a 6= 0 ∧ b 6= 0 =⇒ ap◦Θ 6= bq◦Θ ].

Then (A) =⇒ (B).

Proof. Assume (A). We need to show (B). Let p, q, a, and b be arbitrary but fixed such
that p > q, a 6= 0 and b 6= 0. We need to show that ap◦Θ 6= bq◦Θ.

Let G = {ap − bq}. Since p > q, a 6= 0 and b 6= 0, we have ap 6= bq. Thus we have
GB(G). From (A), we have GB(G◦Θ), and thus GB({ap◦Θ− bq◦Θ}). Since a Groebner
basis must not have a zero polynomial, we conclude that ap◦Θ 6= bq◦Θ. 2

Lemma 5.3. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ]; and

(B) ∀p∀q [ p > q =⇒ p◦lt(Θ) 6= q◦lt(Θ) ].
Then (A) =⇒ (B).
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Proof. Assume (A). We need to show (B). Let p and q be arbitrary but fixed such that
p > q. We need to show that p◦lt(Θ) 6= q◦lt(Θ). We will prove this by contradiction.
Thus assume that p◦lt(Θ) = q◦lt(Θ).

Let

a =
1

lc(p◦lm(Θ))

b =
1

lc(q◦lm(Θ))
.

Obviously a 6= 0 and b 6= 0.
Let G = {ap, bq}. Clearly GB(G). Thus, from (A), we have GB(G◦Θ), and therefore

GB({ap◦Θ, bq◦Θ}). Let f = ap◦Θ − bq◦Θ. Clearly f ∈ Ideal(G◦Θ). From Lemma 5.2,
we have f 6= 0. Note

lm(ap◦Θ) = ap◦lm(Θ) = p◦lt(Θ)
lm(bq◦Θ) = bq◦lm(Θ) = q◦lt(Θ).

Since p◦lt(Θ) = q◦lt(Θ), we have lm(ap◦Θ) = lm(bq◦Θ). Thus we have

lt(f) < lt(ap◦Θ)
lt(f) < lt(bq◦Θ).

So

lt(ap◦Θ) 6 | lt(f)
lt(bq◦Θ) 6 | lt(f).

Thus, by Proposition 2.1, G◦Θ is not a Groebner basis. Contradiction. 2

Lemma 5.4. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ]; and

(B) ∀p∀q [ p > q =⇒ p◦lt(Θ) > q◦lt(Θ) ].
Then (A) =⇒ (B).

Proof. Assume (A). We need to show (B). Let p and q be arbitrary but fixed such that
p > q. We need to show that p◦lt(Θ) > q◦lt(Θ).

Let G = {p + q, q}. We claim that GB(G). For this, let f ∈ Ideal(G). It suffices to
show that lt(p + q) | lt(f) or lt(q) | lt(f). Note that {p, q} is a Groebner basis and that
Ideal({p, q}) = Ideal({p+ q, q}) = Ideal(G). Thus, {p, q} is a Groebner basis of Ideal(G).
From Proposition 2.1, we have

lt(p) = p|lt(f) or lt(q) = q|lt(f).

Since p > q, we also have

lt(p+ q) = p lt(q) = q.

Thus

lt(p+ q)|lt(f) or lt(q)|lt(f).

By Proposition 2.1, we conclude that G is a Groebner basis.
Thus from (A), we have GB(G◦Θ). Now we will prove that p◦lt(Θ) > q◦lt(Θ), by

contradiction. Thus assume p◦lt(Θ) ≤ q◦lt(Θ).
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From Lemma 5.3, we have p◦lt(Θ) 6= q◦lt(Θ). Thus p◦lt(Θ) < q◦lt(Θ). Note G◦Θ =
{p◦Θ + q◦Θ, q◦Θ}. Thus, p◦Θ = (p◦Θ + q◦Θ)− q◦Θ ∈ Ideal(G◦Θ). Note

lt(p◦Θ) = p◦lt(Θ)
lt(q◦Θ) = q◦lt(Θ).

Since p◦lt(Θ) < q◦lt(Θ), we have that lt(p◦Θ + q◦Θ) = q◦lt(Θ). We also have that
q◦lt(Θ) 6 |p◦lt(Θ). Thus, we have

lt(q◦Θ) 6 | lt(p◦Θ)
lt(p◦Θ + q◦Θ) 6 | lt(p◦Θ).

Thus, by Proposition 2.1, G◦Θ is not a Groebner basis. Contradiction. 2

Thus, we have proved one half: the commutativity implies the compatibility with the
term ordering. Now, let us work on the other half: the commutativity implies the com-
patibility with the nondivisibility.

Lemma 5.5. Let f and g be two non-zero polynomials in K[x1, . . . , xn] and let lt(f) =
xµ1

1 · · ·xµnn and lt(g) = xν1
1 · · ·xνnn . Assume that µk ≥ νk > 0 for some k. Then we

have
(a) {f, g} is not a Groebner basis, or
(b) {f + 1, g} is not a Groebner basis.

Proof. We will prove by contradiction. Thus, assume that both {f, g} and {f + 1, g}
are Groebner bases. Since {f, g} is a Groebner basis, by Corollary 2.1, there exists f̄ and
ḡ such that

(a1) S(f, g) = f̄f + ḡg,

(a2) f̄ = 0 or lt(f̄)lt(f) < lcm(lt(f), lt(g)),
(a3) ḡ = 0 or lt(ḡ)lt(g) < lcm(lt(f), lt(g)),
(a4) none of the terms in ḡlt(g) is divisible by lt(f).

Since µk > 0, we have that f + 1 6= 0 and that lt(f + 1) = lt(f). Since {f + 1, g} is a
Groebner basis, by Corollary 2.1, there exists f̂ and ĝ such that

(b1) S(f + 1, g) = f̂(f + 1) + ĝg,

(b2) f̂ = 0 or lt(f̂)lt(f) < lcm(lt(f), lt(g)),
(b3) ĝ = 0 or lt(ĝ)lt(g) < lcm(lt(f), lt(g)),
(b4) none of the terms in ĝlt(g) is divisible by lt(f).

Note

S(f + 1, g) =
lcm(lt(f + 1), lt(g))

lm(f + 1)
(f + 1)− lcm(lt(f + 1), lt(g))

lm(g)
g

=
lcm(lt(f), lt(g))

lm(f)
(f + 1)− lcm(lt(f), lt(g))

lm(g)
g

=
lcm(lt(f), lt(g))

lm(f)
f − lcm(lt(f), lt(g))

lm(g)
g +

lcm(lt(f), lt(g))
lm(f)

= S(f, g) +
lcm(lt(f), lt(g))

lm(f)
.
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Thus, from (a1) and (b1), we obtain that

f̂(f + 1) + ĝg = f̄f + ḡg +
lcm(lt(f), lt(g))

lm(f)
.

Rewriting this, we obtain

lcm(lt(f), lt(g))
lm(f)

− f̂ = (f̂ − f̄)f + (ĝ − ḡ)g.

By multiplying out lm(f), we obtain that

r.h.s = l.h.s

where

l.h.s = lcm(lt(f), lt(g))− f̂ lm(f),

r.h.s = (f̂ − f̄)f lm(f) + (ĝ − ḡ)glm(f).

Recalling (b2), we have f̂ = 0 or lt(f̂)lt(f) < lcm(lt(f), lt(g)). Thus, we have

lt(l.h.s) = lcm(lt(f), lt(g)).

From now on, we will show that lt(r.h.s) 6= lt(l.h.s). This will give us the desired contra-
diction.
Case 1: f̂ = f̄ and ĝ = ḡ.

Obviously the r.h.s = 0. Thus lt(r.h.s) 6= lcm(lt(f), lt(g)) = lt(l.h.s).

Case 2: f̂ = f̄ and ĝ 6= ḡ.
We have r.h.s = (ĝ − ḡ)glm(f). Thus

lt(r.h.s) = lt(ĝ − ḡ)lt(g)lt(f)
≥ lt(g)lt(f)
= gcd(lt(f), lt(g))lcm(lt(f), lt(g))
> lcm(lt(f), lt(g))

since µk ≥ νk > 0. Thus, lt(r.h.s) 6= lcm(lt(f), lt(g)) = lt(l.h.s).

Case 3: f̂ 6= f̄ and ĝ = ḡ.
We have r.h.s = (f̂ − f̄)f lm(f). Thus lt(r.h.s) = lt(f̂ − f̄)lt(f)lt(f). Hence

degxk(lt(r.h.s)) ≥ 2µk.

But we know that µk ≥ νk > 0. Thus,

degxk(lt(l.h.s)) = degxk(lcm(lt(f), lt(g))) = max(µk, νk) = µk.

Since µk > 0, we have degxk(lt(r.h.s)) 6= degxk(lt(l.h.s)). Thus lt(r.h.s) 6= lt(l.h.s)).

Case 4: f̂ 6= f̄ and ĝ 6= ḡ.
We have r.h.s = (f̂ − f̄)f lm(f) + (ĝ − ḡ)glm(f). Let

p = lt((f̂ − f̄)f lm(f))
q = lt((ĝ − ḡ)glm(f)).

We will show that p 6= q, by contradiction. Thus assume p = q. Then we have

p = lt(f̂ − f̄)lt(f)lt(f) = lt(ĝ − ḡ)lt(g)lt(f) = q.
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So we have

lt(f̂ − f̄)lt(f) = lt(ĝ − ḡ)lt(g).
Thus we have

lt(f) | lt(ĝ − ḡ)lt(g).
Hence we have

lt(f) | r lt(g)

for some term r in ĝ or ḡ. This contradicts (a4) and (b4). Thus we conclude that p 6= q.
From this, we see that lt(r.h.s) = p or lt(r.h.s) = q. However in the proofs of Case 2

and Case 3, we have already shown that q 6= lt(l.h.s) and p 6= lt(l.h.s). Thus we conclude
lt(r.h.s) 6= lt(l.h.s). 2

Lemma 5.6. Let f and g be two non-zero polynomials in K[x1, . . . , xn] and let lt(f) =
xµ1

1 · · ·xµnn and lt(g) = xν1
1 · · ·xνnn . Assume that the leading terms are not relatively

prime, that is, µk > 0 and νk > 0 for some k. Then there exists λ > 0 such that
(a) {fλ, g} is not a Groebner basis, or
(b) {fλ + 1, g} is not a Groebner basis.

Proof. Let λ be such that λµk ≥ νk. Let f̂ = fλ and let lt(f̂) = xµ̂1
1 · · ·xµ̂nn . Then, we

have µ̂k = λµk ≥ νk > 0. The lemma follows immediately after applying Lemma 5.5 on
f̂ and g. 2

Lemma 5.7. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ]; and

(B) the terms lt(θ1), . . . , lt(θn) be pair-wise relatively prime.

Then (A) =⇒ (B).

Proof. Assume (A). We need to show (B). We will show (B) by contradiction, thus
assume that there exists a pair, say lt(θi) and lt(θj), (i 6= j), that are not relatively
prime.

By Lemma 5.6, for some λ > 0 we have that {θλi , θj} is not a Groebner basis or
{θλi + 1, θj} is not a Groebner basis.

Case 1: {θλi , θj} is not a Groebner basis.
Let G = {xλi , xj}. Clearly GB(G). But G◦Θ = {θλi , θj} is not a Groebner basis.

Contradiction to (A).

Case 2: {θλi + 1, θj} is not a Groebner basis.
Let G = {xλi + 1, xj}. Clearly GB(G), since the leading terms are relatively prime.

But G◦Θ = {θλi + 1, θj} is not a Groebner basis. Contradiction to (A). 2

Lemma 5.8. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ].
(B) ∀j lt(θj) 6= 1.

Then (A) =⇒ (B).

Proof. Assume (A). We need to prove (B). Let j be arbitrary but fixed. We need to
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show that lt(θj) 6= 1. Note that xj > 1 in any term ordering. Thus, from (A) and
Lemma 5.4, we have

xj◦lt(Θ) > 1◦lt(Θ).

Hence
lt(θj) > 1. 2

Lemma 5.9. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ]; and

(B) the list lt(Θ) be a ‘permuted powering’, that is, lt(Θ) = (xλ1
π1
, . . . , xλnπn) for some

permutation π of (1, . . . , n) and some λ1, . . . , λn > 0.

Then (A) =⇒ (B).

Proof. Assume (A). We need to show (B). Let e = [eij ] be the matrix where eij =
degxi(lt(θj)).

From Lemma 5.7, we know that the terms lt(θi) and lt(θj), i 6= j, are relatively prime.
Therefore there exists at most one non-zero element in each row of e. From Lemma 5.8,
we also know that ∀j lt(θj) 6= 1. Therefore there exists at least one non-zero element in
each column of e.

Thus, we see that there is exactly one non-zero element in each row and each column
of e. Hence e is a permuted diagonal matrix, which is equivalent to (B). 2

Lemma 5.10. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ].
(B) ∀p∀q [ p 6 |q =⇒ p◦lt(Θ) 6 |q◦lt(Θ) ].

Then (A) =⇒ (B).

Proof. Immediate from Lemma 5.9 and Lemma 4.2. 2

Lemma 5.11. Let

(A) ∀G [ GB(G) =⇒ GB(G◦Θ) ]; and

(B) the composition by Θ be

(a) compatible with the term ordering > and
(b) compatible with the nondivisibility.

Then (A) =⇒ (B).

Proof. Follows immediately from Lemmas 5.4 and 5.10. 2

Finally, we are ready to state the necessity side of the main theorem.

Theorem 5.1. (Necessity) Let

(A) the composition by Θ commute with Groebner basis computation; and

(B) the composition by Θ be

(a) compatible with the term ordering > and
(b) compatible with the nondivisibility.

Then (A) =⇒ (B). 2
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Proof. Assume (A). Recalling Definition 3.2, we have

∀F ∀G [ GB(G,F ) =⇒ GB(G◦Θ, F◦Θ) ].

By Lemma 5.1, we have

∀G [ GB(G) =⇒ GB(G◦Θ) ].

By Lemma 5.11, we have (B). 2

6. Examples of Compatible Compositions

In this section we give several examples of compatible compositions. Let us first recall
the compatibility condition:

(a) The composition by Θ is compatible with the term ordering >.
(b) The composition by Θ is compatible with the nondivisibility.

By Lemma 4.2, we know that condition (b) is equivalent to the simpler condition:
(b′) The list lt(Θ) is a ‘permuted powering’, that is, lt(Θ) = (xλ1

π1
, . . . , xλnπn) for some

permutation π of (1, . . . , n) and some λ1, . . . , λn > 0.

Proposition 6.1. Every composition of the form

lt(θi) = xλi

where λ > 0 is a compatible composition, and thus commutes with Groebner basis
computation.

Proof. Note that lt(θi) = xλi . Thus it trivially satisfies the two compatibility con-
ditions. 2

Example 6.1. The above mentioned class of composition covers many naturally arising
compositions. We list some of them, starting with the simple ones.

Scaling θi = aixi, ai 6= 0.
For example, Θ = (2x1, 3x2).

Translation θi = xi − ci.
For example, Θ = (x1 − 2, x2 + 3).

Powering θi = xλi , λ > 0.
For example, Θ = (x2

1, x
2
2).

Univariate θi ∈ K[xi] of degree λ > 0.
For example, Θ = (2x4

1 − x3
1 + 3x2

1 − 2x1 + 4, x4
2 + 3x3

2 − 2x2
2 + x2 − 3).

General θi ∈ K[x1, . . . , xn] such that lt(θi) = xλi , λ > 0.
For example, Θ = (2x4

1− 2x1x
2
2 + 4x3

2− 1, x4
2− 2x2

2x
2
1 + x2x

2
1 + 3) for the

graded lexicographic ordering (x2 > x1).2

Proposition 6.2. Let > be a lexicographic ordering. Then, every composition of the
form

lt(θi) = xλii
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where λi > 0 is a compatible composition, and thus commutes with Groebner basis
computation. Note that we now allow different λi for different xi.

Proof. Note that lt(θi) = xλii . Thus it trivially satisfies the condition (b′). One can also
easily verify that it satisfies condition (a) also. 2

Example 6.2. We list several compatible compositions for the lexicographic term or-
dering.

Powering θi = xλii , λi > 0.
For example, Θ = (x2

1, x
3
2).

Univariate θi ∈ K[xi] of degree λi > 0.
For example, Θ = (2x3

1 − x2
1 + 3x1 + 4, x4

2 + 3x3
2 − 2x2

2 + x2 − 3).

General θi ∈ K[x1, . . . , xn] such that lt(θi) = xλii , λi > 0.
For example, Θ = (2x4

1 − 2x2
1 + 1, x2

2 − 2x2x
2
1 + x5

1 + 3) for x2 > x1.2

So far, all the examples have one thing in common: lt(θi) involves xi, that is, no
permutation of variables. Now we consider an example with a permutation.

Example 6.3. Let p = xµ1
1 xµ2

2 and q = xν1
1 x

ν2
2 be two terms in K[x1, x2]. Consider the

term ordering defined by:

p < q ⇐⇒ µ1 +
√

2µ2 < ν1 +
√

2ν2.

We claim that the composition by Θ = (x2 + x1, x
2
1 + x2) is a compatible composition.

Let us verify this. Note that lt(Θ) = (x2, x
2
1). Note that the variables permute. One can

easily check that condition (b′) is satisfied. In order to check condition (a), let p < q, we
need to show that p◦lt(Θ) < q◦lt(Θ). For this, note

p◦lt(Θ) = xµ1
2 x2µ2

1 = x
µ′1
1 x

µ′2
2

q◦lt(Θ) = xν1
2 x

2ν2
1 = x

ν′1
1 x

ν′2
2 .

Thus

µ′1 +
√

2µ′2 = 2µ2 +
√

2µ1 =
√

2(µ1 +
√

2µ2)

ν′1 +
√

2ν′2 = 2ν2 +
√

2ν1 =
√

2(ν1 +
√

2ν2).

Hence, one sees immediately that µ′1 +
√

2µ′2 < ν1 +
√

2ν′2. Thus p◦lt(Θ) < q◦lt(Θ). 2

7. Related Questions and Problems

In this paper, we have answered the question: When does a composition commute with
Groebner basis computation? The answer is: iff it is compatible with the term ordering and
the nondivisibility. However, this is not the end as it raises many new questions/problems.
We list a few of them.

(Q1) Does there exist a decision procedure that will determine whether a given compo-
sition is compatible with a given term ordering. If so, find one.
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In order to answer this question, the question itself will have to be made precise. In
particular, one will have to clarify the meaning of the phrase ‘a given term ordering’,
that is, one will have to find suitable finite representations of term orderings. For
instance, it could be given as an oracle that tells whether a given term is greater
than another given term. It could also be given as a collection of orthogonal vectors
(Robbiano, 1986), or a single vector (Weispfenning, 1987; Ritter and Weispfenning,
1991), etc.

(Q2) When does a composition commute with the reduced Groebner basis computation?

One can easily construct an example that shows that the two conditions given in
this paper are not sufficient. An answer to this question will shed new light on the
notion of ‘reduced’.

(Q3) Let G be a Groebner basis of F with respect to >. When is G◦Θ a Groebner basis
of F◦Θ (possibly with respect to another term ordering >′)?

In order to answer this question, one could carefully analyze the proof given in this
paper, and generalize it. In fact, the author has already followed this approach and
found some answer, which is reported in another paper (Hong, 1996), but it might
be interesting to find a completely new approach.
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