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Abstract

In 2008, Hashimoto and Sakurai proposed a new efficient signature scheme, which is a non-
commutative version of Shamir’s birational permutation signature scheme. Shamir’s scheme
is a generalization of the Ong-Schnorr-Shamir scheme and was broken by Coppersmith et al.
using its linearity and commutativity. The HS (Hashimoto-Sakurai) scheme is expected to be
secure against the attack from its non-commutative structure. In this paper, we propose an
attack against the HS scheme, which is practical under the condition that its step size and
the number of steps are small. We discuss its efficiency by using some experimental results.
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1. Introduction

In 1984, the OSS signature scheme was proposed by
Ong et al. [1]. Also, in 1994, Shamir [2] proposed the so-
called birational permutation signature scheme as a gen-
eralization of the OSS scheme. (Indeed, Tsujii et al. [3]
had already found a similar scheme in 1986.) The se-
curity of the birational permutation signature scheme
is based on the hardness of the problem of finding a
solution for simultaneous multivariate quadratic equa-
tions (MQ system) over an integer residue ring; we call
the problem “MQ problem”. The problem of deciding
whether an MQ system over a finite field has a solu-
tion or not belongs to the set of NP-complete prob-
lems, and quantum polynomial algorithms for solving
the MQ problem are still unknown. On the other hand,
in 1997, Satoh and Araki [4] proposed a quaternion ver-
sion of the OSS scheme. Unfortunately, practical attacks
against these scheme were proposed [5–7]. Then, in 2008,
Hashimoto and Sakurai [8] proposed a non-commutative
version of Shamir’s scheme. They expected that its non-
commutativity makes us difficult to apply these attacks.
Also, they discussed the HS scheme is comparable to
Shamir’s scheme in efficiency.

In this paper, we propose an attack against the HS
scheme, which is efficient under the condition that its
step size and the number of steps are small. Note that
the condition would be preferable for increasing effi-
ciency and reducing the key size. We firstly reduce the
HS scheme to some commutative scheme. Then we ap-
ply Patarin-like [9] attack against the commutative bi-
rational permutation signature scheme. Also, we discuss
efficiency of our attack with some experimental results.
Moreover, we suggest some specific parameters for the
HS scheme based on our cryptanalysis.

This paper is organized as follows. In Section 2, we
explain that the HS scheme can be considered as a
scheme over an integer residue ring, that is, a commuta-
tive ring. In Section 3, we describe an attack against the
HS scheme (or some Rainbow-type scheme). In Section
4, we show experimental results against the HS scheme.
In Section 5, we suggest some possible parameters for
the HS scheme based on our cryptanalysis. In Section 6,
we conclude this paper.

2. Reduction to commutative case

In this section, we briefly introduce the HS scheme and
explain how to reduce the HS scheme to a commutative
scheme.

Let N be a large prime or the product of two large
primes and define ZN := Z/NZ. We define that R is a
non-commutative subring of a matrix ring over a residue
class ring of an integral ring of some algebraic number
field modulo N . We construct R as ZN -free module.
Also, R has the property that at ∈ R for a ∈ R, where at

is the transpose of a. The public-key of the HS scheme is
the map P = B ◦G ◦A, where A and B are secret bijec-
tive affine transformations. The map G = (G2, . . . , Gl) :
Rl → Rl−1 is defined as the following.

Gi(X1, . . . ,Xl) :=
∑

j≤i−1

Xj
tV t

1ijXi +
∑

j≤i−1

Xi
tV2ijXj

+
∑

j1,j2≤i−1

Xj1
tWij1j2Xj2 ,

where V1ij , V2ij , Wij1j2 ∈ R. Refer to [8] about the HS
scheme for more information.

Hashimoto and Sakurai studied the security of some
class of the HS scheme, which is a non-commutative ver-
sion of the OSS scheme. They showed that some type of
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the HS scheme is resistant to Coppersmith’s attack [7]
under the condition that factoring of N is infeasible.
Moreover, Hashimoto and Sakurai mentioned that some
non-commutative OSS scheme (which is included in the
scheme above) is resistant to Coppersmith’s (first) at-
tack under the condition that factoring of N is infea-
sible. Though all of the HS scheme do not necessarily
depend on infeasibility of factorization, we would take
large N with expectation to increase its security.

Now we explain a way of reduction and define a com-
mutative scheme obtained from the HS scheme. This
reduction was partially discussed in [8]. At first we
express elements in R by using a ZN basis {αi}

r
i=1.

Namely, we set as Xi =
∑r

k1=1 xijαj (i = 1, . . . , l),

V1ij =
∑r

k2=1 v1ijk2
αk2

(i = 2, . . . , l, j = 1, . . . , l − 1),

V2ij =
∑r

k3=1 v2ijk3
αk3

(i = 2, . . . , l, j = 1, . . . , l − 1)

and Wij1j2 =
∑r

k4=1 wij1j2k4
αk4

(i = 2, . . . , l, j1, j2 =
1, . . . , i − 1), where xik, v1ijk, v2ijk, wij1j2k ∈ ZN .

Then, each terms of the map Gi can be written as
a linear combination with αk1

tαk2

tαk3
, αk1

tαk2
αk3

. For
example,

Xj
tV t

1ijXi =
∑

k1,k2,k3≤r

xjk1
v1ijk2

xik3
αk1

tαk2

tαk3
.

Since αk1

tαk2

tαk3
, αk1

tαk2
αk3

∈ R, the elements can be
also expressed as the linear combination of {αi}

r
i=1. So

the map Gi can be written as the following.

r
∑

k′=1





∑

j≤i−1

∑

k1,k2≤r

(v′
ijk1k2k′xik1

xjk2
)

+
∑

j2≤j1≤i−1

∑

k1,k2≤r

(w′
ij1j2k1k2k′xj1k1

xj2k2
)



 αk′ ,

where ∃v′
ijk1k2k′ , w′

ij1j2k1k2k′ ∈R. Hashimoto and Saku-
rai [8] mentioned that the representation of αk1

tαk2
αk3

as the linear combination of αi is involved in the se-
curity of the HS scheme. However, the security of the
HS scheme is related to the form of not αk1

tαk2
αk3

but
v′

ijk1k2k′ . So, even if αk1

tαk2
αk3

has some simple form,
it is considered that the HS scheme would be secure
when V1ij , V2ij are selected randomly. (Of course, if we
consider special types such as the OSS scheme, the form
of αk1

tαk2
αk3

is closely related to the security of the
scheme.)

We showed the HS scheme can be reduced to some
commutative scheme. Based on the observation, we de-
fine the Rainbow-type [10] signature scheme as the fol-
lowing. Let K be a finite field or an integer residue class
ring and set N be the order of K. We select two inte-
gers r, l such that Klr is large enough to satisfy secu-
rity requirements and set n := lr. We define a function
ν : {r +1, . . . , n} → {r, 2r, . . . , lr} as ν(i) < i ≤ ν(i)+ r.

[Secret-key]

i) Generate a bijective affine transformation A : Kn

→ Kn.

ii) Generate an affine transformation B : Kn−r →
Kn−r

iii) For each i from r+1 to n, generate a ν(i)×r-matrix

Vi = (vij1j2)j1=1,...,ν(i), j2=1,...,r over K.

iv) For each i from r + 1 to n, generate a
ν(i)-dimensional lower triangular matrix Wi =
(wi,j1,j2)1≤j1,j2≤ν(i) over K.

[Public-key]
Construct a map P = B ◦ G ◦ A, where G = (g(r+1),
. . . , gn) : Kn → Kn−r is the map below.

gi(x1, . . . , xn) :=
∑

j1≤ν(i)<j2≤ν(i)+r

vij1j2xj1xj2 +
∑

j2≤j1≤ν(i)

wij1j2xj1xj2 .

[Signing]

i) By applying a hash function to a message, generate
m ∈ Kn−r.

ii) Compute m′ := B−1(m) = (y(r+1), . . . , yn).

iii) Select x1, . . . , xr ∈ K randomly.

iv) Compute σ′ := G−1(m′) = (x1, . . . , xn) by solving
the following inductive linear equations. For each k
from 1 to l − 1,



















































































ykr+1 −
∑

j2≤j1≤kr

w(kr+1)j1j2xj1xj2

=
kr+r
∑

j2=kr+1





kr
∑

j1=1

v(kr+1)j1j2xj1



 xj2 ,

...

ykr+r −
∑

j2≤j1≤kr

w(kr+r)j1j2xj1xj2

=

kr+r
∑

j2=kr+1





kr
∑

j1=1

v(kr+r)j1j2xj1



 xj2 .

(1)

v) Let a signature be σ := A−1(σ′).

[Verification]

i) By applying a hash function to a message, generate
m ∈ Kn−r.

ii) Verify that m corresponds with the element gener-
ated by applying P to the signature.

In what follows, we set N be the order of K. We call
the scheme above the commutative HS scheme or the
r-Rainbow scheme. Note that, Rainbow [10], which was
proposed by Ding et al. in 2005, which uses similar in-
ductive construction. However, from our perspective, N
is large and r, l are small. So the scheme above is dif-
ferent from the original Rainbow scheme with respect to
the setting of parameters.

Here, we consider the performance of the commutative
HS scheme. The dominant part of the signing is compu-
tation of affine transformations, summation

∑

j2≤j1≤kr

and solving the linear equations (1). The total compu-
tational complexity is O(n3 lg2 N). The same holds for
the complexity of the verification. Moreover, the size of
secret-key and public-key is O(n3 lg N). So, when param-
eters n = lr is small, we have the advantage of improving
efficiency and reducing key size.
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Table 1. Algorithm A: our attack against the r-Rainbow scheme.

Input: a public function P = (P1, . . . , Pn), parameters n, r, l,

a message m

Output: a valid signature for m

while true do
{polyi}

n

i=1 ← The polynomial representations of Pi −mi

for k from 1 to r do
poly(n+k) ← A random linear polynomial

a0 + a1x1 + · · ·+ anxn (ai ∈ K)
end for
I ← The ideal generated by poly1, . . . , poly(n+r)

{f1, . . . , ft} ← A Gröbner basis of I

V ← The variety of I (which is generated by {fi})
if V 6= ∅ then

return σ ∈ V (select randomly)
end if

end while

3. Attack against the HS scheme

In this section, we describe our attack in detail. We
remind you of the condition that N is large and n = rl
is small.

3.1 Our attack

In this subsection, we explain our algorithm. Table 1
shows our algorithm of breaking the r-Rainbow scheme.
The essence of our attack is that, if x1, . . . , xr ∈ K is
fixed, then the map P can be considered as an almost
bijective map. Note that the idea was used at [11] for
attacks against variants of HFE [12]. We can expect that
almost all random polynomials can be a good choice,
that is, V is not empty set, because the solution space of
{polyi}

n
i=1 has at least an r-dimensional linear space. So

we can expect that Gröbner basis algorithm works very
well.

We use the software Magma [13] for our implementa-
tion, and the the default algorithm in Magma for com-
puting a Gröbner basis is F4 algorithm proposed by
Faugére [14]. If a lexicographical Gröbner basis of an
ideal I is determined, computing the variety V (I) is not
so difficult.

3.2 Analysis of our algorithm

Our algorithm uses Gröbner basis algorithm, so it
would be difficult to investigate its complexity directly.
Then, in order to analyze the complexity of our algo-
rithm, we employ Patarin’s attack [9] as some approxi-
mation of our algorithm.

Let S(k)(x) be the matrix below corresponding the
equations (1).




















kr
∑

j1=1

v(kr+1)j1(kr+1)xj1 · · ·
kr
∑

j1=1

v(kr+r)j1(kr+1)xj1

...
. . .

...
kr
∑

j1=1

v(kr+1)j1(kr+r)xj1 · · ·
kr
∑

j1=1

v(kr+r)j1(kr+r)xj1





















.

Also, we define ∆
(k)
ij (x) be (i, j)-cofactor of S(k)(x).

Then, we have the following relation by Cramer’s for-

Table 2. Experimental results against the r-Rainbow scheme.

r 2 2 2 2 3 3 4

l 3 4 5 6 3 4 3

N 140 140 140 140 140 140 140

time[s] 0.02 0.08 1.1 169 0.08 2.1 11

Table 3. Experimental results against the r-Rainbow scheme for
r = 2, l = 4.

lg N 100 110 120 130 140 150

time[s] 0.24 0.25 0.26 0.27 0.28 0.29

mula.

x(kr+1) =

r
∑

j3=1

(

y(kr+j3) −
∑

j2≤j1≤kr

w(kr+j3)j1j2xj1xj2

)

×
∆

(k)
1j3

(x)

|S(k)(x)|
...

x(kr+r) =

r
∑

j3=1

(

y(kr+j3) −
∑

j2≤j1≤kr

w(kr+j3)j1j2xj1xj2

)

×
∆

(k)
rj3

(x)

|S(k)(x)|
, (2)

where |S(k)(x)| is the determinant of S(k)(x). Note that

|S(k)(x)|,∆
(k)
ij (x) are some polynomial with respect to

x = (x1, . . . , xn) whose degree is r, r − 1, respectively.
Here, we assume that y1, . . . , yr is a linear combination
of x1, . . . , xr. For i from r +1 to n, we can express xi by
using x1, . . . , xr and y1, . . . , y(n−r) as the following.

xi =
h(i)(y1, . . . , y(n))

f (ν(i))(y1, . . . , y(n))
,

where h(i) is some polynomial whose degree (with re-
spect to y1, . . . , yn) is (r+1)(ν(i)/r)−1 and f (ν(i)) is some
polynomial whose degree (with respect to y1, . . . , yn−r)
is (r + 1)(ν(i)/r) such that fν(i) | fν(i+1). We can verify
the relation by using (2) recursively. So we can apply
Patarin’s attack, that is, to find the relation between
m and σ by substituting y = B−1(m), x = A(σ). The
computational complexity of deducing some relations
is O(n3(r+1) lg2 N). In our situation, l, r (and n =
lr) are very small, so our algorithm works against
the HS scheme. Note that various experiments show
that Gröbner basis algorithm would work faster than
Patarin’s attack.

4. Experimental results

In this section, we give some experiments against the
r-Rainbow scheme. Tables 2, 3 are experimental results
of our attack. We used the computer with 2GHz CPU
(AMD Opteron 246), 4GB memory, and 160GB hard
disk. For our implementation, we employed Magma
V2.15-3. We showed that the complexity of our attack is
O(n3(r+1) lg2 N). So our attack would be practical if nr

can be polynomial to r, l, lg N , for example, r can be re-
garded as a constant. In fact, Tables 2 and 3 suggest that
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Table 4. Specific parameters for the r-Rainbow scheme with N =
65537(≃ 216).

r 5 6 7 7 8 9

l 5 3 2 4 3 2

security[bit] 80 112

sig[bit] 400 288 224 448 384 288

sk[kB] 8.44 3.40 1.57 11.48 7.39 3.06

pk[kB] 13.71 4.45 1.64 17.84 10.16 3.34

keygen[ms] 0.75 0.33 0.19 0.95 0.62 0.28

signing[ms] 7.92 3.16 1.43 10.73 6.89 2.78
verification[ms] 7.88 3.08 1.36 11.08 7.14 2.81

our attack is practical if r, l satisfying (rl)
(r+1)

≤ 218.
However, if r or l is large, our attack would be imprac-
tical. For example, for the parameters r = 4, l = 11, we
have n3(r+1) ≈ 282, so our attack would not be efficient
against the r-Rainbow scheme in this case.

5. Selection of parameters

In this subsection, we remark on the security of the
HS scheme and suggest specific parameters for the HS
scheme. We analyzed the complexity of our attack
against the HS scheme in Section 3. This shows that our

attack is efficient under the condition that (rl)
(r+1)

≤
218, that is, the parameters r, l are small. In contrast,
many attacks against the Rainbow-type scheme were
proposed. These attacks are collectively called “rank at-
tack”. For more information, see [15]. The complexity of
rank attack is O(Nrn4 lg2 N). This shows that rank at-
tack is efficient under the condition that the parameters
N, r are small.

We propose specific parameters for the HS scheme as
follows. The columns “sig”, “pk” and “sk” mean the size
of signature, public-key and secret-key, respectively. The
security of these parameters is based on above cryptanal-
ysis. For example, for the parameters r = 5, l = 5, N =
65537, we have n3(r+1) ≃ 283.6, Nrn4 ≃ 298.6. So we
consider the HS scheme corresponding to the parameter
satisfies almost 80 bit security, that is, it would achieve
the similar security level to 1024 bit RSA. The bit sizes of
signature, public-key and secret-key are taken as possible
maximum sizes based on the commutative HS scheme.
The columns “keygen”, “signing” and “verification” are
experimental results implemented on Magma. Although
these discussions are very roughly, this might be a cer-
tain guideline for setting parameters for the HS scheme
or the Rainbow-type scheme.

Note that we discussed not the original HS scheme but
the r-Rainbow scheme (the commutative HS scheme)
only. So we need to promote research about construct-
ing good non-commutative ring for the HS scheme. For
example, the parameter N = 65537 is small prime, so
we cannot use non-commutative OSS scheme. On the
other hand, efficiency, especially key size, should be con-
sidered on. Finding how to generate keys for the original
HS scheme is challenging future work.

6. Conclusion

We proposed an attack against the Hashimoto-Sakurai
scheme. Our proposed attack is a polynomial-time algo-

rithm with respect to its input sizes r, l, lg N under the
condition that nr = (rl)

r
is a polynomial in n and lg N .

Also, we discussed its efficiency of the attack and showed

that it is practical if (rl)
(r+1)

≤ 218 by using some exper-
iments. In our attack, firstly we reduce the HS scheme
to some commutative scheme. Then, we select r linear
equations randomly, and solve a public-key relation with
added these equations by using Gröbner bases algorithm.
Note that not all the HS scheme are broken, namely, our

algorithm would not work efficiently if (rl)
(r+1)

is large.
It implies that the scheme would be secure in the case
that N, l are not small and r is large, for example, the

case that (rl)
(r+1)

> 227 and Nr(rl)
4
≥ 280. Investi-

gating security of the scheme for the HS scheme with
specific parameters is our future work.
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