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GRÖBNER–SHIRSHOV BASES OF THE LIE ALGEBRA B+
n

A. N. KORYUKIN

Abstract. The minimal Gröbner–Shirshov bases of the positive part B+
n of a simple

finite-dimensional Lie algebra Bn over an arbitrary field of characteristic 0 are calcu-
lated, for the generators associated with simple roots and for an arbitrary ordering of
these generators (i.e., an arbitrary basis of the n! Gröbner–Shirshov bases is chosen
and studied). This is a completely new class of problems; until now, this program
was carried out only for the Lie algebra A+

n . The minimal Gröbner–Shirshov basis
of the Lie algebra B+

n was calculated earlier by Bokut and Klein, but this was done
for only one ordering of generators.

§1. Minimal Gröbner–Shirshov bases of Lie algebras

We fix an arbitrary finite linearly ordered set X of letters. In what follows we tacitly
assume that all words are composed of elements of X. We introduce a linear order lex
on the set of all associative words in X; this order differs from the lexicographic ordering
only in one respect: any proper beginning of a word is greater than the word itself.

As in [1, 2], we say that an associative word is regular if it is greater than any of its
proper endings.

In [1], it was shown that for an arbitrary regular word u there exists a unique non-
associative word (u) that differs from u only in the presence of brackets and satisfies the
following conditions: if u is not a letter, then (u) = (u1) · (x), where u1 and x are regular
words; if in this situation u1 is not a letter, then (u1) = (y) · (z), where y, z are regular
words and z ≤ x. The mapping that associates the word (u) with any regular word u
will be called the regular arrangement of brackets.

All spaces and algebras that appear below will be spaces and algebras over an arbitrary
field k of characteristic 0. Let Lie(X) be the free Lie algebra generated by the set X. For a
regular word u, denote by [u] the element of the algebra Lie(X) obtained by application
of the regular arrangement of brackets and the subsequent canonical mapping to the
algebra Lie(X). We introduce the following notation: k Reg(X) is the space with the
basis consisting of all regular words; [·] : k Reg(X) → Lie(X) is the linear mapping that
sends any regular word u to the element [u].

In [1], Shirshov showed that the set of all elements of the form [u], where u runs
through the set of all regular words, is a basis of the algebra Lie(X). It follows that the
mapping [·] is bijective. By the support of an element x of Lie(X) we mean the inverse
image of x under the mapping [·]. In what follows, it will always be assumed that all
words are associative.

Consider an arbitrary finitely generated Lie algebra L = Lie(X)/J given by its gen-
erators (elements of X) and relations (elements of the Lie ideal J of Lie(X)). Usually,
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66 A. N. KORYUKIN

a relation of L is understood as a formula u = 0, where u is an arbitrary element of J .
But for us it will be convenient to refer to the elements u ∈ J themselves as relations of
L. A relation u is said to be nontrivial if u is nonzero.

We denote by I the inverse image of J under the mapping [·] and introduce the deg-lex
order on the set of associative words: first the lengths of words are compared, and the
words of the same length are ordered lexicographically.

A regular word u will be called a reduced word if there is no element h ∈ k Reg(X)
such that u− h ∈ I and h is a linear combination of regular words that are smaller than
u (with respect to the deg-lex order). Obviously, the elements of the form [u] + J , where
u runs through the set of all reduced words, constitute a basis of the algebra Lie(X)/J .
As in [3, 4], we shall say that such a basis is reduced.

Remark 1.1. It is clear that each relation is a linear combination of relations of the form
[u−π(u)], where u is a regular nonreduced word and π(u) is a uniquely determined linear
combination of reduced words. We shall say that such relations are canonical.

Let h be a nonzero element of the space k Reg(X); a regular word u is called the
highest word of h if there exists a nonzero element α of the field k such that the element
h − αu is a linear combination of regular words that are smaller than u (with respect
to the deg-lex order). Clearly, the highest word of h is unique; we shall denote it by h.
For an arbitrary set S of nonzero elements of k Reg(X), we denote by S the set of the
highest words of the elements of S.

A set S of nontrivial relations of the Lie algebra L = Lie(X)/J is called a Gröbner–
Shirshov basis, or GShB, of the Lie algebra L if S generates the ideal J and is closed
under compositions; see [5]. The following lemma by Shirshov is well known: a set S of
nontrivial relations generating the Lie ideal J is a GShB if and only if the highest word
of the support of each nontrivial relation has a subword that is the highest word of the
support of a relation belonging to S.

In [3, §2] it was shown that the intersection of all GShBs of the canonical relations
of the algebra L = Lie(X)/J is a GShB of this algebra. This intersection is called the
minimal GShB, or MGShB [3, §2].

Remark 1.2. The MGShB of a finitely generated Lie algebra Lie(X)/J coincides with the
set of all canonical relations for which the highest word of their support is not reduced,
but each its proper regular subword is reduced; see [3, §2].

This is exactly our working definition of an MGShB, and there is no need to recall
the definition of compositions in this paper. Remark 1.2 shows that for the calculation
of the MGShB it remains to learn to calculate nonreduced regular words such that every
proper regular subword of them is reduced, and also to construct canonical relations with
such highest words.

Now, we turn to the case where the ideal J is homogeneous with respect to the number
of occurrences of each letter. Let Z denote the free Abelian group generated by the set X.
The operation in this group will be denoted additively. The algebra Lie(X) is graded by
the group ZX. The graduation is defined by the following condition: a generator x ∈ X
is homogeneous as an element of the algebra Lie(X), and it belongs to the homogeneous
component corresponding to x viewed as an element of ZX. This graduation induces a
graduation on the algebra L = Lie(X)/J .

The image of a word u under the natural homomorphism of the semigroup of words
to the group ZX will be denoted by |u|, and will be called the composition of u. If the
homogeneous component of the algebra L that corresponds to |u| is not zero, we shall say
that the composition of the word u is rooted, or that the word u has rooted composition.
Now we recall some useful properties of reduced words.
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Lemma 1.1. Let L = Lie(X)/J be a finitely generated algebra such that the ideal of its
relations is homogeneous with respect to the number of occurrences of each letter. Then:

1) the composition of any reduced word is rooted;
2) each regular subword of a reduced word is reduced;
3) the compositions of all regular subwords of a reduced word (including the word itself)

are rooted.

Proof. Statement 1) follows immediately from the definitions, statement 2) follows from
[1, Lemma 4], and statement 3) is a consequence of statements 1) and 2). �

As in [3, 4], by an RR-word we mean any regular word such that the compositions of
all its regular subwords (including the word itself) are rooted.

Remark 1.3. Let the assumptions of Lemma 1.1 be fulfilled. Consider the set of all RR-
words the compositions of which are equal to a given element of the group ZX. Then
the smallest of these RR-words is reduced.

Now we consider a particular case: assume that every RR-word of the algebra L =
Lie(X)/J is uniquely determined by its composition (later we shall show that this as-
sumption is fulfilled for the algebra B+

n ).
A regular word will be called an SR-word if its composition is not rooted, but the

compositions of all its proper regular subwords are rooted.

Lemma 1.2. Let L = Lie(X)/J be a finitely generated Lie algebra such that (i) its ideal
of relations is homogeneous with respect to the number of occurrences of each letter; and
(ii) every RR-word is uniquely determined by its composition. Then:

1) the set of reduced words coincides with the set of RR-words;
2) the set of regular nonreduced words with all proper regular subwords reduced coin-

cides with the set of SR-words;
3) the MGShB of L coincides with the subset of the free Lie algebra Lie(X) formed by

the elements [u], where u runs through the set of all SR-words.

Proof. Statement 1) follows from statement 3) of Lemma 1.1 and Remark 1.3, and state-
ment 2) follows from Remark 1.2 and statement 1).

3) Using Remark 1.2 and statement 1), we see that the MGShB of L coincides with
the set of relations of the form [u− π(u)], where u is an SR-word and π(u) is a uniquely
determined linear combination of reduced words. Since u is an SR-word, its composition
is not rooted, which means that the homogeneous component of the algebra L that
corresponds to |u| consists only of 0. Therefore, we have π(u) = 0 and [u − π(u)] = [u],
as desired. �

In this paper, our aim is to calculate the MGShB of the Lie algebra B+
n for generators

corresponding to simple roots. For this, we shall calculate the set of RR-words of the
algebra B+

n for any ordering of generators; next, we shall show that any RR-word is
uniquely determined by its composition and shall calculate the set of SR-words. The
main result of this paper is Theorem 9.2.

In [3], this program was carried out for the algebra A+
n and for any ordering of its

set of generators. For the algebra B+
n , the reduced words were calculated in the papers

[6, 7], and the MGShB was calculated in [7], but for only one ordering of generators.

§2. The algebra B+
n , the root system, and graphs of positive roots

To describe the algebra B+
n and its generators corresponding to simple roots, we recall

some well-known facts from the classical theory of finite-dimensional simple Lie algebras
over a field of characteristic 0; see [8, 9].
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The algebra Bn is a simple finite-dimensional decomposable Lie algebra. Let L be any
finite-dimensional simple decomposable Lie algebra. The term decomposable means that
L contains a nilpotent subalgebra H (Cartan subalgebra) such that the Lie H-module L
is the direct sum of H and the submodules

Lα = {x ∈ L | ∃n ≥ 1 ∀h ∈ H (adh −α(h) · 1)n · x = 0},
where α runs through the set of nonzero weights of H-semiinvariants of L.

The nonzero weights of H-semiinvariants are called roots. By this definition, the roots
are elements of the space H∗ dual to H. The Cartan subalgebra is commutative. The
spaces Lα are 1-dimensional, and their elements are H-semiinvariants.

There exists a subset Π of the set of roots such that any root α can be uniquely
represented in the form α =

∑
aπ · π, where the sum is taken over some (not necessarily

all) elements π of Π and the coefficients aπ are nonzero integers having one and the same
sign. Such a subset Π is called a system of simple roots. The roots that are sums of
simple roots (as elements of the space H∗) are said to be positive.

Simple roots are linearly independent elements of the H∗; it follows that the subgroup
ZΠ of the additive group of H∗ generated by simple roots is the free Abelian group
generated by simple roots. Each root is an element of ZΠ. The algebra L is graded by
the group ZΠ. In this graduation any homogeneous component corresponding to a root
is 1-dimensional.

We denote by L+ the subspace of L generated by all components Lα corresponding to
positive roots α. Then L+ is a subalgebra of L, and it is natural to call it the “positive
part” of L. This subalgebra is generated by the H-semiinvariants the weights of which
are simple roots. For each simple root π, choose a nonzero H-semiinvariant of the weight
π. The set X of these elements generates the algebra L+. The elements of X are precisely
the generators that are of interest for us.

The algebra B+
n is “the positive part” of the algebra Bn; observe that n is the number

of simple roots of the algebra Bn.

Remark 2.1. The relations of the algebra L are homogeneous with respect to the number
of occurrences of each letter. Therefore, the algebra L is graded by the group ZX.
Observe that the set of simple roots is in one-to-one correspondence with the set X
of generators of the algebra L+. It follows that the graduation of L by the group ZΠ
coincides with the graduation by ZX. Hence, to know what elements of ZΠ are positive
roots is the same as to know what homogeneous components of the algebra L+ are not
equal to 0.

Remark 2.2. Assume that we know the ordering of generators and that we know also
what elements of the group ZΠ are positive roots (i.e., what homogeneous components
of the algebra L+ are not equal to 0). It is interesting to note that this is the only
information that we need to calculate the MGShB of the algebra B+

n .

Indeed, this information suffices for the calculation of the sets of RR-words and SR-
words of the algebra L+. As we shall show later, the RR-words are uniquely determined
by their compositions. Hence, by Lemma 1.2, we can calculate the MGShB of L+.

Remarks 2.1 and 2.2 show that it is not necessary to distinguish between letters and
the simple roots corresponding to these letters. But if it is important to stress that we
view a letter q as a simple root, we write |q| instead of q.

Let ZX be the free Abelian group for which X is the set of free generators; we say
that an element of ZX is positive if it is a sum of elements of X. We define a partial
order on the group ZX as follows: α < β if β − α is positive.

Now we are ready to introduce the following general notion, which is a starting point
of our investigation.
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By a set of data we mean a triple 〈X, Φ+,≤〉, where 〈X,≤〉 is a finite linearly ordered
set and Φ+ is a collection of positive elements of the group ZX.

The elements of X are called letters, or simple roots, and the elements of Φ+ are
positive roots.

The most transparent description of the set of data for the algebra B+
n can be given

in terms of graphs.
By a graph we mean a pair 〈X, R〉 that consists of a finite set X (the set of vertices)

and a symmetric antireflexive binary relation R on X.
For a graph D, we denote by

∑
D the element of ZX equal to the sum of all vertices

of the graph. Below, we usually denote the sum of the vertices of a graph by the same
symbol as the graph itself (if this leads to no confusion).

A graph with ordering of vertices is a triple 〈X, R,≤〉 such that 〈X, R〉 is a graph and
≤ is a linear ordering of the set X.

We say that two vertices x, y of a graph are adjacent if they are connected by an edge,
i.e., (x, y) ∈ R. A graph is connected if for any two vertices x, y there exists a finite
sequence of vertices x1, . . . , xm such that x = x1, y = xm, and the vertices xi, xi−1 are
adjacent for all i = 1, . . . , m − 1.

A (finite) connected graph is said to be an interval if each vertex has at most two
adjacent vertices, and at least one vertex has at most one adjacent vertex. A vertex of
an interval with at most one adjacent vertex is called an end vertex.

Any (finite) interval I either consists of only one vertex or has exactly two end vertices.
Any interval I that is a subgraph of a graph D without cycles is uniquely determined by
its end vertices x, y; in this case we write I = [x, y]. If t is a vertex that is not contained
in the interval I but is adjacent to y, we denote I by [x, t) or (t, x]. Finally, we denote the
interval I by (s, t) if s, t are vertices of D that are not contained in I, but s is adjacent
to x and t is adjacent to y.

We return to the set of data for the algebra B+
n . Consider the graph the vertices of

which are simple roots of Bn, and the vertices α, β are adjacent if the element α + β
of the group ZΠ is again a root. Using the tables given at the end of the book [10], we
can conclude that this graph is an interval [z1, z], where z1 is the only simple root such
that z1 has only one adjacent simple root and 2z1 � α for all roots α, i.e., α 	= 2z1 and
α − 2z1 is not a sum of simple roots. Moreover, z is the only simple root that has only
one adjacent simple root and is not equal to z1.

Remark 2.3. The table given at the end of the book [10] shows that the set of positive
roots of Bn, viewed as elements of the group ZΠ, consists of all roots that have one of
the following forms:

∑
[α, β] (the sum of all vertices belonging to the interval [α, β]), or

∑
[α, z] +

∑
[β, z] (α 	= β).

Here [α, β] is a subinterval of the interval [z1, z] introduced above.

Definition 2.1. By a set of data for Bn (n ≥ 2) we mean a quintuple 〈Π, R, z, B+
n ,≤ 〉

in which Π is a set consisting of n elements; ≤ is a linear ordering of Π; 〈Π, R〉 is a graph,
and moreover, an interval, for which z is one of the end vertices; and B+

n is the set of all
elements of the group ZΠ that have one of the following forms:

∑
[α, β] (α, β ∈ Π) or∑

[α, z] +
∑

[β, z] (α, β ∈ Π, α 	= β).
By the graph of Bn we mean the quadruple 〈Π, R, z,≤〉. This is a graph with ordering

of vertices and with a distinguished vertex z. For a given set of data for Bn, the triple
〈Π, B+

n ,≤〉 is a set of data, and the graph of Bn determines this set of data completely.
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Definition 2.2. Let α be a positive root from the set of data for Bn. By the graph D(α)
we mean the quadruple 〈Π, R, f, d〉 in which

• Π is the set of simple roots β such that β ≤ α;
• 〈Π, R〉 is the graph obtained from the graph 〈Π, R〉 by elimination of vertices

that do not belong to Π;
• f is the canonical embedding of Π in the set Π;
• d is the mapping that sends any element β of Π to the largest positive integer

such that d(β) · β ≤ α.

The elements of the set Π will be called vertices of the graph D(α).
These definitions imply that any root α is a linear combination of simple roots with

coefficients 0, 1, 2. We say that a vertex β of the graph D(α) is a single vertex if 2β � α,
and it is a double vertex if 2β ≤ α.

Also, the definitions show that, knowing the graph D(α), we can find the root α itself
(as an element of the group ZΠ).

§3. (RR, 1)-words

Any set of data determines the set of words and the set of RR-words (for letters
we take the elements of the set Π). An RR-word will be called an (RR, i)-word if the
greatest letter enters the word i times (i = 1, 2). In this section we study the structure
of (RR, 1)-words.

For brevity, we shall say “a graph” instead of “a graph of positive roots”. The vertices
of any graph are linearly ordered. The greatest vertex of a graph (the greatest letter of
a word) will be called the leading vertex (letter). The greatest of the vertices of a graph
that are not equal to the leading vertex (the greatest of the letters of a word that are
not equal to the leading letter) will be called the second vertex (letter) by priority.

For a positive root α, the leading vertex of the graph D(α) will be denoted by p1(α).
If the root α is not simple, we denote by p2(α) the second vertex of D(α) by priority.

For a positive root α, let M+(α) denote the set of all simple roots β such that the
element α − β is a root.

Remark 3.1. Definition 2.1 implies that the following vertices constitute the set M+(α):
all single vertices of D(α) that have exactly one adjacent single vertex; the double vertex
of D(α) that has at most one adjacent double vertex (this vertex coincides with z only
if z is the only double vertex of D(α)).

If u is a word that is not a letter, we denote by ũ the word obtained from u by
discarding the last letter.

Till the end of this section, we fix an (RR, 1)-word u and denote by p1, p2, q its leading
letter, the second letter by priority, and the last letter, respectively.

Lemma 3.1. If an (RR, 1)-word u is not a letter, then its last letter q is contained in
M+(|u|).

Proof. Under the assumptions of the lemma, the word u is regular, and the leading letter
p1 occurs in it only once. Hence, u begins with the only appearance of its leading letter
p1. Since the word u is not a letter, the word ũ begins with the only appearance of its
leading letter p1 as well. Therefore, the word ũ is regular, and its composition is rooted,
because it is a regular subword of the RR-word u. Hence, the element |ũ| = |u| − |q| is a
root. But this means exactly that q ∈ M+(|u|). �

Lemma 3.2. If an (RR, 1)-word u is not a letter, then p1 /∈ [p2, q].
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Proof. Suppose u satisfies the assumptions of the lemma; we denote by w the ending of
the word u that begins with the last occurrence of the letter p2. The word w begins
with the only occurrence of its leading letter p2. This means that this word is regular.
The composition of this word is rooted because it is a regular subword of the RR-word
u. Therefore, the graph D(|w|) is connected, and moreover, p2, q ∈ D(|w|). Hence,
[p2, q] ⊆ D(|w|).

Let p1 ∈ [p2, q]; then p1 ∈ D(|w|). But the letter p1 does not occur in the word w
because this word is regular and p2 is its first letter. We arrive at a contradiction. �

Lemma 3.3. The last letter q of an (RR, 1)-word u is uniquely determined by the fol-
lowing conditions: if u is not a letter, then q ∈ M+(|u|) and p1 /∈ [p2, q]. (This is an
immediate consequence of Lemmas 3.1 and 3.2.)

Corollary 3.1. Let α be a positive root such that the leading vertex of its graph is single.
Then there exists only one RR-word the composition of which is α.

Now we present some properties of (RR, 1)-words to be used in the sequel.

Remark 3.2. Any nonempty beginning v′ of an (RR, 1)-word v starts with the only occur-
rence of the leading letter of v, and v′ is an (RR, 1)-word. Consequently, its composition
is a root.

Indeed, let v be an (RR, 1)-word. The word v is regular and the leading letter p1

occurs in it only once. It follows that this word begins with the letter p1. Therefore, any
nonempty beginning v′ of v starts with p1. Hence, the word v′ is regular, and v′ is an
RR-word because it is a regular subword of the RR-word v; consequently, the element
|v′| is a root.

Let α be a positive root, but not a simple root, and let the leading vertex p1 of its
graph be single; we denote by α− the positive root that is uniquely determined by the
following conditions: |p1| ≤ α− ≤ α; a vertex y of the graph D(α) is a vertex of the
graph D(α−) if and only if p1 ∈ [y, p2), where p2 is the second vertex of D(α) by priority;
and any vertex y of D(α−) has the same multiplicity in D(α−) as in D(α).

§4. (RR, 2)-words

Let α be a positive root such that its graph has at least one double vertex. We
introduce the following notation: z1(α) is the only single vertex of D(α) that has only
one adjacent vertex; x−

1 (α) is the only single vertex of D(α) that has an adjacent double
vertex; x+

2 (α) is the only double vertex of D(α) that either has only one adjacent double
vertex, or (if it is the only double vertex of D(α)) coincides with z.

Throughout this section, u is an RR-word and α is the composition of u; next, p1 is
the leading letter of u, and u1, u2 are words such that u = u1u2 and the letter p1 occurs
in each of them exactly once.

We denote the greatest vertex of a graph D by max(D).
The words u1, u2 begin with the only occurrences of their leading letter p1. Hence,

they are regular.

Remark 4.1. It is well known that if v and w are regular words, then the word vw is
regular if and only if w < v.

Corollary 4.1. 1) u1 and u2 are (RR, 1)-words (being regular subwords of the RR-word
u with one occurrence of their leading letter) and, consequently, the composition of the
words u1, u2 is rooted;

2) u2 < u1.
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For any two words v, w we write w ≺ v if w < v and none of the words v, w is a
beginning of the other. If u2 < u1, then there are two possibilities: either u1 is a proper
beginning of u2, or u2 ≺ u1. We start with analyzing the first of these cases.

Lemma 4.1. If the word u1 is a beginning of the word u2, then:
1) |u1| = [z, x+

2 (|u|)] and |u2| = [z, z1(|u|)];
2) max(p1, x

−
1 (|u|)] > max(p1, z].

Proof. 1) Since u1 is a beginning of u2, we have |u1| ≤ |u2|. Hence, all vertices of the
graph D(|u|) are contained in D(|u2|), i.e., [z1(|u|), z] ≤ |u2|.

Suppose that the latter inequality is strict. Statement 1) of Corollary 4.1 shows that
the elements u1, u2 are roots. Therefore, 2z ≤ |u2|.

Since u1 is a proper beginning of u2, there exists a letter q2 such that u1q2 is a
beginning of u2. By their choice, the words u1, u2 begin with the only occurrences of
their leading letter p1. Hence q2 < p1, which implies that u1q2 is a regular word.

This fact and Remark 4.1 show that the word u1u1q2 is regular. But the word u1u1q2

is a subword of the RR-word u, so the composition of u1u1q2 is rooted. Moreover, the
letter p1 occurs in it twice; hence, the letter z also occurs in it twice. Therefore, z occurs
in u1. So, 3z = z + 2z ≤ |u1| + |u2| ≤ |u|, a contradiction.

2) Assume that q2 is a double vertex of D(|u|). Then the relation |u1| = [z, x+
2 (|u|)]

(statement 1)) implies that the letter q2 occurs in u1. Moreover, the word u1u1q2 is a
beginning of u. Hence, q2 occurs in u at least three times, which is impossible, because
the composition of u is rooted. Thus, q2 is a single vertex of the graph D(|u|).

It has been shown above that the word u1q2 is regular. Being a regular subword of
the RR-word u, it is itself an RR-word. This implies, in particular, that its composition
is rooted. Therefore, the graph D(|u1q2|) is connected.

Thus, |u1| = [z, x+
2 (|u|)] and q is a single vertex of the graph D(|u|). Consequently,

q2 = x−
1 (|u|) and |u1q2| = [z, x−

1 (|u|)], so that u1q2 is an RR-word. This and Lemma 3.3
yield statement 2). �

Now we consider the case where u2 ≺ u1. Then

(1) u1 = aq1b, u2 = aq2c, q1 > q2,

where q1, q2 are letters and a, b, c are words (possibly, empty).

Lemma 4.2. If u is an (RR, 2)-word and u2 ≺ u1, then the word a in (1) is not empty,
and u1aq2 is an RR-word such that the graph of its composition has double vertices and,
consequently, z is a double vertex of D(|u1aq2|).
Proof. If the word a is empty, then u2 begins with the letter q2 < p1 (in fact, q2 < q1 ≤
p1). But u2 begins with p1 by definition. Hence, the word a is not empty.

The word aq2 is regular, because it begins with the only occurrence of its leading
letter. Thus, u1 > aq2, so that the word u1aq2 is regular. Being a regular subword
of the RR-word u, the word u1aq2 is an RR-word. In particular, this means that the
composition of the word u1aq2 is rooted. Hence, 2z ≤ |u1aq2|.

Since p1 occurs in each of the words u1 and a, we see that p1 is a double vertex of the
graph D(|u1aq2|). Thus, D(|u1aq2|) has double vertices. �
Lemma 4.3. If u is an (RR, 2)-word and u2 ≺ u1, then the graph D(|u2|) has no double
vertices.

Proof. Suppose that D(|u2|) has double vertices. Then, necessarily, z is a double vertex
of D(|u2|). It follows that z /∈ D(|a|): otherwise the letter z occurs at least three times
in u. Hence, there are two occurrences of z in the word q2c. Therefore, z occurs in the
word c. But then z occurs in u1aq2 at most once, which contradicts Lemma 4.2. �
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Lemma 4.4. If u is an (RR, 2)-word, u2 ≺ u1, and a is as in (1), then all vertices
of D(|a|) are double vertices of D(|u|), and D(|a|) = (q1, q2), where q1 > max(q1, p1),
q1 > max[q2, p1), and max(p1, q2] > max(q1, p1).

Proof. The words a, aq1, aq2 begin with the only occurrences of their leading letter p1.
Hence, they are regular. Being regular subwords of the RR-word u, they are RR-words
as well.

In particular, their compositions are rooted. Therefore, the graphs D(|a|), D(|aq1|),
and D(|aq2|) are connected. But the decomposition (1) shows that all vertices of D(|a|)
are double vertices of D(|u|). Hence, q1 and q2 are not vertices of D(|a|) (otherwise,
some letters would appear three times in u), but they have adjacent vertices in D(|a|).
Observe that q1 and q2 are distinct vertices.

The connected graph D(|a|) has at most two adjacent vertices in the graph D(|u|) (and
these adjacent vertices are not in D(|a|)). Thus, D(|a|) = (q1, q2). Moreover, p1 is a single
vertex of D(|a|). This and Lemma 3.3 imply that max(p1, q2] > max(q1, p1) (because aq2

is an RR-word) and max(p1, q1] > max(q2, p1) (because aq1 is an RR-word). Recall that
q1 > q2. Therefore, max(p1, q1] > max(p1, q2] > max(q1, p1). Hence, q1 > max(q1, p1)
and q1 > max[q2, p1). �

Lemma 4.5. If u is an (RR, 2)-word and u2 ≺ u1, then:
1) q1 is the nearest vertex to p1 in the interval [z, p1) such that q1 > max(p1, q2];
2) the letter q2 in (1) coincides with the letter x−

1 (|u|);
3) max[z, p1) > max(p1, x

−
1 (|u|)].

Proof. 2) Indeed, assume that q2 is a double vertex of the graph D(α). Then q1 � |u1|,
q1 � |a| by Lemma 4.3.

Hence, q2 occurs in the word b (because q1 > q2). Then there is only one occurrence
of q2 in u1. Let ũ1 be the beginning of u1 that ends with the only occurrence of q2. Then
ũ1 is an RR-word, it has only one occurrence of its leading letter p1, it ends with the only
occurrence of q2, and the letter q1 occurs in it. Now, Lemma 3.3 shows that max(p1, q2]
is greater than any vertex of D(|ũ1|) not contained in the interval [p1, q2].

Thus, q1 /∈ (p1, q2] by Lemma 4.4. Hence, max(p1, q2] > q1, which contradicts
Lemma 4.4.

Therefore, q2 is a single vertex of the graph D(|u|).
By Lemma 4.4, in the graph D(|u|) the vertex q2 has an adjacent double vertex. Thus,

q2 is a single vertex of D(|u|), and in this graph it has an adjacent double vertex, i.e.,
q2 = x−

1 (|u|).
Statement 1) follows from statement 2) and Lemma 4.4, and statement 3) follows from

statements 1) and 2). �

Lemma 4.6. If u is an (RR, 2)-word and u2 ≺ u1, then the graph D(|u2|) coincides with
the interval (q1, z1(|u|)], where q1 is the nearest vertex to p1 in the interval [z, p1) such
that q1 > max(p1, x

−
1 (|u|)].

Proof. By Lemma 4.3, no letter occurs in the word u2 two or more times. Since the
graph D(|u2|) is connected, we see that it is an interval.

Each vertex of D(|u1|) is double in D(|u|). Indeed, otherwise D(|u1|) has a vertex
t that is single in D(|u|). Then x−

1 (|u|) ≤ [p1, t] ≤ |u1|, which is impossible. Thus,
[z1(|u|), x−

1 (|u|)] ≤ |u2|.
By Lemma 4.4, |a| = (q1, q2). Moreover, |a| ≤ |u2|, because the word a is a beginning

of u2. Hence, (q1, q2) ≤ |u2|. Now, statement 2) of Lemma 4.5 shows that (q1, x
−
1 (|u|)) ≤

|u2| and the inequality [z1(|u|), x−
1 (|u|)] ≤ |u2| yields [z1(|u|), q1) ≤ |u2|.
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We prove that |u2| ≤ [z1(|u|), q1). Indeed, otherwise the inequality [z1(|u|), x−
1 (|u|)] ≤

|u2| and the connectedness of the graph D(|u2|) would imply that the letter q1 occurs in
the word u2. Since D(|a|) = (q1, q2) (see Lemma 4.4), the letter q1 does not occur in a.
Hence, q1 occurs in c (recall that u2 = aq2c, q1 > q2), and thus q1 occurs in u2 to the
right of the only occurrence of q2. Hence, q1 occurs in the word u1aq2 at most once.

But the composition of the word u1aq2 is rooted, the letter p1 occurs in it twice
(see Lemma 4.2), and q1 ∈ [z, p1) (see Lemma 4.5). Hence, the word u1aq2 has two
occurrences of q1, a contradiction. �

Let Root(2, max 2) denote the set of all positive roots α such that the leading vertex
p1 of the graph D(α) is a double vertex and the vertex second by priority of the interval
[x−

1 (α), z] is contained in the interval (p1, z]. We denote by Root(2, max 1) the set of
all positive roots that do not belong to Root(2, max 2), but the leading vertices of their
graphs are double.

Lemma 4.7. Let α be a positive root such that the leading vertex of its graph is double.
Then there exists only one RR-word u the composition of which is equal to α. Namely,
u = u1u2, where

1) u2 is the only (RR, 1)-word the composition of which is the sum of all vertices in
the interval [p1, z1(α)] and all vertices y in the interval [z, p1) such that max[y, p1) <
max(p1, x

−
1 (α)];

2) u1 is the only (RR, 1)-word such that |u1| = [x+
2 (α), z] if α ∈ Root(2, max 1), and

|u1| = [x+
2 (α), z] + [m, z] if α ∈ Root(2, max 2), where m is the nearest to the leading

vertex p1 of the graph D(α) among all vertices of the interval (p1, z] that are greater than
all vertices of the interval [x−

1 (α), p1).

Proof. Let u = u1u2 be an RR-word the composition of which is equal to α (the words
u1 and u2 were defined at the beginning of this section).

1) Lemmas 4.1, 4.6 imply that the composition of u2 is the sum of all vertices in
the interval [p1, z1(|u|)] and all vertices y in the interval [z, p1) such that max[y, p1) <
max(p1, x

−
1 (|u|)]. By Corollary 3.1, the (RR, 1)-word u2 is uniquely determined by its

composition.
2) By statement 1) of Corollary 4.1, u1 is an (RR, 1)-word. Since u = u1u2 and

|u| = α, we know the composition of the word u1: |u1| = α − |u2|, where the root |u2| is
determined by property 1). By Corollary 3.1, the (RR, 1)-word u1 is uniquely determined
by its composition. �

The following statement is an immediate consequence of Corollary 3.1 and Lemma
4.7.

Corollary 4.2. For any positive root α, there exists exactly one RR-word the composition
of which is equal to α.

For a positive root α, we shall denote by rrWord(α) the only RR-word the composition
of which is equal to α.

§5. SR-words

For a regular associative word u, we introduce the following notation: l(u) is the
longest proper regular beginning of u; r(u) is the longest proper regular ending of u;
l(u) is the ending of u obtained from u by discarding the beginning l(u); and r(u) is the
beginning of u obtained from u by discarding the ending r(u).

Let u, v be any two words; we shall write v ≺ u if u = wy1u1 and v = wy2 for some
(possibly, empty) words w, u1 and some letters y1, y2 such that y1 > y2. We recall a
well-known property.
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Remark 5.1. Any associative word can be written as a product u = u1u2 · · ·un of a
nondecreasing sequence of regular words u1, u2, . . . , un. The nonnegative integer n and
the words u1 ≤ u2 ≤ · · · ≤ un are determined uniquely by u.

The following property of regular words plays an essential role in this paper.

Lemma 5.1. For any regular associative word a of length at least 2, there exist regular
words b, c and a positive integer k such that a = bkc and c ≺ b. Such a triple (b, c, k) is
unique, and moreover, b = l(a).

Proof. Suppose that such a triple (b, c, k) exists; we prove that it is unique.
First, we show that b = l(a). Assume the contrary. The word b is a regular proper

beginning of a. Therefore, it is a regular beginning of l(a). By assumption, b is a proper
beginning of l(a). Hence, either l(a) = btb′, where 1 ≤ t < k and b′ is a beginning of b,
or l(a) = bkc′, where c′ is a proper beginning of c.

In the former case, we have b ≤ b′, and by Remark 5.1 the word btb′ cannot be regular.
But l(a) = btb′ is a regular word.

In the latter case, Remark 5.1 shows that b > c′. But we have assumed that c ≺ b.
The word c′ is a proper beginning of c. Hence, c′ is a beginning of b, whence b ≤ c′.

Thus, both cases lead to a contradiction, which means that b = l(a).
Next, we have c ≺ b because c ≺ b. Hence, b is not a beginning of c. Therefore, k is

the greatest integer such that bk is a beginning of a. Thus, the integer k is determined
uniquely.

The word c is obtained from a by discarding the beginning bk. Therefore, the word c
is also determined uniquely.

It remains to prove the existence of the triple (b, c, k). Let b = l(a), and let k be the
greatest integer such that bk is a beginning of a; next, let c be the ending of a obtained
by discarding the beginning bk. It suffices to show that c ≺ b.

The definition of regular words implies that c < a. But a ≤ b, because b is a beginning
of a. Hence, c < b.

By the definition of the integer k, the word b cannot be a beginning of c. Since c < b,
we see that c ≺ b, i.e., b = wx1b1 and c = wx2c1 for some (possibly, empty) words w, c1,
b1 and some letters x1, x2 such that x1 > x2.

Assume that c1 is not empty. Then c′′ ≺ b, where c′′ is the word obtained from c by
discarding the last letter. Hence, c′′ < b. This and Remark 5.1 imply that the word bkc′′

is regular.
Since bkc′′ is the longest proper beginning of a (it is obtained from a by discarding

the last letter), we see that l(a) = bkc′′ (by the definition of the word l(a)). But this is
impossible, because l(a) = b by construction, and the word c′′ is not empty (the letter
x2 occurs in it). Thus, our assumption is false. Hence, c ≺ b.

The lemma is proved. �

Now, let 〈X, Φ+,≤〉 be a set of data for which the leading vertices of the graphs of
positive roots are at most double (the set of data for Bn satisfies this condition). By
Lemma 5.1, the set of SR-words for such a set of data splits into the disjoint union of
classes S(i, j, k) to be described below.

Let u be an SR-word, and let u = ai(u)b be its decomposition as in Lemma 5.1; here i(u)
is a positive integer and a, b are regular words such that b ≺ a. We introduce additional
parameters that characterize the word u; namely, let j(u) and k(u) be the numbers of
occurrences of the leading letter of u in a and in b, respectively. For nonnegative integers
i, j, k, for S(i, j, k) we take the set of all SR-words u such that i = i(u), j = j(u), and
k = k(u).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



76 A. N. KORYUKIN

Lemma 5.2. Let 〈X, Φ+,≤〉 be a set of data for which the leading vertices of the graphs
of positive roots are at most double. Then the set of SR-words for this set of data is the
union of the sets S(i, j, k), where

1) 1 ≤ i ≤ 3;
2) j ∈ {1, 2};
3) 0 ≤ k ≤ j;
4) if i = 2 and j = 2, then k = 0;
5) if i = 3, then j = 1 and k = 0.

Proof. 1) Let u = aib be the decomposition of an SR-word u, where a and b are regular
words such that b ≺ a. Assume that i ≥ 3. Then, by Remark 4.1, the word ai−1b is a
regular proper subword of u. Hence, the composition of the word ai−1b is rooted, and
consequently, the leading letter p1 of u occurs in the word ai−1b at most twice.

But the word u is regular. Hence, it begins with the letter p1. Therefore, p1 appears
in the word a at least once (by definition, the beginning a of the word u is not empty).
Thus, i − 1 ≤ 2, i ≤ 3.

2) The word a is a regular proper subword of the SR-word u. Hence, the composition
of a is rooted, and consequently, p1 occurs in a at most twice, i.e., j ≤ 2. Moreover, the
leading letter p1 of u appears at least once in a, i.e., j > 0.

3) The word b does not end with the letter p1, because it is a regular word, and b ≺ a.
Hence, any occurrence of p1 in b is an occurrence of p1 in the common beginning of a
and b. Therefore, 0 ≤ k ≤ j.

4) If i = 2, then the word ab is a regular proper subword of the SR-word u. Hence,
the composition of ab is rooted, and consequently, the number j + k of occurrences of p1

in ab is not greater than 2. If j = 2, we see that k = 0.
5) If i = 3, then the word a2b is a regular proper subword of the SR-word u. Hence,

the composition of a2b is rooted, and consequently, the number 2j + k of occurrence of
p1 in a2b is not greater than 2. But j > 0, so that j = 1 and k = 0. �

We can easily list all triples (i, j, k) satisfying the conditions of Lemma 5.2: (1, 1, 0),
(1, 1, 1), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 1, 0), (2, 1, 1), (2, 2, 0), and (3, 1, 0).

Corollary 5.1. Let 〈X, Φ+,≤〉 be a set of data for which the leading vertices of the graphs
of positive roots are at most double (in particular, it can be the set of data for Bn). Then
the set of SR-words for this set of data is the disjoint union of the sets S(i, j, k), where
(i, j, k) is one of the nine triples (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 1, 0),
(2, 1, 1), (2, 2, 0), and (3, 1, 0).

In what follows, we shall study each of these nine sets S(i, j, k). But before doing this,
we discuss some useful properties of regular words. The first of these properties is well
known.

Remark 5.2. Let y, z be regular subwords of a regular word x. If the intersection of
these subwords is not empty, then their union is again a regular word.

Thus, by Lemma 5.1, for any regular word u the union of the subwords l(u), r(u)
coincides with u. As a corollary, we obtain the following property of regular words.

Lemma 5.3. Any regular subword of a regular word x is either a subword of l(x), or a
subword of r(x).

Lemma 5.3 implies the following characterization of RR-words and SR-words.

Remark 5.3. A word u is an RR-word if and only if it is regular, its composition is rooted,
and the words l(u) and r(u) are RR-words.
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Remark 5.4. A word u is an SR-word if and only if it is regular, its composition is not
rooted, and the words l(u) and r(u) are RR-words.

§6. The set S(1, 1, 0)

Remark 6.1. The set S(1, 1, 0) consists of all SR-words with only one occurrence of the
leading letter.

For a word v, we shall denote by p1(v) its leading letter, by p2(v) its letter second by
priority, and by ṽ the word obtained from v by discarding the last letter.

In what follows, u will be an (SR, 1)-word and q will be the last letter of u.
First, we describe the words of length 2 belonging to S(1, 1, 0). We denote the set of

such words by S(len=2).

Remark 6.2. The set S(len=2) consists of all words xy such that the letters x, y are not
adjacent in the graph Bn and x > y.

We split the set of (SR, 1)-words of length exceeding 2 into the disjoint union of three
subsets: the set S(q>p2) of words the last letter of which is greater than p2(ũ); the
set S(q=p2) of words the last letter of which is equal to p2(ũ); and the set S(q<p2) of
words the last letter of which is smaller than p2(ũ). It is obvious that if u ∈ S(q=p2) or
u ∈ S(q>p2), then r(u) = q. Using Remark 5.4, we arive at the following description of
the sets S(q>p2) and S(q=p2).

Remark 6.3. The words u in the set S(q>p2) are in one-to-one correspondence with the
pairs (α, q) in which α is a nonsimple positive root such that the leading vertex p1 of its
graph is single, and q is a letter not adjacent to any vertex of the graph D(α) and such
that p2(α) < q < p1. This correspondence is given by the formula u = red(α) · q, where
red(α) stands for the reduced word of composition α.

Remark 6.4. The words u in the set S(q=p2) are in one-to-one correspondence with the
nonsimple positive roots α such that the leading vertex p1 of the graph D(α) is single
and the element α + |p2(α)| is not a root. This correspondence is given by the formula
u = red(α) · p2(α).

The set S(q<p2) can be split into the disjoint union of two subsets: the set S(p21) of
words in S(q<p2) with one occurrence of the letter second by priority and the set S(p22)
of words in S(q<p2) with two occurrence of the letter second by priority.

Lemma 6.1. The words u in S(p21) are in one-to-one correspondence with the nonsimple
positive roots α such that the leading vertex p1 and the vertex p2 second by priority in the
graph D(α) are single and nonadjacent, and the vertex q of the interval (p2, p1) that is
adjacent to p2 is greater than any vertex t of the graph D(α) such that p2 ∈ (t, q). This
correspondence is given by the formula u = red(α) · q.

Proof. Let u ∈ S(p21). We denote by w the ending of u that begins with the only
occurrence of the letter p2. The word w is regular and, being a regular proper subword
of the SR-word u, it is an RR-word. Similarly, the words ũ and w̃ obtained from u and
v by discarding their last letter q are RR-words.

Let α denote the composition of the word ũ. Since ũ, w̃, and w are RR-words, the
elements α, |w̃|, and |w| = |w̃| + |q| are positive roots.

Since p1 occurs in the RR-word ũ only once, this word is an (RR, 1)-word. Moreover,
2|p2| � α. Therefore, applying Lemma 3.3 to ũ, we can find the composition of w̃: the
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graph D(|w̃|) consists of all vertices t of D(α) such that p2 ∈ [t, p1), and the multiplicities
of these vertices in the graphs D(|w̃|) and D(α) are equal. The element |w| = |w̃|+|q| is a
root, and the graph D(α) has at least two single vertices (say, p1, p2). Hence, q ∈ (p1, p2),
and consequently, the vertices p1 and p2 are not adjacent.

Since q ∈ (t, p2) for every letter t 	= p2 occurring in the word w̃, and the (RR, 1)-word
w ends with the letter q, Lemma 3.3 shows that q is the second by priority letter of w.
Now, the description of the root |w̃| implies that q is greater than any vertex t of the
graph D(α) such that p2 ∈ (t, q).

The converse statement of the lemma can easily be obtained from Remark 5.4 and
Lemma 3.3. �

Lemma 6.2. The words u in S(p22) are in one-to-one correspondence with the nonsimple
positive roots α such that the graph D(α) has at least two double vertices, the leading
vertex p1 of this graph is single, and the vertex p2 second by priority is double, distinct
from z, and has exactly one adjacent double vertex. This correspondence is given by the
formula u = red(α) · q1, where q1 stands for the double vertex of the graph D(α) adjacent
to p2.

Proof. Let u ∈ S(p22). Since u is an SR-word, the proper ending w of this word that
begins with the right occurrence of the letter p2 is again an RR-word; consequently, its
composition is rooted.

Since u ∈ S(p22), the last letter q of u is smaller than p2. Hence, the word w̃ begins
with p2, and it is the only occurrence of this letter in w̃. It follows that the composition
of w̃ is rooted, because it is a regular subword of the RR-word w.

Applying Lemma 3.3 to the RR-word ũ, we see that |w̃| = [p2, x
+
2 ]. Moreover, above

it was shown that the elements |w̃| and |w| = |w̃| + |q| are roots (and consequently, the
graph D(|w|) is connected), and the element |u| is not a root, because u is an SR-word.
Hence, p2 ∈ (q, p1), and the vertex q is adjacent to p2.

Moreover, the vertex p2 of the graph D(α) is double. Therefore, q is also a double
vertex of the graph D(α), and so the graph D(α) has at least two double vertices. Now
it is clear that q1 = q and |w̃| = [q, x+

2 ].
Assume that p2 	= x+

2 , i.e., that the vertex p2 has two adjacent double vertices in the
graph D(α). Let t denote the vertex that is adjacent to p2 and is distinct from q. Since,
by its choice, the (RR, 1)-word w ends with the letter q, the letter t is the second letter
of the word w, whence |w̃| = [q, x+

2 ] and t < q.
We denote by w′ the longest subword of ũ that begins with the left occurrence of p2

and has no other occurrences of p2. Then w′ is an (RR, 1)-word in which q is the second
letter. Moreover, t < q and t is the second letter of w. Hence, w′ > w. Therefore, w′w
is a regular word and w′w is a proper ending of the SR-word u. So, the element |w′w| is
a root.

But q is a double vertex of D(α). Hence, the letter q occurs in w′ two times. Therefore,
q occurs in w′w three times, in contradiction with the fact that the element |w′w| is a
root.

Thus, p2 = x+
2 . But we have already proved that the graph D(α) has at least two

double vertices. Hence, p2 	= z.
The converse statement of the lemma can easily be obtained from Remark 5.4 and

Lemma 3.3. �

Remark 6.5. The set S(1, 1, 0) is the disjoint union of the five subsets S(len=2), S(q>p2),
S(q=p2), S(p21), and S(p22), which are described in Remarks 6.2, 6.3, 6.4 and Lem-
mas 6.1, 6.2.
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§7. The set S(1, 1, 1)

Let u be a word in S(1, 1, 1). Recall that u can be represented in the form u = vw,
where v, w are regular words with the following properties: their graphs have the same
leading vertex p1, this vertex is a single vertex of both graphs, and w ≺ v.

The words v and w are proper regular subwords of the SR-word u; hence, v and w
are RR-words. We denote by P (1, 1) the set of pairs (v, w) of RR-words such that the
word vw is regular, the graphs D(|v|) and D(|w|) have the same leading vertex p1, it is
a single vertex of both graphs, and w ≺ v.

Remark 7.1. The words u in S(1, 1, 1) are in one-to-one correspondence with the pairs
(v, w) in P (1, 1) such that the element |v| + |w| is not a root. This correspondence
h : P (1, 1) → S(1, 1, 1) is given by the formula h(u, v) = vw.

Remark 7.2. Definition 2.1 implies that if α and β are positive roots in the set of data
for Bn such that β < α, then:

1) either α − β is a simple root, or there is a positive root γ such that β < γ < α;
2) if the root β is not simple and q is an element of the set M+(α) such that its

multiplicities in the graphs D(β) and D(α) are equal, then q ∈ M+(β).

Lemma 7.1. Let α and β be positive roots such that the leading vertex p1 of the graph
D(α) is single and |p1| ≤ β < α. Then rrWord(β) > rrWord(α).

Proof. Statement 1) of Remark 7.2 allows us to assume that the element α−β is a simple
root. Let t denote the letter such that |t| = α − β, and let u, v be the only RR-words
the compositions of which are equal to α and β, respectively.

Assume that the statement of the lemma fails. Consider a counterexample in which
the root α is minimal.

First, we assume that u ends with the letter t. Then the word ũ obtained from u by
discarding the last letter has the same composition as v. By Corollary 3.1, it follows that
ũ = v. Hence, u = vt < v.

Thus, the last letter q of u is not t. Let D∗(α) and D∗(β) be the graphs obtained
(respectively) from D(α) and D(β) by discarding the vertex p1. Further, let D+(α) and
D+(β) be the connected components of the graphs D∗(α) and D∗(β) that contain their
leading vertices p2(α) and p2(β). By Lemma 3.3, we have q ∈ M+(α) and q ∈ D+(α).

Since |t| = α − β, we see that t ∈ M+(α). Moreover, t 	= q, q ∈ M+(α), and the
leading vertex p1 of D(α) is single. Hence, p1 ∈ [t, q]. But q ∈ D+(α), whence t /∈ D+(α).
It follows that p2(β) = p2(α), D+(β) = D+(α). Therefore, t /∈ D+(β). Since p1 ∈ [t, q],
we conclude that q ∈ D+(β).

The multiplicities of the vertex q in the graphs D(α) and D(β) are equal, because
|t| = α−β, p1 ∈ [t, q]. Since, q ∈ M+(α), statement 2) of Remark 7.2 shows q ∈ M+(β).
Next, since q ∈ D+(β), with the help of Lemma 3.3 wee see that the word v ends with
the letter q, i.e., v = ṽq, where ṽ is the word obtained from v by discarding the last
letter.

The word u is regular and it is not a letter. Hence, it begins with its leading letter p1,
and its last letter q is smaller than p1. In particular, q 	= p1.

The word v is regular and p1 occurs in it only once. Hence, v begins with the only
occurrence of its leading letter p1. Therefore, the relations v = ṽq and q 	= p1 imply that
ṽ begins with the the only occurrence of its leading letter p1; consequently, the word ṽ
is not empty, it is regular, and |p1| ≤ |ṽ|.

Being a regular subword of the RR-word v, the word ṽ is itself an RR-word, and
consequently, the element |ṽ| is a root. Since q ∈ M+(α) and u = ũq, the element |ũ| is
a root.
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It has been proved above that the requirements of the lemma are fulfilled for the pair
of roots α − |q|, β − |q|. Hence, ũ < ṽ by the choice of the root α. It follows that
u = ũq < ṽq = v, which contradicts the choice of α. This contradiction proves the
lemma. �

For a word w and a letter q, denote by dq(w) the number of occurrences of q in w.

Lemma 7.2. If a pair (v, w) belongs to P (1, 1), then the element |v|+ |q| is a root (here
q is the last letter of w).

Proof. Since (v, w) ∈ P (1, 1), w is an RR-word, and consequently, the element |w| is a
root. Hence, the letter q occurs in w at most twice.

If dq(v) = 0, then q is not a vertex of the graph D(|v|). But |v| is a root. Hence, the
element |v| + |q| is a root. Thus, we may assume that dq(v) ≥ 1.

Since w ≺ v, we conclude that |w| ≤ |v| + |q|. Therefore, if dq(w) ≤ dq(v), then
|w| ≤ |v|. Then w ≥ v by Lemma 7.1. But the words v, w, and vw are regular
(because (v, w) ∈ P (1, 1)), and v > w by Remark 4.1. We arrive at a contradiction.
Thus, dq(w) > dq(v). Moreover, dq(w) ≤ dq(v) + 1 because |w| ≤ |v| + |q|. Hence,
dq(w) = dq(v)+1. Using the inequalities dq(w) ≤ 2 and dq(v) ≥ 1, we see that dq(w) = 2
and dq(v) = 1.

Since (v, w) ∈ P (1, 1), the word w is an (RR, 1)-word, and its length is at least two.
Hence, its beginning w̃ obtained by discarding the last letter is not empty. Therefore, by
Remark 3.2, w̃ is an RR-word and |p1| ≤ |w̃|, so that the element |w̃| is a root.

Now from the relation dq(w) = 2 we conclude that q is a single vertex of the graph
D(|w̃|), i.e., q ∈ M+(|w̃|). Hence, in the graph D(|w̃|) the vertex q has an adjacent single
vertex, and all vertices in the interval (q, z] are double vertices of this graph (if q = z,
we agree that this interval is empty).

Next, |w̃| ≤ |v| because |w| ≤ |v| + |q|. Therefore, all vertices of the interval (q, z] are
double vertices of the graph D(|v|).

All double vertices of the graph D(|v|) are contained in the interval (q, z]. Indeed,
otherwise q would be a double vertex of D(|v|) (because the set of double vertices of a
root is an interval), and this contradicts the relation dq(v) = 1. But |w̃| ≤ |v| and all
vertices of the interval (q, z] are double vertices of D(|w̃|). Therefore, all double vertices
of D(|v|) form the interval (q, z].

Also, |w̃| ≤ |v|, and in the graph D(|w̃|) the vertex q has an adjacent single vertex.
Therefore, q has an adjacent single vertex in the graph D(|v|).

Thus, the set of all double vertices of D(|v|) is the interval (q, z], and q is a single
vertex of this graph and has an adjacent single vertex in it. Therefore, q ∈ M+(|v|), i.e.,
the element |v| + |q| is a root. �

If (v, w) is a pair in P (1, 1), then w ≺ v. Hence, the length of the word v is not
smaller than that of w. Let v̂ denote the beginning of v such that its length is equal
to the length of w; we denote by q̂ the last letter of v̂. The relation w ≺ v implies that
v̂ = w̃q̂, w = w̃q, and q < q̂.

Lemma 7.3. Let (v, w) be a pair in P (1, 1). Then:
0) if v′ is a beginning of v the length of which is not smaller than the length of w, then

(v′, w) ∈ P (1, 1);
1) the last letter q of w is smaller than the letter p2(v′) of v′ second by priority;
2) p2(v′) = p′2, where p′2 is the vertex of the graph D(|v′| + |q|) second by priority;
3) q cannot be the last letter of the word rrWord(|v′| + |q|);
4) p1 ∈ (p′2, q).
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Proof. 0) By Remark 3.2, v′ is an (RR, 1)-word.
Since v′ is a beginning of v and the length of v′ is not smaller than that of w, the

relation w ≺ v implies that w ≺ v′. Hence, (v′, w) ∈ P (1, 1).
Because of property 0), it suffices to prove properties 1)–4) in the case where v′ = v.

Below, p2 stands for the vertex of D(|v| + |q|) second by priority.
1) Since (v, w) ∈ P (1, 1), the word w is regular, its length is at least two, and the

letter p1 appears in it only once. Hence, the last letter q of w is smaller than its leading
letter p1.

Assume that statement 1) of the lemma fails. Then q = p2(v), and the inequality
q < q̂ shows that q̂ = p1.

On the other hand, the beginning v̂ of v starts with the only occurrence of its leading
letter p1. Therefore, the word v̂ is regular. Hence, it cannot end with its leading letter,
i.e., q̂ < p1. This contradiction proves property 1).

Property 2) follows from 1).
3) By Lemma 7.2, the element α = |v| + |q| is a root, i.e., q ∈ M+(α).
Assume that statement 3) of the lemma fails. Since q < p1 and α = |v|+ |q|, the letter

p1 appears in the regular word u = rrWord(α) only once. Hence, this word begins with
its leading letter p1. Therefore, the word ũ obtained from u by discarding the last letter
is regular and, being a regular subword of the RR-word u, it is itself an RR-word. But,
by Corollary 3.1, the RR-word ũ is determined by its composition. Therefore, ũ = v
because |ũ| = α− |q| = |v|. Hence, u = vq. Now, the relation w ≺ v implies that w ≺ u,
whence w < u.

On the other hand, |p1| ≤ |w| ≤ |v| + |q| = α and, by Lemma 7.1, w ≥ u. This
contradiction proves property 3).

4) Assume that statement 4) of the lemma fails, i.e., p1 /∈ (p2, q). Then the relations
p1 	= p2 and p1 	= q imply p1 /∈ [p2, q]. But q ∈ M+(α) and q < p1. Therefore, by
Lemma 3.3, the word u ends with the letter q, and this contradicts property 3) proved
above. �

Statement 4) of Lemma 7.3 implies the following claim.

Corollary 7.1. If (v, w) is a pair in P (1, 1), then the leading vertex p1 of the graph
D(|v| + |q|) has two adjacent vertices in this graph.

We denote by Root∗1 the set of all positive roots such that the leading vertices of their
graphs are single and have two adjacent vertices.

Lemma 7.4. Let (v, w) be a pair in P (1, 1). Then:
1) the vertex q has the same multiplicity in the graph D(α) as in the graph D(|w|);
2) |q| ≤ α− ≤ |w|, where α = |v| + |q|;
3) if a vertex of the graph D(α) is distinct from its leading vertex p1 and is greater

than all vertices of the graph D(α−) except p1, then this vertex is not a vertex of the
graph D(|w|);

4) q̂ = m, where m is the nearest to p1 among all vertices of the graph D(α) (where
α = |v| + |q|) that are greater than all vertices of the graph D(α−) except p1;

5) the vertex m has an adjacent vertex in the graph D(|w|).

Proof. 1) Since |w| ≤ |v|+ |q|, the multiplicity dq(α) of the vertex q in the graph D(α) is
not smaller than the multiplicity dq(|w|) of q in the graph D(|w|). If statement 1) fails,
then dq(|w|) < dq(α), in contradiction with property 3) of Lemma 7.3.

2) By statement 4) of Lemma 7.3, we have p1 ∈ (p2, q). Hence, q is a vertex of the
graph D(α−), i.e., |q| ≤ α−. Next, q ∈ M+(|w|) by Lemma 3.1. Using property 1) and
the relation p1 ∈ (p2, q), we see that α− ≤ |w|.
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3) Assume that statement 3) fails. Then the definition of the root α− and property
2) show that p1 ∈ (p2(|w|), q). By Lemma 3.3, the (RR, 1)-word w cannot end with
the letter q, in contradiction with the choice of that letter. This contradiction proves
statement 3).

4) By Lemma 7.3, the pair (v̂, w) is an element of the set P (1, 1). Hence, by Lemma 7.2,
the element |v̂| + |q| is a root; we denote it by α̂.

First, we show that q̂ is the letter of v̂ second by priority. Indeed, assume the contrary.
Then q̂ < p1, because the word v̂ begins with the only occurrence of p1 and the length
of this word is at least two. Now from our assumption it follows that q̂ < p2(v̂).

By statement 1) of Lemma 7.3, we have q < p2(v̂). The two inequalities above imply
that p2(α̂) = p2(v̂) = p2(w) = p2(w̃). For brevity, we denote this letter by p2.

The word w ends with the letter q, and the word v̂ ends with the letter q̂. Therefore,
by Lemma 3.3, we have p1 /∈ [p2, q] and p1 /∈ [p2, q̂]. But q and q̂ are elements of the set
M+(α̂). Therefore, the vertices q and q̂ coincide.

But q < q̂ because w ≺ v, a contradiction. Thus, q̂ is the letter second by priority in
the word v̂. Moreover, q < q̂ and |w| < |v̂| + |q|. Hence, q̂ is greater than all vertices of
the graph D(|w|) except p1, i.e., q̂ > p2(|w|).

Using property 2) proved above, we conclude that α− ≤ |w|. Hence, p2(α−) ≤ p2(|w|).
Thus, q̂ > p2(α−).

Since v̂ is an RR-word, the element |v̂| is a root. Hence, the graph D(|v̂|) is connected.
But v̂ = w̃ · q̂, and so q̂ has an adjacent vertex in the graph D(|w̃|). Therefore, q̂ has an
adjacent vertex in the graph D(|w|).

Assume that statement 4) fails, i.e., q̂ 	= m. The inequality q̂ > p2(α−) has been
proved above; since α− ≤ |w|, we obtain m ∈ (q̂, p1). But q̂ has an adjacent vertex in the
graph D(|w|). Hence, m is a vertex of the graph D(|w|), and this contradicts statement
3), which was proved before. Thus, we obtain statement 4).

5) Since q̂ has an adjacent vertex in D(|w|), statement 4) implies statement 5). �

Lemma 7.5. The pairs (v, w) in P (1, 1) are in one-to-one correspondence with the pos-
itive roots α such that the leading vertex p1 of the graph D(α) is single and has two
adjacent vertices. The correspondence µ : Root∗1 → P (1, 1) is given by the formula
µ(α) = (rrWord(α − |q|), rrWord(β)), where q is the only element of M+(α) that has
the following properties: p1 ∈ (p2, q), where p2 is the vertex of the graph D(α) second by
priority; β = α− + (p1, m) is a positive root (as before, m is the nearest to p1 among all
vertices of the graph D(α) that are greater than all vertices of the graph D(α−) except
p1).

Proof. Let Root1 denote the set of positive roots such that the leading vertices of their
graphs are single. If (v, w) is a pair in P (1, 1), then, by Lemma 7.2 and Corollary 7.1,
the root α = |v| + |q| is an element of Root∗1. Let ν : P (1, 1) → Root∗1 be the mapping
defined by the formula ν(v, w) = |v| + |q| ((v, w) ∈ P (1, 1)). We fix a root α in Root∗1.

We show that the mapping ν is injective. The element q belongs to M+(α) because
α = |v|+|q|. Also, p1 ∈ (p2, q) by statement 4) of Lemma 7.3. The conditions q ∈ M+(α)
and p1 ∈ (p2, q) determine the vertex q uniquely.

Therefore, the composition of the word v is determined uniquely; namely, |v| = α −
|q|. But v is an (RR, 1)-word; therefore, by Corollary 3.1, the word v is also uniquely
determined.

Statements 1), 3), and 5) of Lemma 7.4 imply the following properties of the root |w|:
a) the multiplicity of the vertex q in the graph D(α) is the same as in the graph

D(|w|);
b) m is not a vertex of D(|w|), but it has an adjacent vertex belonging to that graph.
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Since q ∈ M+(α), conditions a) and b) determine the root |w| uniquely; namely,
|w| = α− + (p1, m). But w is an (RR, 1)-word, and by Corollary 3.1 the word w is
determined uniquely. Thus, the words v and w are uniquely determined by the image
ν(v, w), which means that the mapping ν is injective.

Now we show that the mapping ν is surjective. For this, consider the RR-words
v = rrWord(α− |q|) and w = rrWord(β). Let a be the only RR-word the composition of
which is equal to β−|q|. Since the compositions of the (RR, 1)-words a and w̃ are equal,
these words themselves are equal by Corollary 3.1. Hence, w = a · q.

Under the assumptions of the lemma, we have |q| ≤ α−. Therefore, q < m. By
Lemma 3.3, the word a · m is a beginning of the word v. Since w = a · q and q < m, we
see that w ≺ v, which implies that (v, w) ∈ P (1, 1). Moreover, ν(v, w) = α. Hence, the
mapping ν is surjective. But we have already seen that ν is injective; thus the mapping
ν is bijective. It is obvious that the mapping µ is inverse to ν. �
Lemma 7.6. Let (v, w) be a pair in P (1, 1); then the element |v| + |w| is a root if and
only if the following conditions are satisfied:

1) all vertices of the graph D(α−) are single (here α = |v|+ |q| and q is the last letter
of w);

2) z is a vertex of the graph D(α);
3) p2 ∈ (p1, z];
4) if m is the vertex nearest to p1 among all vertices of the interval (p1, z] that are

greater than all vertices of the interval [q, p1), then m is double and belongs to M+(α).

Proof. We take a pair (v, w) in P (1, 1) such that the element |v|+ |w| is a root, and prove
properties 1)–4). By Lemma 7.2, the element α = |v| + |q| is a root.

1) Assume the contrary. Let y be a double vertex of the graph D(α−). Then 2 · |y| ≤
α−. But α− ≤ |w| by Lemma 7.5. Hence, 2|y| ≤ |w|. Now from the inequalities
2 · |y| ≤ α− ≤ α = |v|+ |q| it follows that |y| ≤ |v|. Therefore, 3 · |y| ≤ |v|+ |w|. But the
element |v| + |w| is a root, and so the latter inequality is impossible. This contradiction
proves property 1).

2) Since |p1| ≤ |v| and |p1| ≤ |w|, we have 2|p1| ≤ |v| + |w|. Hence, the graph
D(|v|+ |w|) has double vertices. Therefore, z is a double vertex of this graph. It follows
that |z| ≤ |v| + |w|. Moreover, |v| + |w| ≤ 2α because |v| ≤ α and |w| ≤ α. Hence,
|z| ≤ 2α. Consequently, |z| ≤ α.

3) Assume the contrary. Then p1 ∈ (p2, z], and by Lemma 7.5 properties 1) and 2)
imply that all vertices of the graph D(α) are single, q = z, |v| = α−|z|, and |w| = (m, z]
for a vertex m distinct from z.

Hence, z is a single vertex of the graph D(|v| + |w|). But the element |v| + |w| is a
root whose graph D(|v| + |w|) has double vertices (for example, p1). This contradiction
proves property 3).

4) By Lemma 7.5, from property 3) it follows that q is the only vertex of D(α) that
has only one adjacent vertex and is such that p1 ∈ (q, z). Therefore |w| = [q, m) by
Lemma 7.5.

The vertex p1 is double in the graph D(|v| + |w|). Moreover, m ∈ (p1, z] and the
element |v| + |w| is a root. Hence, m is a double vertex of the graph D(|v| + |w|). But
the identity |w| = [q, m) shows that m is not a vertex of the graph D(|w|). Therefore,
2|m| ≤ |v|. Hence, m is a double vertex of the graph D(α).

If m /∈ M+(α) and m′ is a vertex of the interval [q, m] adjacent to m, then 2|m′| ≤ |v|.
Also, |m′| ≤ |w| because |w| = [q, m). It follows that 3|m′| ≤ |v| + |w|. But the element
|v| + |w| is a root. This contradiction proves property 4).

We prove the converse statement of the lemma. Let (v, w) be a pair belonging to
P (1, 1) and satisfying conditions 1)–4); we show that the element |v| + |w| is a root.
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Indeed, by Lemma 7.5 and condition 3), q is the only vertex of D(α) that has only one
adjacent vertex and is such that p1 ∈ (q, z). By Lemma 7.5, we have |w| = [q, m). But
|v| = α − |q|, and the last two identities and property 4) show that the element |v| + |w|
coincides with the root [q, z] + (q, z]. �

Remark 7.1 and Lemmas 7.5, 7.6 imply the following statement.

Corollary 7.2. The words in S(1, 1, 1) are in one-to-one correspondence with the positive
roots α such that

1) the leading vertex p1 of the graph D(α) is single and has two adjacent vertices in
this graph;

2) at least one of the conditions of Lemma 7.6 fails for the element α−|q|+β. Here q
is the only element of M+(α) that has the following properties: p1 ∈ (p2, q) (where p2 is
the vertex of the graph D(α) second by priority), and β = α− + (p1, m) is a positive root
(where m is the vertex nearest to p1 among all vertices of D(α) that are greater than all
vertices of the graph D(α−) except p1).

This correspondence f : Root∗1 → S(1, 1, 1) is given by the formula

f(α) = rrWord(α − |q|) · rrWord(β).

§8. The set S(1, 2, 1)

Let v be a regular word with two occurrences of its leading letter p1; we denote by v1

and v2 the regular subwords of v such that v = v1 · v2 and p1 occurs in each of the words
v1, v2 exactly once. The subwords v1, v2 are determined uniquely.

Lemma 8.1. A word u is an element of the set S(1, 2, 1) if and only if u = vw, where
1) v, w are RR-words;
2) if v2 > w, then the composition of the word v2w is rooted.

Proof. Let u be a word in S(1, 2, 1).
1) By the definition of elements of the set S(1, 2, 1), the word u is an SR-word of the

form u = vw, where v and w are regular words with the same leading letter p1 that
occurs twice in v and only once in w; moreover, these words must satisfy the relation
w ≺ v.

Being regular proper subwords of the SR-word u, the words v and w are RR-words.
2) Since u is an SR-word, r(u) is an RR-word by Remark 5.4. If v2 > w, then the

word v2w is regular, because, by their choice, v2 and w are regular words. Being a
regular subword of the SR-word u, the word v2w is an RR-word, and consequently, its
composition is rooted.

Now we prove the converse statement. Let (v, w) be a pair satisfying conditions 1)
and 2); we show that the word u = vw is an element of S(1, 2, 1).

The relation w ≺ v implies that w < v. Hence, by Remark 4.1, the word u is regular.
Since the letter p1 occurs three times in vw, the composition of vw is not rooted.

Since the regular words v and w have the same leading letter p1, which occurs exactly
once in w, we see that l(u) = l(vw) = v. Hence, l(u) is an RR-word.

First, let v2 > w. In this case the word v2w is regular by Remark 4.1. By property
2), the composition of the word v2w is rooted. Since v2 and w are (RR, 1)-words, they
are regular and, by Remark 3.2, they begin with the only occurrences of the letter p1 in
them. Therefore, l(v2w) = v2, r(v2w) = w. Hence, l(v2w) and r(v2w) are RR-words.
Then, by Remark 5.3, we have r(u) = v2w.

If v2 ≤ w, then r(u) = w. Thus, in both cases, r(u) is an RR-word.
The facts proved above and Remark 5.4 show that the word u = vw is an SR-word.

Since property 1) is also fulfilled, we conclude that u ∈ S(1, 2, 1). �
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Let a and w be nonempty words; we shall write w < a if w ≺ a or if a can be obtained
from w by discarding the last letter.

We introduce the following notation: P ∗(2, 1) is the set of all pairs of RR-words (v, w)
with the same leading letter p1 that occurs twice in v and once in w;

P (2, 1) is the set of all pairs in P ∗(2, 1) that satisfy condition 1) of Lemma 8.1;
P (1, 1, <) is the set of all pairs of (RR, 1)-words (a, w) with one and the the same

leading letter and such that w < a.

Remark 8.1. A pair (v, w) belongs to P (2, 1) if and only if (v1, w) ∈ P (1, 1, <).

We split the set S(1, 2, 1) into the disjoint union of the following four subsets:
S(1, 2, 1; z−, <) is the set of all words vw in S(1, 2, 1) such that (v, w) ∈ P ∗(2, 1),

|v| ∈ Root(2, max 1), and the word v1 is obtained from w by discarding the last letter;
S(1, 2, 1; z−,≺) is the set of the words vw in S(1, 2, 1) such that (v, w) ∈ P ∗(2, 1),

|v| ∈ Root(2, max 1), and w ≺ v1;
S(1, 2, 1; z+, <) is the set of all words vw in S(1, 2, 1) such that (v, w) ∈ P ∗(2, 1),

|v| ∈ Root(2, max 2), and the word v1 is obtained from w by discarding the last letter;
S(1, 2, 1; z+,≺) is the set of all words vw in S(1, 2, 1) such that (v, w) ∈ P ∗(2, 1),

|v| ∈ Root(2, max 2), and w ≺ v1.
For a positive root α, we denote by M−(α) the set of all simple roots β such that

α + β is a root.

Lemma 8.2. The elements of the set S(1, 2, 1; z−, <) are in one-to-one correspon-
dence with the roots in Root(2, max 1). This correspondence f : Root(2, max 1) →
S(1, 2, 1; z+, <) is given by the formula f(α) = vv1q, where v = rrWord(α), v1 is the
(RR, 1)-word whose composition is the sum of all double vertices of the graph D(α), and
q = x−

1 (α) is the only single vertex of D(α) adjacent to a double vertex.

Proof. Let u be a word in S(1, 2, 1; z−, <), and let p1 denote the leading letter of u. Let
u = vw be the decomposition as in Lemma 8.1, and let v = v1v2 be the decomposition
of v such that v1 and v2 are regular subwords of v and the letter p1 occurs in each of the
words v1, v2 only once.

Then |v1| = [z, x+
2 (|v|)] and |v2| = [z, z1(|v|)] by Lemma 4.7, and w < v1 by Re-

mark 8.1.
Since u ∈ S(1, 2, 1; z−, <), the word v1 can be obtained from w by discarding the last

letter. Therefore, |w| = |v1| + |q|, where q is the last letter of w. Hence, q ∈ M−(|v1|).
Since |v1| = [z, x−

1 (|v|)), we have either q = z, or q = x−
1 (|v|).

But |v| ∈ Root(2, max 1), and from Lemma 3.3 it follows that no (RR, 1)-word of
composition |v1| + |q| can end with the letter z. Therefore, q = x−

1 (|v|).
Let µ : S(1, 2, 1; z−, <) → Root(2, max 1) be the mapping that sends any element u

of the set S(1, 2, 1; z−, <) to the root |v|.
We show that the mapping µ is injective. A root |v| determines the letters x−

1 (|v|) and
x+

2 (|v|) uniquely. Indeed, x−
1 (|v|) is the only single vertex of D(α) adjacent to a double

vertex, and x+
2 (|v|) is the only double vertex of D(α) adjacent to a single vertex. Next,

|v1| = [z, x+
2 (|v|)], |w| = |v1| + |q|, and q = x−

1 (|v|). Hence, the root |v| determines the
elements |v1| and |w| uniquely; by Corollary 4.2, the RR-words v, v1, w, and u = vw are
uniquely determined by |v| together with |v1| and |w|. Thus, the mapping µ is injective.

Now, we show that the mapping µ is surjective. Let α be a root in Root(2, max 1).
We put v = rrWord(α), q = x−

1 (|v|), and w = rrWord([q, z]). Let v1 be the (RR, 1)-word
whose composition is equal to the sum of all double vertices of the graph D(α), and let
v2 be the (RR, 1)-word whose composition is equal to the sum of all vertices of D(α).
By Lemma 4.7, we have v = v1v2.
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The word v2 is regular; hence, v2 begins with its leading letter p1. Since v = v1v2, we
see that the word v1p1 is a beginning of v.

Since q = x−
1 (|v|) by Lemma 3.3 and α ∈ Root(2, max 1), we obtain w = v1q.

By the choice of α, the leading vertex p1 of the graph D(α) is double. Therefore, the
single vertex q = x−

1 (α) is smaller than p1. Since the word v1p1 is a beginning of v and
w = v1q, we conclude that w ≺ v. Hence, the pair (v, w) is contained in the set P (2, 1).

The relations |w| = [z, x−(|v|)] and |v2| = [z, z1(|v|)] imply that |w| ≤ |v2|. Hence,
v2 ≤ w by Lemma 7.1. Therefore, condition 2) of Lemma 8.1 is fulfilled, and applying
that lemma we see that the word vw is an element of the set S(1, 2, 1). Thus, the
mapping µ is surjective. We have already proved that µ is injective. Hence, the mapping
µ is bijective.

It is not difficult to understand that µ and f are mutually inverse mappings. �

Lemma 8.3. The set S(1, 2, 1; z−,≺) is empty.

Proof. Assume the contrary. Let u be an element of S(1, 2, 1; z−,≺ ). By definition, we
have u = vw, where (v, w) ∈ P ∗(2, 1), |v| ∈ Root(2, max 1), and w ≺ v1.

The word v is an (RR, 2)-word, because (v, w) ∈ P ∗(2, 1). Since |v| ∈ Root(2, max 1),
Lemma 4.7 shows that v = v1v2, where v1, v2 are (RR, 1)-words, |v1| = [z, x+

2 (|v|)] is
the sum of all double vertices of the graph D(|v|), and |v2| = [z, z1(|v|)] is the sum of all
vertices of D(|v|).

Since (v, w) ∈ P ∗(2, 1) and w ≺ v1, the pair (v1, w) is an element of P (1, 1). Therefore,
by Lemma 7.2, the element |v1| + |q| is a root (here q stands for the last letter of the
word w), i.e., q ∈ M−(|v1|). Hence, either the vertex q is the only single vertex x−

1 (|v|)
of D(|v|) that has an adjacent double vertex, or q = z.

Let q = x−
1 (|v|). Then |v1|+|q| = [q, z]. Since (v1, w) ∈ P (1, 1), Lemma 7.5 shows that

p1 ∈ (p2(|v1|+ |q|), q), i.e., the vertex second by priority in the interval [q, z] = [x−
1 (|v|), z]

belongs to the interval (p1, z], and this contradicts the fact that |v| ∈ Root(2, max 1).
Thus, q = z.

Since q is the last letter of w, now Lemma 7.5 shows that the composition of the word
w̃ obtained from w by discarding the last letter coincides with [z, m), where m is the
vertex nearest to p1 among all vertices of the interval [x−

1 (|v|), p1) that are greater than
all vertices of the interval (p1, z].

Since |w̃| = [z, m) and |v2| = [z, z1(|v|)], from Lemma 3.3 it follows that the word
w̃ · m is a beginning of v2. Moreover, q < m by the choice of m, and w = w̃ · q. Thus,
w ≺ v2, whence w < v2. Since the words v2, w are regular, so is the word v2w. Since
v2w is a regular proper subword of the SR-word u, the composition of v2w is rooted.

On the other hand, we have z ≤ |v2| because |v2| = [z, z1(|v|)]. Since |w| = |z|+[z, m)
and the interval [z, m) is not empty (it contains the vertex p1), we see that 2 · z ≤ |w|.
Hence, 3 · z ≤ |v2| + |w|.

Therefore, the element |v2| + |w| is not a root, a contradiction. �

We denote by Root′(2, max 2) the set of all positive roots α in Root(2, max 2) such
that the interval [m, p1(α)] has at least three elements. Here m is the vertex nearest to
p1 among all vertices of the interval [z, p1(α)) that are greater than all vertices of the
interval (p1, x

−
1 (α)].

Lemma 8.4. The elements of the set S(1, 2, 1; z+, <) are in one-to-one correspondence
with the positive roots α in Root′(2, max 2). This correspondence f : Root′(2, max 2) →
S(1, 2, 1; z+, <) is given by the formula f(α) = rrWord(α) · rrWord([z, m′]+ [z, x+

2 (|v|)]),
where m′ is the vertex of the interval [m, p1] adjacent to m.
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Proof. Let u be a word in S(1, 2, 1; z+, <). By definition, we have u = vw, where
(v, w) ∈ P ∗(2, 1), |v| ∈ Root(2, max 2), and the word v1 is obtained from w by discarding
the last letter.

Now, v is an (RR, 2)-word, because (v, w) ∈ P ∗(2, 1). Since |v| ∈ Root(2, max 2),
Lemma 4.7 shows that v = v1v2, where v1, v2 are (RR, 1)-words, and |v1| = [z, m] +
[z, x+

2 (|v|)], |v2| = (m, z1(|v|)], where m is the vertex nearest to p1 among all vertices of
the interval [z, p1) that are greater than all vertices of the interval (p1, x

−
1 (|v|)].

Since v1 is obtained from w by discarding the last letter, we have |w| = |v1| + |q|.
Since the compositions of the words v1, w are rooted, the element |v1|+ |q| is a root, i.e.,
q ∈ M−(|v1|). Since |v1| = [z, m] + [z, x+

2 (|v|)], the last letter q of w is equal either to m′

or to x−
1 (|v|).

First, we assume that q = x−
1 (|v|). Then |w| = [z, m] + [z, x−

1 (|v|)] because |w| =
|v1| + |q|.

Since the (RR, 1)-word w ends with the letter q, we have p1 /∈ [p2(|w|), q] by Lemma 3.3.
Since |v| ∈ Root(2, max 2), the relation |w| = [z, m]+[z, x−

1 (|v|)] implies that p2(|w|) =
p2(|v1|). But p1 /∈ [p2(|w|), q], hence p1 /∈ [p2(|v1|), q]. On the other hand, p1 ∈
[m, x+

2 (|v|)] ⊆ [p2(|v1|), q]. This contradiction proves that q 	= x−
1 (|v|). Therefore,

q = m′.
At the same time q < p1. Consequently, the interval [m, p1] contains at least three

elements.
The identities |w| = |v1| + |q|, |v1| = [z, m] + [z, x+

2 (|v|)], and q = m′ show that
|w| = [z, m′] + [z, x+

2 (|v|)].
It has been proved above that there is a mapping µ of the set S(1, 2, 1; z+, <) to the

set Root′(2, max 2) such that µ(u) = |v|. Since |w| = [z, m′] + [z, x+
2 (|v|)], the root |v|

uniquely determines the root |w|. Therefore, by Corollary 4.2, the root |w| uniquely
determines the RR-words v and w, and consequently, the word u = vw. Thus, the
mapping µ is injective.

We fix a root α in Root′(2, max 2) and denote by v and w the only RR-words whose
compositions are equal (respectively) to α and [z, m′] + [z, x+

2 (|v|)]. Then the word
w ends with the letter m′, and v = v1v2, where v1, v2 are (RR, 1)-words such that
|v1| = [z, m] + [z, x+

2 (|v|)] and |v2| = (m, z1(|v|)].
Hence, the word v1 is obtained from w by discarding the last letter. Therefore, w ≺ v,

i.e., requirement 1) of Lemma 8.1 is fulfilled.
The words v1, v2, and v1v2 are regular. By Remark 4.1, this implies that v2 < v1.

Also, |v1| � |v2| because |m| ≤ |v1| and |m| � |v2|. Hence, v2 ≺ v1. Since w = v1q, we
obtain v2 ≺ w, whence v2 ≤ w. Thus, requirement 2) of Lemma 8.1 is also fulfilled. By
that lemma, the word u = vw is an element of S(1, 2, 1).

Moreover, vw is an element of S(1, 2, 1; z+, <), because (v, w) ∈ P ∗(2, 1), |v| ∈
Root′(2, max 2) ⊆ Root(2, max 2), and v1 is obtained from w by discarding the last
letter. This proves that the mapping µ is surjective.

Thus, the mapping µ is injective and surjective, i.e., it is bijective. It is easily seen
that the mappings f and µ are mutually inverse. �

Lemma 8.5. The elements of the set S(1, 2, 1; z+,≺) are in one-to-one correspondence
with the positive roots α in Root(2, max 2). The correspondence f : Root(2, max 2) →
S(1, 2, 1; z+,≺) is given by the formula f(α) = vw, where v is the only (RR, 2)-word
whose composition is equal to α, w is the only (RR, 1)-word whose composition is equal
to (m, x−

1 (α)], and m is the vertex nearest to p1 = p1(α) among all vertices of the interval
(p1, z] that are greater than all vertices of the interval [x+

2 (α), p1).

Proof. Let u be a word in S(1, 2, 1; z+,≺). By definition, we have u ∈ S(1, 2, 1) and
u = vw, where (v, w) ∈ P ∗(2, 1), |v| ∈ Root(2, max 2), and w ≺ v1. Since v is an
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(RR, 2)-word and |v| ∈ Root(2, max 2), by Lemma 4.7 we obtain v = v1v2, where v1 and
v2 are (RR, 1)-words, |v1| = [z, m] + [z, x+

2 (|v|)], |v2| = (m, z1(|v|)], and m is the vertex
nearest to p1 among all vertices of the interval (p1, z] that are greater than all vertices
of the interval [x+

2 (|v|), p1).
Since v1 and w are (RR, 1)-words and w ≺ v1, the pair (v1, w) is an element of P (1, 1).

By Lemma 7.2, |v1|+ |q| is a root, i.e., q ∈ M−(|v1|). But |v1| = [z, m] + [z, x+
2 (|v|)], and

consequently, q is equal either to x−
1 (|v|), or to the only vertex m′ of the interval [m, p1]

that is adjacent to the vertex m.
First, assume that q = m′. Then |v1| + |q| = [z, m′] + [z, x+

2 (|v|)]. Also, max[z, p1) >
max(p1, x

+
2 (|v|)]. Hence, the RR-word with composition |v1|+ |q| ends with the letter q,

which contradicts statement 3) of Lemma 7.3, because the pair (v1, w) is an element of
P (1, 1). This contradiction proves that q 	= m′.

Hence, q = x−
1 (|v|). Then |v1| + |q| = [z, m] + [z, x−

1 (|v|)]. Since the pair (v1, w) is an
element of P (1, 1), from Lemma 7.5 it follows that |w| = (m, x−

1 (|v|)].
Let µ : S(1, 2, 1; z+, <) → Root(2, max 2) be the mapping defined by the rule µ(u) =

|v|. Since |w| = (m, x−
1 (|v|)], the root |v| determines the root |w|. Hence, by Corollary 4.2,

the root |v| determines the RR-words v, w, and consequently, the word u = vw. Thus
the mapping µ is injective.

Now we fix a root α Root(2, max 2) and denote by v and w the RR-words the com-
positions of which are equal (respectively) to α and (m, x−

1 (|v|)]. Then the word w ends
with the letter q = x−

1 (|v|), and v = v1v2, where v1 and v2 are (RR, 1)-words such that
|v1| = [z, m] + [z, x+

2 (|v|)] and |v2| = (m, z1(|v|)].
Let a be the (RR, 1)-word the composition of which is equal to (m, x−

1 (|v|)). By
Lemma 3.3, we have w = aq. The word am is a beginning of the word v1, and q < m by
the choice of the element m. Hence, w ≺ v1.

Since the word v1 is a beginning of v, it follows that w ≺ v. Thus, the requirement 1)
of Lemma 8.1 is fulfilled.

Since |w| = (m, x−
1 (|v|)] and |v2| = (m, z1(|v|)], we have |w| ≤ |v2|. The words v2 and

w are RR-words, and now from Lemma 7.1 it follows that w ≥ v2. Thus, requirement 2)
of Lemma 8.1 is also fulfilled. By that lemma, the word u = vw is an element of the set
S(1, 2, 1).

But we know that (v, w) ∈ P ∗(2, 1), |v| ∈ Root(2, max 2), and w ≺ v1; therefore, the
word u = vw is an element of S(1, 2, 1; z+,≺) by the definition of this set. Thus, the
mapping µ is surjective.

Since the mapping µ is injective and surjective, it is bijective. It is easily seen that
the mappings f and µ are mutually inverse. �

Remark 8.2. The set S(1, 2, 1) splits into the disjoint union of the subsets S(1, 2, 1; z−, <),
S(1, 2, 1; z+, <), and S(1, 2, 1; z+,≺) that are described in Lemmas 8.2, 8.4, and 8.5.

§9. The sets S(1, 2, 2), S(2, 1, 1), S(1, 2, 0), S(2, 1, 0), S(2, 2, 0), and S(3, 1, 0)

Lemma 9.1. The set S(1, 2, 2) is empty.

Proof. Assume the contrary. Let u be a word in S(1, 2, 2). Then u is an SR-word, and it
can be represented as the product u = vw of regular words v and w such that the graphs
of these words have the same leading vertex p1 and w ≺ v.

Being regular proper subwords of the SR-word u, the words v and w are RR-words.
Moreover, their leading letter occurs twice in each of these words. Hence, these words
are (RR, 2)-words.

Since the words v and w are regular, they begin with their leading letter p1. Therefore,
there are unique decompositions of these words in the form v = v1v2 and w = w1w2 such
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that each of the factors v1, v2, w1, w2 begins with the only occurrence of p1. Thus, the
words v1, v2, w1, w2 are regular. Since each of them is a subword of an RR-word, the
words v1, v2, w1, w2 themselves are RR-words.

By Lemma 4.7, we have |v1| = [z, m1) + [z, x+
2 (|v|)], |v2| = [m1, z1(|v|)], |w1| =

[z, m2) + [z, x+
2 (|w|)], and |w2| = [m2, z1(|w|)], where m1, m2 are vertices most distant

from p1 among all vertices of the interval [z, p1) such that max[m1, p1) < max[x−
1 (|v|), p1)

and max[m2, p1) < max[x−
1 (|w|), p1). The intervals [z, m1), [z, m2) may be empty.

Since w ≺ v, we see that v1 = w1 and w2 ≺ v2. The identity v1 = w1 shows that the
vertices m1 and m2 coincide. Put m = m1 = m2.

The words v2, w2 have the same leading letter, and |v2| = [m, z1(|v|)], |w2| =
[m, z1(|w|)]; now from Lemma 3.3 it follows that one of the (RR, 1)-words v2 and w2

is a beginning of the other. But w2 ≺ v2. This contradiction proves the lemma. �

We denote by Root(2, max 2, d11) the set of all positive roots α ∈ Root(2, max 2) such
that the graph D(α) has only one single vertex.

Lemma 9.2. The elements of the set S(2, 1, 1) are in one-to-one correspondence with the
positive roots α in Root(2, max 2, d11). This correspondence f : Root(2, max 2, d11) →
S(2, 1, 1) is given by the formula f(α) = rrWord([z, m] + [z, x+

2 (α)]) · rrWord(α), where
m is the vertex nearest to p1 among the vertices of the interval [z, p1) that are greater
than all vertices of the interval (p1, x

−
1 (α)); p1 = p1(α).

Proof. Let u be an element of S(2, 1, 1). Then u is an SR-word of the form u = v2w,
where v and w are regular words with the same leading letter p1, which occurs exactly
once in each of these words; moreover, the words v, w must satisfy the relation w ≺ v.

Since the words v, w are regular and the leading letter p1 occurs exactly once in each
of them, these words begin with the only occurrence of the letter p1.

The relation w ≺ v implies, in particular, that w < v. Hence, the word vw is regular.
Being a regular proper subword of the SR-word v2w, the word vw itself is an RR-word.
Since its leading letter p1 appears in it exactly two times, the word vw is an (RR, 2)-word.

Let α denote the composition of the word vw. Observe that w ≺ v because w ≺ v.
Applying statement 3) of Lemma 4.5 to vw, we see that α ∈ Root(2, max 2). Since
w ≺ v, statement 2) of the same lemma applied to the word vw shows that x−

1 (α) is the
only single vertex of the graph D(α).

It has been proved above that the formula µ(u) = |vw| defines a mapping µ from
the set S(2, 1, 1) to the set Root(2, max 2, d11). By Corollary 4.2, the (RR, 2)-word vw
is uniquely determined by its composition |vw|. Next, by Lemma 4.7, the (RR, 1)-word
v, and, with it, the word u = v2w, are also determined by |vw| uniquely. Hence, the
mapping µ is injective.

To show that µ is a surjective mapping, we fix a root α in Root(2, max 2, d11) and
denote by v and w the only (RR, 1)-words whose compositions are equal (respectively)
to [z, m] + [z, x+

2 (α)] and to (m, x−
1 (α)]. Put u = v2w.

Since the root α is contained in the set Root(2, max 2, d11), we have |v|+ |w| = α. By
Lemma 4.7, the word vw is the only (RR, 2)-word whose composition is equal to α.

Each of the words v, w begins with the only occurrence of its leading letter p1. Hence,
l(u) = l(v2w) = v, r(u) = r(v2w) = vw. So, the words l(u) and r(u) are RR-words.

The letter p1 occurs in u three times. Therefore, the composition of the word u is not
rooted.

The word u = v2w is regular, because vw < v. Above, it has been shown that
the composition of u is not rooted and that l(u) and r(u) are RR-words. Now from
Remark 5.4 it follows that u is an SR-word.

We denote by a the only (RR, 1)-word with composition equal to (m, x+
2 (α)]. Lemma
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4.5 shows that w = a · x−
1 (α) and that the word am is a beginning of v. Moreover,

m > x−
1 (α) by the choice of the vertex m.

Hence, w ≺ v. Recall that u is an SR-word, u = v2w, and the words v, w are regular.
Therefore, the word u is an element of the set S(2, 1, 1) by the definition of that set. But
α = µ(u). Thus, the mapping µ is surjective.

Since the mapping µ is injective and surjective, it is bijective. Keeping in mind
Lemma 4.7, we can easily deduce that the mappings f and µ are mutually inverse. �

Lemma 9.3. The words in S(1, 2, 0) are in one-to-one correspondence with the positive
roots α in Root(2, max 2) such that m is greater than all vertices of the interval (p1, z1(α)].
Here m stands for the vertex nearest to p1 among all vertices of the interval [z, p1)
that are greater than all vertices of the interval (p1, x

−
1 (α)], where p1 = p1(α). Such a

correspondence f is given by the formula f(α) = rrWord(α) · m.

Proof. Let u be a word in S(1, 2, 0). Then u is an SR-word representable in the form
u = vq, where v is an (RR, 2)-word and q is a letter that is smaller than the leading
letter p1 of v.

By Lemma 4.7, the word v is the product v = v1v2 of unique (RR, 1)-words v1, v2

whose compositions are equal (respectively) to [z, m′)+ [z, x+
2 (|v|)] and [m′, z1(|v|)]; here

m′ is the vertex most distant from p1 among all vertices of the interval [z, p1) such that
max[m′, p1) < max(p1, x

−
2 (|v|)]. The interval [z, m′) is empty if and only if m′ = z.

The word v2 begins with the only occurrence of its leading letter p1. Since q < p1, the
word v2q is regular. Being a regular proper subword of the SR-word u, the word v2q is
an RR-word. Next, the leading letter p1 of v2q occurs in this word only once. Therefore,
v2q is an (RR, 1)-word.

It follows that the element |v2| + |q| is a root. Hence, q ∈ M−(|v2|). Since |v2| =
[m′, z1(|v|)], there are only two possibilities: 1) m′ 	= z and q = m; 2) not all of the
vertices of the graph Bn are vertices of the graph D(|v|), and q is the only vertex of the
graph Bn that does not belong to D(|v|) but is adjacent to a vertex of that graph.

In the second case, the composition of the word u = vq is rooted; but this is impossible,
because u is an SR-word. Hence, the first of the above cases occurs. In particular, this
means that |v| ∈ Root(2, max 2).

The (RR, 1)-word v2m ends with the letter m; therefore, by Lemma 3.3, m is greater
than any of the vertices of the interval (p1, z1(|v|)].

Earlier, it was proved that the mapping µ that takes any word u in S(1, 2, 0) to the
root |v| is a mapping from S(1, 2, 0) to the set of roots α in Root(2, max 2) such that m
is greater than any of the vertices of the interval (p1, z1(α)].

By Corollary 4.2, the root |v| uniquely determines the RR-word v. The last letter
q of u coincides with m. Hence, the root |v| uniquely determines the word u = vm.
Therefore, the mapping µ is injective.

To show that µ is surjective, we fix a root α in Root(2, max 2), denote by v the only
RR-word whose composition is equal to α, and put u = vm.

First, we check that u is an SR-word. Since m < p1 and the word v begins with the
letter p1, we see that m < v. Therefore, the word u = vm is regular.

The vertex m is double in the graph D(|v|). Therefore, m occurs three times in the
word u = v2q = v2m, and consequently, the composition of the word u is not rooted.

Since u = vm, we have l(u) = v, so that l(u) is an RR-word.
The word v begins with its leading letter p1, which occurs twice in this word; since

u = vm and m < p1, we obtain r(u) = v2m.
From Lemma 4.7 it follows that |v2| = (m, z1(α)]. Hence, |v2m| = |v2| + |m| =

[m, z1(α)]. We have p1 ∈ [m, z1(α)], and, by our assumption, m is greater than any of
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the vertices of the interval (p1, z1(α)]. Therefore, by Lemma 4.7, the only RR-word a
whose composition is equal to |v2m| ends with the letter m. But v2 is an (RR, 1)-word,
whence a = v2m (see Corollary 4.2). Hence, the word r(u) = v2m is an RR-word.

In accordance with Remark 5.4, from the facts proved above it follows that u is an
SR-word. Moreover, u = vm, where v is a regular word with two occurrences of its
leading letter p1, and the letter m is smaller than p1. Therefore, u ∈ S(1, 2, 0), and this
means that the mapping µ is surjective.

We have already proved that this mapping is injective. Thus, the mapping µ is
bijective. Moreover, the mappings f and µ are mutually inverse. �

Lemma 9.4. The elements of the set S(2, 1, 0) are in one-to-one correspondence with
the nonsimple positive roots α that satisfy the following condition:

1) if the vertex z is single, then the vertex p2 of D(α) second by priority is contained
in the interval [z, p1). Here p1 = p1(α).

Such a correspondence f is given by the formula f(α) = ã · a, where a is the only RR-
word whose composition is equal to α, and ã is the word obtained from a by discarding
the last letter.

Proof. Let u be a word in S(2, 1, 0). Then it is an SR-word of the form u = v2q, where
v is a regular word such that the leading vertex p1 of its graph is single, and q is a letter
such that q < p1.

The word v is regular and the letter p1 occurs in it only once; therefore, v begins
with p1.

Since q < p1, the word vq is regular. Being proper regular subwords of the SR-word
u, the words v and vq are RR-words. This means, in particular, that the compositions
of the words v and vq are rooted.

The root α = |v| + |q| is not simple, because the word v is not empty.
Since u is an SR-word, the composition of u is not rooted. Hence, the root α satisfies

condition 1).
We have shown above that the mapping µ that takes any word u in S(2, 1, 0) to the

element |v|+ |q| is a mapping from the set S(2, 1, 0) to the set of nonsimple positive roots
satisfying condition 1).

Any positive root α uniquely determines the RR-word a of composition α. In its
turn, the word a uniquely determines its last letter q and the word v obtained from a by
discarding the last letter; consequently, it uniquely determines the word u = v2q. Thus,
the mapping µ is injective.

To show that the mapping µ is surjective, we fix a nonsimple root α, denote by a the
only RR-word of composition α, and put u = ã · a.

First we check that u is an SR-word. Since the root α satisfies condition 1), the
composition of the word u is not rooted.

Any proper beginning of a word is greater than the word itself. Hence, ã > a. But
the words a and ã are regular, because their leading letters occur in each of them only
once. Therefore, the word u = ã · a is regular.

The words a and ã begin with the only occurrences of their leading letters, and u = ã·a.
Hence, l(u) = ã and r(u) = a. But the words ã and a are RR-words, and consequently,
l(u), r(u) are RR-words.

In accordance with Remark 5.4, the facts proved in the preceding paragraphs imply
that u is an SR-word. Recall that u = v2q, where v = ã and q is the last letter of the
word a. The word v is regular and q < p1, because a regular word a that is not a letter
cannot begin with its leading letter. Thus, the word u is an element of S(2, 1, 0). This
proves that the mapping µ is surjective.
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Above, it was proved that the mapping µ is injective. Hence, it is a bijection. The
mappings f and µ are mutually inverse. �
Lemma 9.5. The elements of the set S(2, 2, 0) are in one-to-one correspondence with
the positive roots α such that the leading vertex p1 of the graph D(α) is double and in
this graph there are at least two single vertices. Such a correspondence f is given by the
formula f(α) = ã · a, where a is the only RR-word of composition α and ã is the word
obtained from a by discarding the last letter.

Proof. Let u be a word in S(2, 2, 0). Then u = v2q, where v is a regular word with
exactly two occurrences of its leading letter p1, and q is a letter that is smaller than p1.

Since the word v is regular, the words v and v2 begin with their common leading letter
p1. But q < p1. Hence, q < v and q < v2. Therefore, the words vq and v2q are regular.
Being regular proper subwords of the SR-word u, the words v, vq, and v2q are RR-words.

This means, in particular, that their compositions are rooted. We denote by α the
root |v| + |q|.

By Lemma 4.7, the only (RR, 2)-word whose composition is equal to α ends with the
letter z1(α). This letter is a single vertex of the graph D(α). Hence, the last letter q of
the word u coincides with z1(α), i.e., q is not a vertex of the graph D(|v|), but q has two
adjacent vertices in the latter graph. Therefore, the graph D(α) has at least two single
vertices.

Earlier, it was proved that the mapping µ that takes any word u in S(2, 2, 0) to the
root α = |v| + |q| is a mapping from the set S(2, 2, 0) to the set of all positive roots α
such that the leading vertex of the graph D(α) is double and at least two vertices of this
graph are single.

The root α uniquely determines the vertex q = z1(α), and the composition |v| = α−|q|
of the word v; next, by Corollary 4.2, it uniquely determines the word v itself, and
consequently, the word u = v2q. Thus, the mapping µ is injective.

To show that µ is surjective, we fix a root α satisfying the conditions of the lemma.
We denote by a the only RR-word whose composition is equal to α, and by v the word
obtained from a by discarding the last letter, and put u = va.

First, we check that u is an SR-word. The word a has two occurrences of its leading
letter p1. By Lemma 4.7, the last letter q of this word coincides with z1(α). In particular,
q is a single vertex of the graph D(α). Therefore, q 	= p1. Hence, the leading letter p1 of
the word v occurs in v twice.

It follows that the letter p1 occurs in the word u = va four times, and consequently,
the composition of the word u is not rooted.

Let a = a1a2 and v = v1v2 be decompositions with all factors a1, a2, v1, and v2

beginning with the only occurrences of the letter p1 in them. It is clear that a1 = v1 and
that the word v2 is obtained from the word a2 by discarding the last letter.

We show that l(u) = v. Indeed, u = v2q and the word v is regular. Hence, v is a
beginning of the word l(u). Suppose that l(u) 	= v. Then v is a proper beginning of the
word l(u), i.e., l(u) = vb, where b is a nonempty word. But u = v2q and l(u) is a proper
beginning of u. Hence, b is a beginning of v, so that v ≤ b. But the word l(u) = vb is
regular, and this contradicts Remark 4.1. Thus, l(u) = v, and l(u) is an RR-word.

We prove that r(u) = a. Indeed, otherwise r(u) = v2v1v2q, because the regular
word r(u) must begin with its leading letter. Since the word r(u) is regular, its cyclic
rearrangement v1v2qv2 is smaller than v2v1v2q. But the words v1 and v2 begin with
the only occurrences of their common leading letter p1. It follows that v2 ≤ v1. But
v2 < v1 because v1v2 is a regular word. This contradiction proves that r(u) = a, and
consequently, r(u) is an RR-word.

In accordance with Remark 5.4, the facts proved in the preceding paragraphs imply
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that u is an SR-word. Since u = v2q, the word v is regular, and q is a letter, we see that
u is an element of the set S(2, 2, 0).

Thus, the mapping µ is surjective. We have already proved that this mapping is
injective. Therefore, µ is bijective, and it is clear that µ is inverse to f . �

Lemma 9.6. The elements of the set S(3, 1, 0) are in one-to-one correspondence with
the vertices q of the graph Bn such that

1) q is distinct from z and from the leading vertex p1 of the interval [z, q];
2) the vertex of the interval [z, q] second by priority belongs to the interval (p1, q].
Such a correspondence is given by the formula f(q) = v3 · q, where v is the only

RR-word whose composition is equal to [z, q).

Proof. Let u be an element in S(3, 1, 0). Then u is an SR-word of the form u = v3q,
where v is a regular RR-word with one appearance of its leading letter p1.

The regular word v begins with its leading letter p1. The word u cannot end with
its leading letter p1, because it is regular and its length is at least two. Hence, q < p1.
Therefore, the word vq is regular. Since vq < v, the word v2q is regular. Being a regular
proper subword of the SR-word u, the word v2q is an RR-word.

In particular, this implies that the composition of the word v2q is rooted. We denote
|v2q| by α. The graph of the root α has only one single vertex. Therefore, |v| = [z, q) by
Lemma 4.7; thus, the vertex q satisfies conditions 1) and 2).

Above, it was proved that there exists a mapping µ from the set S(3, 1, 0) to the set
of the vertices of the graph Bn that satisfy conditions 1) and 2). This mapping takes an
element u in S(3, 1, 0) to its last letter q.

Since |v| = [z, q), the letter q uniquely determines the composition of the word v, and
by Corollary 4.2, it determines the word v itself, and consequently, the word u = v2q.
Thus, the mapping µ is injective.

To show that µ is surjective, we fix a vertex q of the graph Bn for which conditions
1) and 2) are fulfilled. Let v denote the RR-word whose composition is equal to [z, q),
and let u be the word v3q.

First, we check that u is an SR-word. The leading letter p1 of v occurs in this word.
Hence, the letter p1 occurs in the word u three times. Therefore, the composition of u is
not rooted.

By condition 1), we have q < p1. Hence, the word u = v3q is regular.
We show that l(u) = v. Indeed, the word v is regular; therefore, by definition, v is a

beginning of the word l(u). Assume that l(u) 	= v. Then l(u) = vb, where b is a nonempty
word. But l(u) is a proper beginning of u. Hence, b is a beginning of v2. The word vb
is regular, but the words v2 and v3 are not regular. Therefore, b = b′ or b = vb′, where
b′ is a proper beginning of v. The word v begins with the only occurrence of its leading
letter p1. Hence, b′v > vb′ and vb′v > vb′v; consequently, the cyclic rearrangement bv of
the word vb is greater than vb. But, by assumption, the word vb is regular. We arrive
at a contradiction. Thus, we have l(u) = v, so that l(u) is an RR-word.

The word v begins with the only occurrence of its leading letter p1. Hence, the leading
letter p1 of the word u = v3q occurs in this word more than once. So, the word r(u)
begins with the letter p1. Since the word v2q is regular, we have r(u) = v2q. Now
Lemma 4.7 and conditions 1) and 2) imply that r(u) coincides with the only RR-word
whose composition is equal to [z, q] + [z, q). Thus, r(u) is an RR-word.

Remark 5.4 and the facts proved above show that u is an SR-word. But u = v3q, the
word v is regular, and q is a letter that is smaller than p1. Therefore, u is an element of
the set S(3, 1, 0). So, µ is a surjective mapping.

We have already seen that the mapping µ is injective. Hence, it is bijective. It is
easily seen that µ is inverse to f . �
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Theorem 9.1. The set of all SR-words splits into the disjoint union of the following
14 subsets: S(len=2), S(q<p2), S(q=p2), S(p21), S(p22), S(1, 1, 1), S(1, 2, 1; z−, <),
S(1, 2, 1; z+, <), S(1, 2, 1; z+,≺ ), S(2, 1, 1), S(1, 2, 0), S(2, 1, 0), S(2, 2, 0), S(3, 1, 0),
which were described (respectively) in Remarks 6.2, 6.3, 6.4, Lemmas 6.1, 6.2, Corollary
7.2, and Lemmas 8.2, 8.4, 8.5, 9.2–9.6.

Theorem 9.2. Let X be the set of generators of the Lie algebra B+
n that correspond to

simple roots. For any ordering of the set X, the minimal Gröbner–Shirshov basis of this
algebra coincides with the set of relations of the form [u] = 0, where u runs through the
set of the words described in Theorem 9.1.

Theorem 9.2 follows immediately from Corollary 4.2, statement 3) of Lemma 1.2, and
Theorem 9.1. Essentially the same statements imply the following interesting general-
ization of Theorem 9.1.

Theorem 9.3. Let L =
⊕

π∈ZX Lπ be a Lie algebra with generators in an n-element set
X such that the ideal of relations among these generators is homogeneous with respect
to each generator. Assume that, for any element α of the group ZX, the homogeneous
component Lα does not reduce to zero if and only if the corresponding component of the
algebra B+

n does not reduce to zero. Then L is isomorphic to the algebra B+
n (moreover,

there exists an isomorphism that does not move the elements of the set X). In particu-
lar, the algebras L and B+

n have the same MGShB (for any ordering of the generators
from X).
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