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ABSTRACT. An ideal I in the free associative algebra k(X1i,...,Xp) over a
field k is shown to have a finite Grobner basis if the algebra defined by I is
commutative; in characteristic 0 and generic coordinates the Grobner basis
may even be constructed by lifting a commutative Grobner basis and adding

commutators.
1. INTRODUCTION
Let k be a field and let k[z] = Ek[x1, ..., x,] be the polynomial ring in n variables
and k(X) = k(X1,...,X,) the free associative algebra in n variables. Consider

the natural map v : k(X) — k[z] taking X; to z;. It is sometimes useful to
regard a commutative algebra k[z|/I through its non-commutative presentation
k[x]/I = k(X)/J, where J = v~1(I). This is especially true in the construction
of free resolutions as in [An]. Non-commutative presentations have been exploited
in [AR] and [PRS] to study homology of coordinate rings of Grassmannians and
toric varieties. These applications all make use of Grobner bases for J (see [Mo]
for non-commutative Grobner bases). In this note we give an explicit description
(Theorem 2.1) of the minimal Grébner bases for J with respect to monomial orders
on k(X) that are lexicographic extensions of monomial orders on k[z].
Non-commutative Grobner bases are usually infinite; for example, if n = 3 and
I = (w12273) then y~1(I) does not have a finite Grobner basis for any monomial
order on k(X). (There are only two ways of choosing leading terms for the three
commutators, and both cases are easy to analyze by hand.) However, after a linear
change of variables the ideal becomes I’ = (X;(X; + X2)(X; + X3)), and we
shall see in Theorem 2.1 that X;(X; + X2)(X; + X3) and the three commutators
X;X; — X;X; are a Grébner basis for y~!(I’) with respect to a suitable order. This
situation is rather general: Theorems 2.1 and 3.1 imply the following result:

Corollary 1.1. Let k be an infinite field and I C k[x] be an ideal. After a general
linear change of variables, the ideal v~1(I) in k(X) has a finite Grébner basis. In
characteristic 0, if I is homogeneous, such a basis can be found with degree at most
maz{2, regularity(I)}.
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In characteristic 0 the Grébner basis of 4y~1(I) in Corollary 1.1 may be obtained
by lifting the Grobner basis of I, but this is not so in characteristic p; see Example
4.2. Furthermore, vy~1(I) might have no finite Grobner basis at all if the field is
finite; see Example 4.1.

The behavior of y~1(I) is in sharp contrast to what happens for arbitrary ideals
in k(X). For example, the defining ideal in k(X) of the group algebra of a group
with undecidable word problem has no finite Grobner basis. Another example is
Shearer’s algebra k{a, b)/(ac — ca, aba — bc, b%a)), which has irrational Hilbert series
[Sh]. As any finitely generated monomial ideal defines an algebra with rational
Hilbert series, the ideal (ac — ca,aba — be,b%a) can have no finite Grobner basis.
(Other consequences of having a finite Grobner basis are deducible from [An] and
[Ba]; these are well-known in the case of commutative algebras!)

In the next section we present the basic computation of the initial ideal and
Grébner basis for J = 4~ 1(I). In §3 we give the application to finiteness and
liftability of Grébner bases.

2. THE GROBNER BASIS OF v~ (1)

Throughout this paper we fix an ideal I C k[z] and J := v~ }(I) C k(X). We
shall make use of the lexicographic splitting of ~, which is defined as the k-linear
map

(S . k[ﬁC]—>]€<X>, 131'1{121'2"'213ir|—>Xi1Xi2"'Xir lf 21§22§<ZT

Fix a monomial order < on k[x]. The lexicographic extension << of < to k(X) is
defined for monomials M, N € k(X) by

(M) < y(N) or

M<N if o .
Y(M)=~(N) and M is lexicographically smaller than N.

Thus, for example, X; X;<X;X; if i < j.
To describe the <-initial ideal of J we use the following construction: Let L be
any monomial ideal in k[z]. If m = x;, -~ ;. € L and i1 < --- <4,, denote by

U (m) the set of all monomials u € k[, 11,... ,2; 1] such that neither u-" nor
i

uz- lies in L. For instance, if L = (212923, 29) then Up (z1z023) = {2} | j < d}.

Theorem 2.1. The non-commutative initial ideal in(J) is minimally generated
by the set { X;X; | j < i} together with the set

{6(u-m) | m is a generator of in<(I) and u € Uyy,_ (ry(m)}.

In particular, a minimal <-Grébner basis for J consists of {X; X; — X;X; : j < i}
together with the elements 6(u - f) for each polynomial f in a minimal <-Grébner
basis for I and each monomial v € Uy, 1y (in<(f)).

Proof. We first argue that a non-commutative monomial M = X; X;, --- X, lies
in in4(J) if and only if its commutative image (M) is in in<(I) or i; > ij41
for some j. Indeed, if i; > i;41 then M € in4(J) because X, X; — XX, € J has
initial term XX, with s > ¢. If on the contrary i1 < --- <4, but v(M) € in<(I),
then there exists f € I with in<(f) = v(M). The non-commutative polynomial
F = 6(f) satisfies in(F) = M. The opposite implication follows because =y
induces an isomorphism k[z]/T = k(X)/y~*(I).
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Now let m’ = w-m, where m = x;, ---x;_ is a minimal generator of in~(I) with
i1 < -+ < 4,.. We must show that 6(u-m) is a minimal generator of in(J) if
and only if u € Uy,_ (1)(m).

For the “only if” direction, suppose that é(u - m) is a minimal generator of
in(J). Suppose that u contains the variable x;. We must have j > i1, since else,
taking j minimal, we would have §(u-m) = X - 6(%771). Similarly j < 4,. Thus
u € k[Ti,+1,... ,%;,—1]. This implies 6(u-m) = X;, 6(u%) = é(u- ) X;

Ti,

Therefore neither 6(u-2-) nor é(u-) lies in in4(.J), and hence neither u-" nor
i1 ir i1
uz lies in in<(I).
For the “if” direction we reverse the last few implications. If w € U;y,_ (1)(m)
then neither §(u-"-) nor 6(u"-) liesin in(J), and therefore 6(u-m) is a minimal
i i

generator of in(J). O

3. FINITENESS AND LIFTING OF NON-COMMUTATIVE GROBNER BASES

We maintain the notation described above. Recall that for a prime number p
the Gauss order on the natural numbers is described by

s<pt if <i) # 0 (mod p).

We write <g=< for the usual order on the natural numbers. A monomial ideal
L is called p-Borel-fized if it satisfies the following condition: For each monomial
generator m of L, if m is divisible by z but no higher power of 2, then (z;/xz;)*m €
L for all ¢ < j and s < 2.

Theorem 3.1. With notation as in Section 2:

(a) If in<(I) is 0-Borel fized, then a minimal <-Grobner basis of J is obtained
by applying 6 to a minimal <-Grébner basis of I and adding commutators.

(b) If in<(I) is p-Borel-fized for any p, then J has a finite <-Grobner basis.

Proof. Suppose that the monomial ideal L := in~(I) is p-Borel-fixed for some p.
Let m = x;, ---x;. be any generator of L, where i1 < --- < 4, and let :z:ﬁr be the
highest power of z;_ dividing m. Since t <), t we have zjm/z! € L for each | < i,.
This implies zim/z;, € L for | < i,, and hence every monomial u € Uz (m) satisfies
degsz, (u) < t for iy <1 < i,. We conclude that Uy (m) is a finite set. If p = 0 then
Ur(m) consists of 1 alone, since xym/x;, € L for all | < 4,. Theorem 3.1 now
follows from Theorem 2.1. O

Proof of Corollary 1.1. We apply Theorem 3.1 together with the following results,
due to Galligo, Bayer-Stillman and Pardue, which can be found in [Ei, Section 15.9]:
if the field k is infinite, then after a generic change of variables, the initial ideal
of I with respect to any order < on k[z] is fixed under the Borel group of upper
triangular matrices. This implies that in~(I) is p-Borel-fixed in characteristic p > 0
in the sense above. If the characteristic of k is 0 and I is homogeneous then, taking
the reverse lexicographic order in generic coordinates, we get a Grobner basis whose
maximal degree equals the regularity of I. O

We call the monomial ideal L squeezed if Ur(m) = {1} for all generators m

of L or if, equivalently, m = z;, ---@x; € L and iy < --- < i, imply z;7~ € L
i1

or I ;7 € L for every index [ with ¢; < [ < 4,. Thus Theorem 2.1 implies that

a minimal <-Grébner basis of T lifts to a Grobner basis of J if and only if the

-
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initial ideal in~(I) is squeezed. Monomial ideals that are 0-Borel-fixed, and more
generally stable ideals (in the sense of [EK]), are squeezed. Squeezed ideals appear
naturally in algebraic combinatorics:

Proposition 3.2. A square-free monomial ideal L is squeezed if and only if the
simplicial complex associated with L is the complex of chains in a poset.

Proof. This follows from Lemma 3.1 in [PRS]. |

4. EXAMPLES IN CHARACTERISTIC p
Over a finite field Corollary 1.1 fails even for very simple ideals:

Example 4.1. Let k be a finite field and n = 3. If I is the principal ideal generated
by the product of all linear forms in k[z1, x2, x3], then y~1(I) has no finite Grébner
basis, even after a linear change of variables.

Proof. The ideal I is invariant under all linear changes of variables. The «<-Grobner
basis for J is computed by Theorem 2.1, and is infinite. That no other monomial
order on k(X) yields a finite Grobner basis can be shown by direct computation as
in the example in the second paragraph of the introduction. O

Sometimes in characteristic p > 0 no Grobner basis for a commutative algebra
can be lifted to a non-commutative Grobner basis, even after a change of variables:

Example 4.2. Let k be an infinite field of characteristic p > 0, and consider the
Frobenius power

L = ((z1, 22, $3)3)[p] C  klzy, 2,25

of the cube of the maximal ideal in 3 variables. No minimal Grobner basis of L
lifts to a Grobner basis of y~1(L), and this is true even after any linear change of
variables.

Proof. The ideal L is invariant under linear changes of variable, so it suffices to con-

sider L itself. Since L is a monomial ideal, it is its own initial ideal, so by Corollary
3.2 it suffices to show that L is not squeezed, that is, that neither 2%~ '25"" 2% nor

1 p—1 .. o . . : S
P2 2B~ s in L. This is obvious, since the power of each variable occurring in

a generator of L is divisible by p and has total degree 3p. O
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